Disentangling the roles of late Miocene palaeogeography and vegetation – implications for climate sensitivity

Catherine D. Bradshaw*, Daniel J. Lunt*, Rachel Flecker*, Taraka Davies-Barnard*

a Bristol Research Initiative for the Dynamic Global Environment (BRIDGE), School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK

Correspondence to: C.D. Bradshaw (Catherine.Bradshaw@gfi.uib.no; +47 55584787)

Abstract

The impact of rising CO₂ on future climate remains uncertain but the evidence for high CO₂ in the palaeorecord suggests that past climates could provide a potentially quantifiable indication of climate in a high-CO₂ world. One such past time period is the Late Miocene (11.6-5.3 Ma), for which paleo-CO₂ reconstructions indicate higher levels than those of preindustrial, and similar to the present atmospheric level (~ 400ppm). The Late Miocene palaeorecord suggests a much warmer and wetter Northern Hemisphere than preindustrial. However, vegetation feedbacks are an important component of the climate system and vegetation distributions reconstructions from the palaeorecord have been shown to be very different to the present vegetation distribution. We examine the role that different vegetation and palaeogeography plays in climate sensitivity for the late Miocene and consider the implications for potential future climate change. To do this we use coupled atmosphere-ocean-vegetation simulations of late Miocene and potential modern climates forced by three different CO₂ concentrations with vegetation perturbation experiments and make quantitative comparisons to the palaeorecord. Optimal regions to target late Miocene palaeodata
acquisition for the purposes of informing about future climate include North America, northern Africa, Australia, Paraguay and southern Brazil, and northeastern Asia. These regions are those which the model results predict to be most sensitive to CO$_2$ forcing, but where the local temperature response to CO$_2$ forcing is similar between the simulated potential modern and late Miocene climates. The model results suggest that climate sensitivity to CO$_2$ forcing is directly affected by the palaeogeographic configuration and that the inferred climate sensitivity for doubled CO$_2$ is 0.5-0.8°C higher for the late Miocene than we might expect for future climate because of differences in synergy. The greater land mass at high northern latitudes during the late Miocene and the differences in vegetation distribution predictions that result, combined with differences in ocean circulation and the effect of sea ice, make the late Miocene boundary conditions more sensitive to CO$_2$ forcing than the modern boundary conditions.

Climate modelling; late Miocene; vegetation; CO$_2$; palaeogeography; climate sensitivity

1 Introduction

Reconstructions of late Miocene (11.6-5.3 Ma) CO$_2$ range from 144 to 1350ppm but most data suggest CO$_2$ levels were between preindustrial (280ppm) and modern (400ppm) concentrations (Demicco et al., 2003; Freeman and Hayes, 1992; Kurschner et al., 2008; Kurschner et al., 1996; Pagani et al., 1999a; Pagani et al., 1999b; Pagani et al., 2010; Pearson and Palmer, 2000; Tripati et al., 2011; Zhang et al., 2013; and see Figure 1 of Bradshaw et al., 2012). The palaeorecord also suggests that, for regions with abundant late Miocene data (in southern Europe and in central and southern Asia), the climate was generally hotter and/or wetter than today (Bruch et al., 2007; Eronen et al., 2010; Pound et al., 2012; Pound et al., 2011; Utescher et al., 2011; and see Figures 7 and 11 of Bradshaw et al., 2012). The fact that
the late Miocene climate was warmer and wetter than today is consistent with the fact that our modern climate has not yet reached equilibrium with our present atmospheric CO₂ concentration (Stocker et al., 2013). However, there could also be underlying differences in climate sensitivity between these two time periods due to differences in the continental and orographic configuration.

In order to use past warm climates to infer potential future climate change, it is important to establish the dependence of feedbacks (and therefore climate sensitivity) on the background climate state (Rohling et al., 2012). Consistent intercomparisons that separate out understanding of climate dynamics due to CO₂ forcing from other potential contributors such as paleogeography (continental positions, ocean gateways and continental ice extent), and associated feedbacks, are therefore essential. Previous work using extensive model-data comparisons suggests that CO₂ rather than paleogeography was the primary driver of late Miocene warmth (Bradshaw et al., 2012) but did not separate out the effects of vegetation. This study focuses on the role of vegetation in determining late Miocene climate and how palaeogeographic differences might affect the vegetation distribution and the sensitivity to CO₂ forcing. We show that palaeogeography is very important in the determination of temperature because it impacts both sensitivity to CO₂ forcing directly through differences in heat capacity, and indirectly through the distribution of high latitude vegetation and the combination of feedback mechanisms.
2 Description of the Models and Experiment Design

2.1 Description of the climate model HadCM3L and the dynamic vegetation model TRIFFID

The general circulation model (GCM) used in this work is HadCM3L (Cox et al., 2000), the low ocean resolution (2.5° latitude by 3.75° longitude) version of the fully coupled atmosphere-ocean model HadCM3 (Gordon et al., 2000; Pope et al., 2000). The atmosphere component has 19 vertical levels and the ocean component has 20 vertical levels and the model is run without the requirement for flux adjustments. Full details of the GCM and comparison to modern observations are given in Appendix B Section 1.1 of Bradshaw et al. (2012).

The interactive global vegetation model coupled to HadCM3L is the Top-down Representation of Interactive Foliage and Flora Including Dynamics (TRIFFID) model, a full description of which is given in Cox (2001) and Hughes et al. (2004). TRIFFID calculates areal coverage, leaf area index and canopy height for five defined plant functional types (PFTs): broadleaf tree, needleleaf tree, C₃ grass, C₄ grass and shrub, all of which can co-exist within the same model grid box. The vegetation model is competitive and hierarchical based on height, so natural vegetation will tend towards trees, if the conditions are suitable. Each PFT responds differently to climate and CO₂ forcing (e.g. C₃ and C₄ grasses use different photosynthetic pathways), and also impact differently on the physical properties of the land surface (i.e. possessing different aerodynamic roughness lengths and albedo properties). In using the TRIFFID model in a paleo context it is inherently assumed that modern vegetation characteristics are appropriate for the late Miocene and this of course may not be a good assumption. However, allowing vegetation distributions to alter with, and feed back to, the
climate is a better test of the dependence of climate sensitivity to vegetation distribution than keeping the vegetation fixed at the modern distribution. More details of the TRIFFID model and comparison to modern observations are given in the Supplementary Information.

2.2 Experimental Design

In this study, simulations have been conducted for late Miocene boundary conditions under different CO$_2$ concentrations and comparisons are made with potential modern climates for the same CO$_2$ concentrations. The modern climates are derived using TRIFFID-simulated natural vegetation rather than prescribing the true modern vegetation distribution, in order to exclude anthropogenic land-use changes associated with agriculture and urban areas. The continental positions and orographic boundary conditions for the late Miocene simulations are those from Markwick (2007) and are described in detail in Bradshaw et al. (2012). The boundary conditions for the potential modern simulations are those of the UK Met. Office and also described in Bradshaw et al. (2012). The major differences in the late Miocene boundary conditions as compared to the modern boundary conditions are an open Panama Gateway, a closed Bering Strait, a Barents/Kara Sea landmass, an unrestricted Indonesian Seaway, an unglaciated Greenland and reductions in orography for most of the world’s highest mountain chains (refer to Figure S1 in the Supplementary Information and also Figure 2 of Bradshaw et al., 2012).

Three potential atmospheric CO$_2$ concentrations are prescribed: 180ppm, 280ppm and 400ppm, all of which lie within the range of uncertainty of the palaeo-CO$_2$ reconstructions for the late Miocene (Bradshaw et al., 2012 and references therein; Zhang et al., 2013). All other atmospheric gas concentrations are kept at preindustrial values, and a modern orbit is prescribed.
In addition, vegetation-perturbation experiments were conducted whereby vegetation was fixed at the annual mean equilibrium distribution for each alternative CO$_2$ concentration, allowing the separation of the contribution made to climate from CO$_2$ forcing and the contribution made from vegetation feedbacks. The experimental design of the model simulations is shown schematically in Figure 1. The GCM was initially run with CO$_2$ levels set at preindustrial (280ppm) and the TRIFFID model turned on until the model had reached an equilibrium state (~1000 years), then the two additional CO$_2$ concentration scenarios were spun-off from each of the control simulations and all six simulations continued for a further 1000 years. The TRIFFID model was turned off and the vegetation fixed at the suggested near-equilibrium distributions and the simulations continued for a further 550 years. In addition, the GCM was run with the vegetation distribution fixed for that predicted with a higher or lower CO$_2$ concentration than the level prescribed in the simulations, e.g. the vegetation distribution in the 400ppm CO$_2$ scenario is prescribed with the predicted vegetation distribution for the 280ppm equilibrium climate scenario. These additional vegetation-perturbed scenarios were also run for a further 550 years.

The analysis in this paper is carried out using the climatological means of the last 50 years of each simulation. Analysis is performed from the viewpoint of an increase in CO$_2$, with focus given to the results from increasing CO$_2$ from 280 to 400ppm, as this is most relevant for immediate future climate. The change from 180ppm to 280ppm represents a radiative forcing of 2.36 W/m2 and the change from 280ppm to 400ppm represents a radiative forcing of 1.91 W/m2.

One of the uncertainties in the late Miocene configuration is the 10 soils parameters including soil moisture criteria, thermal capacities and albedo. For this work, globally homogenous
values derived from average modern soils are used for the Miocene simulations (refer to Table S2 and Figure S2 in the Supplementary Information). An additional sensitivity experiment was performed whereby the same globally homogenous average values were used with the modern boundary conditions in order to identify the magnitude of this uncertainty on the results presented. An example of the implication of using these homogenous parameters is shown in Figure S2 in the Supplementary Information.

A spreadsheet containing the model output temperature, precipitation and vegetation distribution for the 280 to 400ppm CO$_2$ increase are provided as Supplementary Information to this manuscript. The BRIDGE resources webpage provides access to further climate variables and the other simulations from this manuscript that may be of interest (http://www.bridge.bris.ac.uk/resources/simulations); click on “Access simulations”.

3 Results and Discussion

3.1 Response to CO$_2$ forcing including vegetation feedbacks

The model results suggest that as CO$_2$ increases, climate will warm regardless of whether late Miocene or modern boundary conditions are used, with the greatest warming expressed at the high latitudes and in particular over the oceans during their respective winter months as shown in Figure 2, panels A-D. In addition to Northern Hemisphere wintertime (DJF) warming, the mid to high northern latitudes also warm considerably during the summer months (Figure 2, panels A and C).

When comparing the late Miocene to the modern, the regions that differ most in their temperature response to CO$_2$ forcing are typically those that have undergone the most significant change in geography. The high latitude regions that have changed between land
and ocean (as shown in Figure 2, panels E and F), e.g. the Bering Strait, the Barents/Kara Sea landmass and the Hudson Bay region, all have a significantly different response to CO\textsubscript{2} forcing. One notable exception to this is the North Atlantic which is more sensitive to CO\textsubscript{2} forcing during DJF with late Miocene boundary conditions than with modern boundary conditions. Reasons for these differences in sensitivity to CO\textsubscript{2} forcing are discussed later in Section 4.3.

Spatially, the distribution of precipitation response to increasing CO\textsubscript{2} is similar between the late Miocene boundary conditions and the modern boundary conditions. Both show an increase in precipitation at the high latitudes, particularly during their respective winter months, year-round decreases in precipitation occur over the Amazon and southern Africa and there is an increase in seasonality in Europe; summers becoming drier and winters wetter (Figure 2, panels G-J). However, whilst the magnitude of the high latitude response is similar for the two boundary conditions, the magnitude of the low latitude response is greater for the late Miocene boundary conditions than the modern (Figure 2, panels K-L). There is also a difference in the sign of the response over Indonesia, in both seasons, for the two boundary conditions: increasing CO\textsubscript{2} with late Miocene boundary conditions leads to a decrease in precipitation in this region; increasing CO\textsubscript{2} with modern boundary conditions leads to an increase in precipitation.

3.2 Predicted vegetation distributions

3.2.1 Vegetation response to CO\textsubscript{2} forcing

Although the broad changes in vegetation distribution as a result of CO\textsubscript{2} forcing are similar for the two sets of boundary conditions, there are some notable differences. The response of
trees to CO₂ forcing is similar under both the late Miocene and modern boundary conditions, experiencing a global poleward shift in distribution from 180 to 280ppm and from 280 to 400ppm (Figure 3, panels A-C and Figure 4, panels A-C). Vegetation changes made by the TRIFFID model occur based on climatic thresholds for photosynthesis (temperature and atmospheric CO₂) and a competition hierarchy (trees-shrubs-grasses), refer to Section S1 in the Supplementary Information for more details. As increasing CO₂ inherently leads to an increase in the rate of photosynthesis directly through stomatal conductance (Ainsworth and Rogers, 2007; Farquhar and Sharkey, 1982) and indirectly through temperature increases from the greenhouse gas effect (Berry and Downton, 1982), it is expected that increasing CO₂ will lead to an increase in vegetation cover provided that water is not a limiting factor. Therefore, since trees are at the top of the PFT hierarchy, any increase in temperatures or atmospheric CO₂ will lead to an increase in tree coverage if the other climatic conditions permit. Warmer temperatures directly increase the rate of photosynthesis, and the temperature thresholds that determine photosynthesis are exceeded for longer durations throughout the year leading to an increase in net primary productivity. As precipitation increases with CO₂ forcing in the higher latitudes during the winter months, the soil is able to store moisture in the deeper layers that the trees are able to access during the summer months, thereby countering the reduction in precipitation that occurs across the 40-60°N latitude band during this season when photosynthesis is at a maximum.

This poleward shift is consistent with other studies of the response of vegetation to CO₂ forcing under modern boundary conditions (e.g. Alo and Wang, 2008; Cramer et al., 2001; Emanuel et al., 1985; Gerber et al., 2004; Joos et al., 2001; Scholze et al., 2006; Solomon, 1986) and there is also some observational evidence which may support this response.
(Bogaert et al., 2002; D'Arrigo et al., 1987; Lucht et al., 2002; Myneni et al., 1997). Also consistent with this poleward shift are palaeo-biome reconstructions that place both boreal and temperate forest at higher northern latitudes in the late Miocene than is seen today (Pound et al., 2012; Pound et al., 2011).

3.2.2 Regional details

An exception to the poleward shift in tree distribution is in the southern part of Africa. As CO₂ increases from 180ppm to 280ppm, an increase in tree cover is seen for both sets of boundary conditions. Accompanying the increase in tree coverage is a decrease in soil moisture in the tree rooting zone of 80kg/m² for the late Miocene boundary conditions and more than 250kg/m² for the modern boundary conditions. Analysis of the soil sensitivity experiments shows that this difference is as a result of the differences in the specified soil parameters with the modern homogenous soil results extremely similar to the late Miocene results. However, as CO₂ increases further from 280ppm to 400ppm, there is a decrease in tree cover for both sets of boundary conditions. Soil moisture availability in the tree rooting zone is further depleted by 100kg/m² for the late Miocene boundary conditions and by 70kg/m² for the modern boundary conditions – for the modern boundary conditions this puts available soil moisture in this region down to around 150kg/m². The soil moisture availability combined with a reduction in wintertime precipitation means that water reserves are not replenished to cover the summertime and so water becomes a limiting factor and the trees cannot compete. Vegetation under this higher CO₂ transition in this part of Africa therefore returns to more of a mix of shrubs and bare soil, although trees remain the dominant vegetation type.
The Amazon Rainforest also shrinks under both sets of boundary conditions as CO$_2$ increases, but a 2% greater reduction occurs for the late Miocene boundary conditions than the modern boundary conditions. Reductions in the size of the Amazon Rainforest are important both in terms of capacity as a major carbon sink and in terms of regional feedbacks to climate (Cox et al., 2000). The reduction of tropical forest with increasing CO$_2$ was found to be a robust feature of vegetation response across the IPCC AR4 scenarios (Alo and Wang, 2008; Salazar et al., 2007; Scholze et al., 2006), although the HadCM3 model resulted in the greatest response of the Amazon Rainforest (Alo and Wang, 2008).

Shrub coverage also shifts poleward in the Northern Hemisphere as CO$_2$ increases from 180ppm to 280ppm (Figure 3, panels G and I and Figure 4, panel G and I) but when CO$_2$ increases from 280ppm to 400ppm an additional northward advance is seen under late Miocene boundary conditions (Figure 3, panel H compared to Figure 4, panel H) because the shrubs have already colonised the most northerly grid boxes available to them in the lower 280ppm simulation (i.e. the late Miocene configuration allows for further northward expansion into ice-free Greenland and into the Barents/Kara Sea landmasses).

As with the shrubs, grasses also shift poleward in the Northern Hemisphere for late Miocene boundary conditions as CO$_2$ increases from 180 to 280ppm (Figure 3, panel D and F), but, apart from a few isolated grid boxes in Greenland and the Canadian Archipelago, no northward shift is seen under modern boundary conditions (Figure 4, panel D and F). When the CO$_2$ increases further, from 280 to 400ppm, an equatorward shift in grass distribution results for both sets of boundary conditions but particularly for late Miocene boundary conditions (Figure 3, panel E compared to Figure 4, panel E). The magnitude of global grass
coverage reduces with increasing CO$_2$ for both sets of boundary conditions. An 11% reduction in area occurs as CO$_2$ increases from 180ppm to 280ppm and a further 8% reduction in area arises as CO$_2$ increases from 280 to 400ppm under late Miocene boundary conditions. For the modern boundary conditions, the equivalent figures are a 12% reduction as CO$_2$ increases from 180ppm to 280ppm and a further 5% reduction as CO$_2$ increases from 280 to 400ppm. Changes to the distribution of bare soil are small for both sets of boundary conditions (Figure 3, panels J-L and Figure 4, panels J-L).

3.2.3 Dominant vegetation types

Figure 5 shows the evolution of global vegetation as CO$_2$ increases. At the global scale, when the CO$_2$ concentration is 180ppm the dominant vegetation type for the late Miocene boundary conditions is grasses (40% of the total vegetated land area) whereas for the modern boundary conditions grasses and trees are approximately equal in areal coverage (32% for grasses, 31% for trees). At 280ppm the dominant vegetation type for both sets of boundary conditions changes to trees and this remains the dominant vegetation type as CO$_2$ increases to 400ppm. Shrubs increase in areal coverage between 180 and 280ppm but then decrease between 280 and 400ppm for both sets of boundary conditions. The extent of bare soil (i.e. desert) as the dominant surface cover remains constant at around 20% of the total land area available for vegetation for both the late Miocene and the modern boundary conditions. Although the poleward shift in tree cover was greatest for the late Miocene boundary conditions as described in Section 3.2.1, there is a greater magnitude of tree coverage in the Southern Hemisphere, in South America in particular, with the modern boundary conditions and therefore at the global scale the modern boundary conditions yield the greatest areal coverage of trees. Regional differences are now discussed in more detail.
The dominant vegetation predicted under each CO₂ scenario clearly reveals the poleward
advance of latitudinal bands of grasses, shrubs and trees in the Northern Hemisphere. As the
late Miocene configuration has more land available for vegetation at high northern latitudes
than the modern configuration (ice-free Greenland, a closed Bering Strait, the Barents/Kara
Sea landmasses, a closed Hudson Bay), the latitudinal bands advance farther northwards than
with the modern boundary conditions (Figure 6, panels A-C compared to D-F).

For the 180ppm and 280ppm CO₂ levels, the bare soils that dominate the potential modern
boundary conditions around Greenland and the Canadian Archipelago are dominated by
grasses in the late Miocene (Figure 6, panels A-B compared to D-E). For the increase in CO₂
from 280 to 400ppm, the grasses that dominated the high northern latitudes at the lower CO₂
concentrations are replaced by shrubs and trees suggesting enhanced warming (Figure 6,
panels C and F). For all of the CO₂ concentrations, central Asian deserts extend further north
in the potential modern simulation as compared to the late Miocene simulation and the
southwestern North American deserts do not feature in the Miocene. Conversely, the open
Panama Gateway in the late Miocene is surrounded by deserts whereas forests dominate in
those equivalent grid boxes surrounding Central America for the potential modern.

In the Southern Hemisphere, the principle differences between the late Miocene and the
modern simulations are found in the Amazon Rainforest, which turns to grassland and desert
for both boundary conditions, but has a greater extent of desert for the late Miocene. In
Australia, the late Miocene simulations predict more grass cover than the potential modern
simulations, although the vegetation predicted by TRIFFID for Australia with modern
boundary conditions is perhaps questionable given the lack of desert simulated (Figure 6, panels E and F).

Soil sensitivity experiments show only minor differences in vegetation predictions resulting from the homogenous soils parameters as compared to the true soils parameters (see discussion and Figure S3 in the Supplementary Information).

Analysis

3.3 Separation of CO$_2$ forcing and vegetation feedbacks

The vegetation and CO$_2$ feedbacks can combine non-linearly; therefore it is useful to disassociate them in order to consider their impacts separately. To evaluate the role of CO$_2$ forcing in determining climate the simulations that keep vegetation fixed but alter CO$_2$ are compared. To evaluate the role of vegetation changes in determining climate the simulations that keep CO$_2$ fixed but alter the vegetation distributions are compared. The factor separation technique of Lunt et al. (2012) is used to assess the two contributions of CO$_2$ forcing and vegetation as follows:

\[f_{CO2} = \frac{1}{2} ((C400V280 - C280_{TRIF}) + (C400_{TRIF} - C280V400)) \]
\[f_{VEG} = \frac{1}{2} ((C280V400 - C280_{TRIF}) + (C400_{TRIF} - C400V280)) \]

where, \(f_{CO2} \) is the contribution from CO$_2$ forcing and \(f_{VEG} \) is the contribution from the vegetation changes.

The contribution to the temperature increase from CO$_2$ forcing alone occurs with a similar distribution to that described for CO$_2$ forcing with vegetation changes, suggesting that the CO$_2$ forcing dominates (Figure 7 compared to Figure 2). The greatest warming occurs at high
latitudes during winter months with the largest increases over the oceans (Figure 7, panels A-B and E-F).

CO_2 forcing alone cannot account for all of the warming; the temperature increases are lower than those predicted with vegetation changes included. Figure 7, panels A-D shows the CO_2 contribution as a result of increasing from 280 to 400ppm, but the results for increasing from 180 to 280ppm are very similar. Globally, the contribution of direct CO_2 forcing accounts for 2.5°C of the annual temperature increase when CO_2 increases from 180ppm to 280ppm but this reduces to 1.9°C of the annual temperature change when CO_2 is increased from 280 to 400ppm.

The distribution of precipitation changes as a result of increasing CO_2 only (Figure 7, panels C-D and G-H) is also extremely similar to that with the vegetation changes included. The contribution to the overall warming that can be assigned to vegetation changes is 1-2°C less globally averaged than that contributed by the CO_2 forcing alone (1.5-2.5°C), but it is by no means insignificant regionally with up to 2.5°C of warming across the mid-high northern latitudes and 4°C for some parts of the north Pacific Ocean for the 280 to 400ppm CO_2 vegetation distribution change (Figure 7, panels I-J and M-N). For the simulations which alter the vegetation distribution but keep CO_2 fixed (C280V280-C280V180 and C400V400-C400V280), the surface albedo changes are associated with the warming seen, for both sets of boundary conditions. For the 180ppm to 280ppm vegetation change, reductions in albedo of up to 20% result in JJA across the mid-high northern latitudes and reductions of up to 40% occur in DJF between 40 and 60°N in North America and Western Europe. The snow cover north of 60°N increases by up to 10% for this vegetation change, consistent with the increase
in winter precipitation. The vegetation changes between 280 and 400ppm yield a similar
magnitude of surface albedo reduction but this extends over a greater spatial area (40-80°N)
and a greater temporal domain (DJF through to MAM), and reductions of up to 20% are also
seen in SON and 10% in JJA. The albedo change can be explained by changes in the albedo
of the vegetation itself. In the model, shrubs and grasses are assigned a snow-free albedo of
20% compared to trees at 10%, and a 40-60% albedo when snow covered compared to just
15% for trees. Reductions in snow cover, which give even larger albedo changes, are also
responsible. For the 280 to 400ppm vegetation change, in DJF snow cover reduces by up to
20% across the 50-60°N latitudinal band and by 40% across the 40-50°N latitudinal band.
Reductions of up to 30% are also seen in MAM and SON between 40 and 70°N, and above
70°N the reductions are 10-20%. Due to the greater extent of land at the high northern
latitudes under the late Miocene boundary conditions (Greenland, closed Bering Strait,
Barents/Kara Sea landmass), the albedo reductions are greater than occurs with the modern
boundary conditions. The DJF albedo changes are expressed most strongly in the oceans
rather than on land because of the sensitivity of sea ice to temperature fluctuations.

Our results contrast with that from other work investigating of the impact of late Miocene
vegetation on climate by Knorr et al. (2011), where the warming contributed by the Northern
Hemisphere-dominated vegetation changes was translated to the Southern Hemisphere. For
the Northern Hemisphere summer months, the warming that the late Miocene boundary
conditions yield is widespread but Southern Hemisphere temperature changes are mostly not
significant (Figure 7, panels I-J). The average temperature increase in the Southern
Hemisphere as a result of vegetation changes is just 0.1°C. Given the limited vegetation-
covered land area and the smaller magnitude of the vegetation distribution changes in the
Southern Hemisphere as compared to the Northern Hemisphere, it is not surprising that the greatest warming from vegetation feedbacks occurs in the Northern Hemisphere. However, it is notable that the vegetation feedbacks from the Northern Hemisphere are not translated to the Southern Hemisphere for the late Miocene boundary conditions but are for the modern boundary conditions (Figure 7, panels M and N compared to I and J). This is because in all of the late Miocene simulations North Atlantic overturning has virtually shut down completely (<2Sv at 180ppm, <1Sv at 280ppm and 400ppm). The different late Miocene results may be due to model or boundary condition differences, as the Knorr et al. (2011) model simulations maintain a North Atlantic overturning circulation. The extent of North Atlantic overturning during the late Miocene remains controversial with some records indicating strong North Atlantic Deep Water (NADW) production during the late Miocene (Blanc et al., 1980; Delaney, 1990; Keller and Barron, 1983; Miller and Fairbanks, 1985; Woodruff and Savin, 1989; Wright et al., 1992) whilst others indicate a significant increase in the early Pliocene implying weaker production during the Miocene (Billups et al., 1999; Haug and Tiedemann, 1998; Tiedemann and Franz, 1997), consequently we are unable to discount either model result. Modelling studies have also demonstrated a significant impact of vegetation on overturning circulation through changes in the hydrological cycle (Ganopolski et al., 1998; Zhou et al., 2012). Therefore, should a stronger North Atlantic overturning be appropriate for the late Miocene than is seen with the model used here, such impacts may alter the results presented: surface salinity increases in the North Atlantic by up to 1PSU year-round when the vegetation is changed from a 280ppm to a 400ppm distribution, and sea surface temperatures in the same location decrease by up to 2°C suggesting that strengthening of an active North Atlantic overturning circulation would result.
Changes to the hydrological cycle as a result of the vegetation changes imposed also explain some of the resultant warming, particularly in the tropics. For example, in the Amazon the vegetation changes imposed reflect a desertification process, whereby trees are lost around the periphery of the rainforest and replaced with shrubs and grasses as CO₂ increases from 180 to 280ppm. As CO₂ increases further to 400ppm, those shrubs and grasses are themselves replaced by bare soil, the periphery of the remaining forest loses trees and the size of the overall deforestation/desertification expands. Both stages of the vegetation change result in evapotranspiration reductions of up to 1.5mm/day and associated reductions in latent heat of up to 45W/m² with the late Miocene boundary conditions. Associated with this change in energy flux are increases in sensible heat of up to 17W/m² causing near surface temperature to increase (Seneviratne et al., 2010); temperature increases over the Amazon are up to 3.1°C. It should be noted however, that the Amazon Rainforest simulated by HadCM3L under a modern preindustrial climate covers slightly too large an area and the northeastern Amazon is simulated to be dominated by grasses rather than trees.

In contrast, over India the vegetation changes are mainly afforestation – bare soil is replaced with grasses, shrubs and trees as CO₂ increases from 180 to 280ppm and evapotranspiration rates and latent heat flux increases accordingly by up to 0.8mm/day and 24W/m² respectively with the late Miocene boundary conditions. However, increases in sensible heat (up to 17W/m²) only occur during DJF when temperature increases of up to 3.8°C are seen. Some of the temperature change in DJF may therefore be related to changes in the hydrologic cycle, but albedo reductions of up to 20% also occur in this season as a result of both direct vegetation changes and reductions in snow cover itself (up to 30% in the Himalayas). In JJA sensible heat decreases by 9.5W/m² and so temperature actually decreases here by 1.4°C.
during the monsoon season due to changes in the hydrologic cycle, countering the JJA albedo
reduction of 5% that would otherwise result in warming. However, for most of the grid boxes
in this region, the temperature decrease is not significant at the 95% confidence level.

Precipitation reduces in JJA over the Amazon Rainforest by 40-50% in response to CO₂-
induced vegetation distribution changes (Figure 7, panels K and O). A northward shift of the
ITCZ is seen consistent with studies of afforestation in the Northern Hemisphere (e.g. Swann
et al., 2012), though the magnitude of change is less than that resulting from the CO₂ increase
itself. Many studies, model-based and observational, also link soil moisture and
evapotranspiration to precipitation, although the processes involved are complex (Carson and
Sangster, 1981; Dirmeyer and Shukla, 1994; Eltahir, 1998; Findell and Eltahir, 1997; Levis et
al., 2004; Mintz, 1984; Oglesby and Erickson III, 1989). Over the Amazon region, both
reductions in soil moisture and precipitation result from the vegetation changes, and Asian
monsoon precipitation doubles for the late Miocene boundary conditions, consistent with
these studies.

3.4 Synergy

Individual contributions to complex processes such as climate dynamics may not add linearly
and the extent of that non-linearity is termed the synergy. We use the factor separation
technique of Lunt et al. (2012) to assess synergy between the two contributions of CO₂
forcing and vegetation as follows:

\[f_{\text{SYN}} = C_{400\text{TRIF}} - C_{280\text{V400}} - C_{400\text{V280}} + C_{280\text{TRIF}} \] (3)

where, \(f_{\text{SYN}} \) is the synergy term defined as going from the lower CO₂ to the higher CO₂. Table
1 presents the factor separation (Equations 1 and 2) and the synergy term calculations.
Synergy is a measure of the non-linearity of the combination of individual contributions from CO₂ forcing and vegetation changes, and in some regions quite significant synergy is seen. Mostly the warming contributed by the CO₂ increase and the warming contributed by the vegetation changes sum to greater than the warming seen with both mechanisms included simultaneously (Figure 8, panels A-D). In other words, globally, the synergy for temperature between direct CO₂ forcing and vegetation changes is negative annually for the late Miocene boundary conditions, -0.2°C (180ppm to 280ppm) and -0.1°C (280ppm to 400ppm). For the modern boundaries conditions, the negative synergy is of a greater magnitude, -0.3°C (180ppm to 280ppm) and -0.5°C (280ppm to 400ppm).

For precipitation, the pattern of synergy is more complex (Figure 8, panels E-H). The synergy in annual precipitation at the global scale is also negative at -3.3mm/year (180ppm to 280ppm) and -0.9mm/year (280ppm to 400ppm) for late Miocene boundary conditions, and -4.0mm/year (180ppm to 280ppm) and -3.4mm/year (280ppm to 400ppm) for modern boundary conditions (Table 1).

3.5 Climate Sensitivity

The global mean annual 1.5m air temperatures from the simulations have a slightly non-linear relationship with the CO₂ concentration (refer to Figure 9). The difference between the late Miocene and the potential modern climates is small at 180ppm: the modern climate is 0.05°C warmer and 1.5mm/year wetter annually than the late Miocene at the global scale. However, between 180 and 280ppm CO₂ the late Miocene climate becomes warmer and wetter than the modern climates and the gap between the two widens as CO₂ increases further to 400ppm. At 400ppm, the late Miocene boundary conditions are 0.6°C warmer and 7mm/year wetter than
the modern boundary conditions. The late Miocene boundary conditions result in a 0.5°C higher climate sensitivity overall than modern boundary conditions, with little difference occurring whether the CO₂ increase is from the lower baseline of 180ppm or the preindustrial level of 280ppm (Table 2). However, both the modern and the late Miocene sensitivities are high in relation to the estimates from the CMIP5 models (Stocker et al., 2013), but slightly lower than recent estimates for the Eocene using the same model (Loptson et al., 2014).

Vegetation changes can alter moisture fluxes and therefore the local hydrological cycle and temperatures. The vegetation changes simulated here make a significant change to the overall sensitivity to CO₂ forcing of the late Miocene simulations, increasing climate sensitivity by 1.2°C when the CO₂ increase is from a baseline of 180ppm and 1.4°C when the CO₂ increase is from a baseline of 280ppm (refer to Table 3). The vegetation changes under the modern boundary conditions contribute much less to the overall climate sensitivity, particularly when the CO₂ increase is from 280ppm to 400ppm (only 0.4°C; Table 3), due to differences in synergy as discussed in Section 3.4.

The different late Miocene boundary conditions and vegetation distributions make the temperature response to CO₂ forcing more sensitive overall than the modern geography and potential modern vegetation distributions do. We attribute this difference to several processes. Firstly, as the late Miocene simulations are warmer than the equivalent modern simulations there is a greater sea ice loss in the late Miocene simulations than the equivalent modern simulations for the same CO₂ change globally and therefore the positive sea ice feedback mechanism is strongest with the late Miocene boundary conditions (Figure 10). In the North Atlantic, although more sea ice is lost in the late Miocene simulations than the modern simulations, the initial extent of sea ice is much greater under the late Miocene
boundary conditions and therefore the surface albedo remains high in this region despite the
CO2 increases. In the North Atlantic, the shutdown of North Atlantic Deep Water (NADW)
production and the associated overturning in the Atlantic for the late Miocene leads to a
reduced poleward heat transport in the Northern Hemisphere as compared to the modern
simulations and the greater sea ice extent in the North Atlantic for the late Miocene,
consistent with studies of reductions in NADW production (e.g. Álvarez-Solas et al., 2011).
However, we suggest that the high albedo deriving from the extensive sea ice is offset in the
late Miocene simulations by the albedo reductions deriving from the changes made to the
Greenland Ice Sheet and the Barents/Kara Sea landmass. The Greenland Ice Sheet is much
reduced in the late Miocene and Greenland is dominated by the shrub PFT at 400ppm (refer
to Figure 6, panel C), therefore although the majority of Greenland is snow-covered in
winter, the albedo is 20% lower than in the modern simulations. Likewise, the Barents/Kara
Sea landmass, covered by shrubs and trees in the late Miocene, has a lower albedo than the
equivalent ocean grid boxes in the modern simulations which are covered by sea ice. The
change in sensitivity can vary seasonally. For example, the Hudson Bay and Barents/Kara
Sea regions, as land in the late Miocene but ocean today, are more sensitive to CO2 forcing in
JJA but less sensitive in DJF (Figure 2, panels E and F). In JJA, this is because the ocean has
a higher specific heat capacity than the land surface and so this region will warm faster in the
late Miocene as land than it does today as ocean, and additionally, the input of cold water due
to sea ice melt will constrain the modern surface waters to near freezing point whereas in the
late Miocene no such constraint exists. This region also exhibits 20% less low cloud cover in
the late Miocene simulations than in the modern simulations during JJA indicating a role for
cloud feedbacks in modulating the modern climate more than the late Miocene climate in this
season. In DJF, the modern ocean covered by sea ice is more sensitive to CO$_2$-induced warming because of the sea ice-albedo feedback mechanism and changes to the insulation that sea-ice provides between the atmosphere and the underlying warmer ocean.

The second mechanism we suggest leads to the differences between the two boundary conditions is ocean ventilation. As NADW production is very weak in the late Miocene simulations, Antarctic Bottom Water production is the primary driver of ocean ventilation under those conditions. The strength of the resultant overturning in the South Atlantic is ~8Sv stronger in the late Miocene simulations than the modern simulations and so strong southern-focused ocean ventilation keeps the Southern Hemisphere warmer in the late Miocene simulations than in the modern simulations (at 280ppm CO$_2$, the late Miocene Southern Hemisphere is 1.4°C warmer than the modern Southern Hemisphere). As strong North Atlantic overturning circulation exerts a relative cooling influence on the Southern Hemisphere, this is a negative feedback mechanism for the simulations with modern boundary conditions. Increasing CO$_2$ acts to dampen overturning in the North Atlantic under both sets of boundary conditions, but amplifies the overturning in the Southern Ocean by 1Sv more under late Miocene boundary conditions than under modern boundary conditions. This increase in southern-focused overturning, and therefore enhancement of equator-to-pole heat distribution in the Southern Hemisphere, explains the warming seen on Antarctica (Figure 7, panel A compared to E and B compared to F) under late Miocene boundary conditions compared to modern boundary conditions.

However, the soil parameters also affect the sensitivity to CO$_2$ forcing – changing the soils parameters from homogenous values to the true modern soils parameters reduces climate sensitivity under modern boundary conditions by up to 0.25°C (refer to Table 2). When
globally homogenous soil parameters are used in the modern simulations the climate becomes globally cooler and drier (refer to Figure 9) and we can hypothesise that the late Miocene climate would respond in the same way: if late Miocene soils were similar to modern then the results documented here represent a minimum (i.e. that the climate would get warmer and wetter and the absolute difference between the late Miocene climate and the potential modern climate would increase), but late Miocene soils sensitivity experiments are needed for confirmation, e.g. setting the late Miocene soils to be the same as modern soils. In addition, many soil properties such as the albedo, soil water storage capacity and soil texture, which remain constant throughout the simulations presented here, would actually vary through time as climate and vegetation change both seasonally and on longer timescales. A recent study using a model capable of altering these properties throughout the model integration (Stärz et al., 2013) found that the soil changes amplified the climate signal in both warmer (Holocene) and cooler (LGM) conditions and so this could be an important feedback mechanism missing from the work presented here.

3.6 Model-Data Comparison

We compare the late Miocene experiments with the available late Miocene proxy data to help establish whether our model can reproduce late Miocene conditions and perhaps constrain the uncertainty in the palaeo-CO$_2$ record. Comparisons are made with the palaeorecord using the quantitative terrestrial reconstructions and model-data comparison methodology detailed in Bradshaw et al. (2012). This methodology assumes that whilst the model-derived temperatures and precipitations are not necessarily accurate, the relationship between the modern climate and the late Miocene climate is robust and bias corrections using the offset between modern observations and the simulated preindustrial climate (280ppm) are applied

24
to the late Miocene climatologies. The results for the model-data comparison are all provided as Figures S6 to S17 of the Supplementary Information of this paper and detailed in Tables S3-6. The results detailed in this section are for the mean annual temperature and the mean annual precipitation. Additional results for the cold month mean temperature and the warm month mean temperature are provided in the Supplementary Information in Section S3.2 and Figure S4. For the late Miocene simulations, a modern orbit has been prescribed, yet the data from the palaeorecord could record the climate from any of the late Miocene orbits. Future work should include comparing these data to different late Miocene orbital configurations to assess the impact of the modern orbit assumed in the work presented here.

Note that we would not expect the results of these fixed vegetation simulations to be completely identical to the simulations described in Bradshaw et al. (2012) because the interactive vegetation model alters the vegetation throughout the year whereas in this work the vegetation is held constant at mean annual fractional coverage and leaf area index, and small differences in the simulated climates are found.

3.6.1 Mean Annual Temperature (MAT)

For the mean annual temperature comparison, it is clear that changing the vegetation and/or the CO₂ concentration has not always resulted in an improvement in the model-data comparison (Figure 11, panel A-D).

North of 45°N for all but 4 sites in Russia the biome reconstructions are forest (Pound et al., 2011) suggesting that the 400ppm vegetation distribution here is accurate. However, for North America, this suggests that either the level of CO₂ was lower than 400ppm, or that the model result is inaccurate for this location because when the vegetation prescribed is that of
the 400ppm distribution, the simulations with CO$_2$ set to both 180ppm and 280ppm perform better in this region than the simulation with CO$_2$ set to 400ppm (refer to Figure 11, panel C compared to D, and Figure 12, panel C). A Pliocene study using the same GCM as employed in this work has found that small amounts of uplift in the North American Cordillera cause significant cooling in this region (Foster et al., 2010). Late Miocene sensitivity studies of the height of the North American Cordillera and also the configuration of the Bering Strait are therefore recommended as future work.

The fact that south of ~35°N changing the vegetation and/or the CO$_2$ concentration makes the model-data comparison deteriorate (Figure 11, panels A-D) suggests that not translating Northern Hemisphere-derived warming to the south through ocean circulation is indeed appropriate for the late Miocene, since the warming that has occurred directly from the vegetation changes here alone makes the simulated MATs too warm as compared to the proxy reconstructions. However, the scarcity in the MAT data for South America, Africa and Australia make drawing any firm conclusions about the temperatures in these regions unwise.

For Europe and central Asia, where most of the late Miocene MAT data is located, there is a clear indication that the vegetation and the CO$_2$ changes imposed improve the model-data comparison (Figure 11, panels A-D). Regardless of the vegetation distribution imposed, the best-fit CO$_2$ scenario in this region is 400ppm; the datapoints for which a 180ppm and/or 280ppm CO$_2$ concentration provide a better fit are located in Spain and around the Mediterranean coastline (Figure 12, panels A-C). A similar pattern arises if the best-fit vegetation distribution is considered – if the CO$_2$ concentration for the late Miocene was between 280 and 400ppm, away from the Mediterranean coast, the best-fit vegetation is predominantly the 400ppm distribution (Figure 12, panels G-I).
In South-east Asia, only the 180ppm CO$_2$ concentration scenarios have notable MAT overlap with the data (Supplementary Figure S6). The vegetation changes predicted by the TRIFFID model as CO$_2$ rises were to increase tree cover and for all of the CO$_2$ scenarios the dominant PFT in this region is trees; this is in agreement with the biome reconstructions of temperate forest (Pound et al., 2011). Afforestation has been found to have a cooling effect in the tropics (Bonan, 2008) and therefore it might be expected that the vegetation changes imposed should cool the climate, but for this part of South-east Asia this is not the case. It may be that the different palaeogeography of the late Miocene causes this region to respond differently to afforestation than modern studies have found and it may be that the model simulations produce MATs that are too warm as compared to the data because of inaccuracies in the local palaeogeography. A study incorporating two uplift scenarios for the late Miocene using the same model as used in this study (Lunt et al., 2010) simulates total Himalayan uplift (4500m higher, their Emod-Eflat) contributing widespread cooling of at least 4°C in this part of South-east Asia (east of the Himalayas themselves, which cool much more) and both partial uplift configurations (1500m higher, their Efrac-Eflat and 4500m higher but for the southern margins only, their ESouth-Eflat) contributing at least 2°C of cooling in this region, with some parts becoming up to 4°C colder. It could also be that the configuration of the Indonesian Seaway is incorrect for this time period. Further model sensitivity studies are required to investigate these uncertainties on the model-data comparison results.

3.6.2 Mean Annual Precipitation (MAP)

Most of the modelled MAPs overlap with the Messinian precipitation reconstructions (>91%; Table S4), except for a small pocket in the Eastern Mediterranean and in Spain (refer to Supplementary Figures S4 panel 2A and C, panel 2; Figures S9-11, panels A-C). Therefore,
the improvements or deteriorations between the model scenarios is small (Figure 11, panels E-H). For the Tortonian however, there are many datapoints which are wetter than the model simulates, located across Europe and into central Asia (Supplementary Figures S4, panel 2B and D; Figures S9-11, panels D-F). In Europe, the sensitivity of precipitation to CO$_2$ forcing is not even across the region. There is a clear north-south divide in the best-fit CO$_2$ scenario which is consistent for all of the vegetation distributions, with the north best matching the higher CO$_2$ scenario and the south the lower CO$_2$ scenario (Figure 12, panels D-F), and there is a clear east-west divide in the best-fit vegetation scenario which is consistent across all of the CO$_2$ concentrations, with the east best matching the lower CO$_2$ vegetation distribution and the west the medium and high CO$_2$ vegetation distributions (Figure 12, panels J-L). The Tortonian biome reconstructions for Europe are predominantly temperate forest but for all of the CO$_2$ scenarios the dominant PFT on the Eastern side of Europe is shrubs and for Spain shrubs and bare soil. This suggests that perhaps the Tortonian model-data mismatches in this region could be due to wrongly imposed vegetation. The biome reconstructions for Spain change from temperate forest to xerophytic shrublands between the Tortonian and the Messinian (Pound et al., 2012), which could explain the better fit here with the Messinian precipitation reconstructions.

There are increases in the overall number of model-data overlaps as either CO$_2$ increases and/or the vegetation prescribed moves to the higher CO$_2$ distributions, but 33% of the datapoints are still in disagreement with the model simulations.

3.6.3 Targeting palaeodata acquisition

For the purposes of improving our evaluation of the ability of HadCM3L-TRIFFID to reproduce late Miocene climate, quantitative data from the whole Southern Hemisphere and
North America is lacking. However, for the purpose of using the late Miocene to inform potential future climate changes, the locations that should be targeted for palaeodata acquisition are those which are most sensitive to \(\text{CO}_2 \) forcing (because a large signal-to-noise ratio is required to overcome the uncertainties in palaeodata reconstructions), but where the difference between the simulated modern climate and the late Miocene climates is smallest because these are the regions which are most insensitive to the geographic configuration. By using the difference between the late Miocene C400\text{T}RIF and C280\text{T}RIF simulations and overlaying as a mask the ‘no difference’ between the late Miocene and the potential modern simulations (effectively exposing only Figure 2A through the white areas from Figure 2E, but for the annual mean and the cold month and warm month means), these model results suggest that some of the currently available southern European and central Asian late Miocene data are suitable for this purpose (see Supplementary Figure S18). Other regions, where data are currently lacking, include North America, northern Africa, Australia, Paraguay and southern Brazil, and northeastern Asia. Note however, that for some localities tectonic movement has been significant between the late Miocene and today, e.g. in Australia, but that this movement has not been incorporated into the results presented here.

4 Conclusions

A series of \(\text{CO}_2 \) and vegetation perturbation experiments have been conducted under late Miocene and modern boundary conditions. At the lowest \(\text{CO}_2 \) (180ppm), the late Miocene palaeogeography and vegetation distributions produce a simulated global mean annual temperature and precipitation which is very similar to the climate simulated with the modern geography and vegetation distribution. The model simulations presented here agree with previous assessments that the late Miocene was globally warmer and wetter for \(\text{CO}_2 \).
concentrations greater than 180ppm (Bradshaw et al., 2012; Knorr et al., 2011; Micheels et al., 2009; Micheels et al., 2011; Micheels et al., 2007). The magnitude of the difference remains difficult to ascertain due to uncertainty in late Miocene soil parameters, which we suggest might increase the late Miocene global mean annual temperature by up to 0.5°C. Future work should include reconstructing late Miocene soil parameters to enable better model representation of late Miocene conditions, as has recently been done for the Pliocene (Pound et al., 2013) and the middle Miocene (Metzger, 2013).

As CO$_2$ is increased from 180 to 280ppm and 280 to 400ppm, both sets of boundary conditions lead to a poleward shift in shrub and tree cover in the Northern Hemisphere and a reduction in the size of the Amazon Rainforest and southern African forests. Separation of the direct CO$_2$ forcing and the vegetation changes for the late Miocene reveals that increasing CO$_2$ alone results in the greatest warming being expressed at high latitudes during the respective winter months but CO$_2$ forcing cannot alone account for all of the warming seen in the control simulations; the contribution of the vegetation change is significant and can be up to 7°C across the mid-high northern latitudes (for the 180 to 280ppm CO$_2$ change; not shown). Our results suggest that vegetation feedbacks are important; climate model simulations that do not include vegetation feedbacks will significantly underestimate warming due to increasing CO$_2$. Therefore our model results can be considered to lie between the traditional definition of Climate Sensitivity which considers only fast feedbacks, and Earth System Sensitivity which considers fast and slow feedbacks such as vegetation changes (e.g. Lunt et al., 2010), but not a full representation of Earth System Sensitivity because our continental ice sheet configuration is fixed across the CO$_2$ concentrations simulated. However, since our vegetation model is biophysical only it does not incorporate vegetation
CO₂ feedbacks to the atmosphere which are also very important. For example, it is estimated that the European terrestrial biosphere absorbed 7-12% of the 1995 anthropogenic carbon emissions (Janssens et al., 2003) whereas in our study the CO₂ concentration is unaltered by the vegetation distribution changes made; there is no biochemical feedback. Vegetation modelling studies carried out by Francois et al. (2006) find that the total global terrestrial carbon stock of the late Miocene would be 159Gt greater than the present day under preindustrial levels of CO₂ and that the late Miocene would experience an increase of 1727Gt for a CO₂ doubling.

The model-derived contribution to the warming from CO₂ forcing alone and the contribution to the warming from vegetation changes do not add linearly. Considering a change from low to high CO₂, in some regions the synergy is positive and the temperature response to CO₂ forcing is amplified, but mostly the temperature synergy is negative and acts to dampen the temperature response to CO₂ forcing. This occurs most strongly in regions where sea ice concentrations reduce and is therefore related to changes in the sea ice-albedo feedback mechanism. Differences in the sign and magnitude of synergy in the Southern Hemisphere between simulations with the late Miocene and the modern boundary conditions are suggested to result from the different ocean circulation that occurs with the late Miocene boundary conditions and the fact that Northern Hemisphere-derived vegetation changes are not translated to the Southern Hemisphere. Precipitation synergy is both negative and positive with complex spatial patterns, but global annual synergy is also negative. Regions that are most different in their sensitivity to increasing CO₂ between the late Miocene boundary conditions and the modern boundary conditions are those which undergo the most significant palaeogeographical alteration, e.g. the Bering Strait, the Barents/Kara Sea and the Hudson
Bay region. However, the uncertainties in the palaeogeography itself must also be considered and so future work should investigate the sensitivity of the results presented here to different tectonic configurations for the late Miocene. Additionally, it is stressed that presented here are the results from a single model, and the climate sensitivities derived are towards the upper end of the range of climate sensitivities determined from the CMIP5 models (Stocker et al., 2013), implying that other models may suggested reduced climate changes for the same CO$_2$ changes made in this study.

Comparisons of the model results to the quantitative terrestrial palaeorecord show that for the majority of the data (located in Europe and central Asia), the mean annual temperatures, the cold month mean temperatures and the warm month mean temperatures best fit with the 400ppm CO$_2$ concentration simulation with the 400ppm vegetation distribution. However, the mean annual precipitations best fit with the 180ppm CO$_2$ concentration simulation with the 180ppm vegetation distribution. The reasons for this discrepancy remain open. In order to test the regions of poor model-data comparison, Late Miocene sensitivity studies of the configuration of the North American Cordillera, the Panama Gateway, the Bering Strait, the Barents/Kara Sea, the Himalayas and the Indonesian Seaway are recommended because these are the regions of most palaeogeographic change, as well as fixed late Miocene vegetation simulations using PFT representations of the biome reconstructions of Pound et al. (2011, 2012).

This work shows that palaeogeography is important for determining the vegetation distribution at high latitudes and this has a significant effect on the climate sensitivity of the late Miocene. The model results suggest that climate sensitivity to CO$_2$ forcing is directly affected by the palaeogeographic configuration and that globally the late Miocene was 0.5-
0.8°C more sensitive to CO₂ forcing than we might expect future climate to be because of the
greater land mass at high northern latitudes during the late Miocene and the different
vegetation distribution predictions that result. At high northern latitudes, the late Miocene
palaeogeography consists of a near ice-free Greenland, a closed Bering Strait and a landmass
where the Barents and Kara Seas reside today. Whilst future climate may include further
reductions in the size of the Greenland Ice Sheet, which could make available additional
vegetated land, the Barents/Kara Sea landmass will not be available again and the Bering
Strait may only close on orbital timescales.

Our modelling suggests that the optimal regions to target late Miocene palaeodata acquisition
for the purposes of informing future climate are North America, northern Africa, Australia,
Paraguay and southern Brazil, and northeastern Asia. These are the regions that the model
results predict to be most sensitive to CO₂ forcing, but where the palaeogeographic
differences do not significantly influence the local temperature response.

In conclusion, if modern climate were to reach equilibrium with present day CO₂
concentrations (400ppm) we might expect the climate to become globally warmer and wetter,
however, model results suggest that it is unlikely to be as warm or wet as the late Miocene for
that same CO₂ concentration. This is because the paleogeography of the late Miocene and the
resultant vegetation differences make the climate more sensitive to CO₂ forcing due to
differences in the combination of sea ice, cloud, and ocean circulation feedbacks.
5 Acknowledgements

This work was carried out using the computing facilities of the Advanced Computing Research Centre at the University of Bristol, http://www.bris.ac.uk/acrc. Catherine Bradshaw and Taraka Davies-Barnard are funded by NERC PhD studentships.

6 References

Metzger, C., 2013. Miocene Soil Database: Global paleosol and climate maps of the Middle Miocene Thermal Maximum, American Geophysical Union Fall Meeting, San Francisco.

Tiedemann, R., Franz, S.O., 1997. Deep-water circulation, chemistry, and terrigenous sediment supply in the Equatorial Atlantic during the Pliocene, 3.3-2.6 Ma and 5-4.5 Ma, in: Shackleton, N.J., Curry, W.B., Richter, C., Bralower, T.J. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results. Texas A & M University, Ocean Drilling Program, College Station, TX, pp. 299-318.

Figure 1. Schematic showing the evolution of the late Miocene and potential modern GCM runs used in this study. All of the runs have been conducted with late Miocene boundary conditions; the asterisks indicate which of the run combinations have also been conducted with modern boundary conditions. For clarity the reader is referred to the online version of this paper where a colour version of this figure is provided.

Figure 2. Temperature and precipitation changes due to CO2 forcing including vegetation changes. Shown are the results for changing CO2 from 280ppm to 400ppm. Only significant differences are shown using a 95% confidence interval Student’s T-Test; white areas are not significant. For the righthand panels, both land-sea masks are shown; the modern land-sea mask is dotted. For clarity the reader is referred to the online version of this paper where a colour version of this figure is provided.

Figure 3. Fractional changes in vegetation distribution due to CO2 forcing under late Miocene boundary conditions as predicted by the TRIFFID model. Left hand panels are anomalies of the 280ppm simulations with the 180ppm simulations. Middle panels are anomalies of the 400ppm simulations with the 280ppm simulations. Right hand panels show the latitudinal
distribution in vegetation for each of the three CO$_2$ concentrations. For clarity the reader is referred to the online version of this paper where a colour version of this figure is provided.

Figure 4. Fractional changes in vegetation distribution due to CO$_2$ forcing under modern boundary conditions as predicted by the TRIFFID model. Left hand panels are anomalies of the 280ppm simulations with the 180ppm simulations. Middle panels are anomalies of the 400ppm simulations with the 280ppm simulations. Right hand panels show the latitudinal distribution in vegetation for each of the three CO$_2$ concentrations. For clarity the reader is referred to the online version of this paper where a colour version of this figure is provided.

Figure 5. Global changes in the dominant vegetation distributions as simulated by the TRIFFID vegetation model under the three CO$_2$ scenarios: 180ppm, 280ppm and 400ppm for the late Miocene (LM) and the modern (PM) boundary conditions. For clarity the reader is referred to the online version of this paper where a colour version of this figure is provided.

Figure 6. Dominant vegetation distributions as simulated by the TRIFFID vegetation model under the three CO$_2$ scenarios: 180ppm, 280ppm and 400ppm for the late Miocene and the Modern boundary conditions. For clarity the reader is referred to the online version of this paper where a colour version of this figure is provided.

Figure 7. Lefthand column: Near-surface air temperature and precipitation changes due to CO$_2$ forcing alone (excluding vegetation changes; Equation 1). Righthand side: Near-surface air temperature and precipitation changes due to vegetation changes alone (excluding direct
CO₂ forcing; Equation 2). Panels A-D and I-L show the late Miocene boundary condition results, panels E-H and M-P show the modern boundary condition results. Shown are the contributions as a result of increasing from 280 to 400ppm, but the results for increasing from 180 to 280ppm are very similar. Only significant differences are shown using a 95% confidence interval Student’s T-Test; white areas are not significant. For clarity the reader is referred to the online version of this paper where a colour version of this figure is provided.

Figure 8. Synergy between the direct CO₂ forcing and the vegetation feedbacks (Equation 3). The top four panels show the synergy for the mean annual temperature and the bottom four panels show the synergy for the mean annual precipitation. Displayed are the results for changing CO₂ from 280ppm to 400ppm whilst the vegetation is fixed at the distribution in equilibrium with the ambient CO₂. If the contributions from direct CO₂ forcing and from vegetation changes add linearly, the anomalies will be zero. For clarity the reader is referred to the online version of this paper where a colour version of this figure is provided.

Figure 9. Global mean annual near-surface air temperature (A) and precipitation (B) sensitivity to CO₂ concentration (including vegetation feedbacks).

Figure 10. Change in sea ice concentration for a CO₂ change from 280ppm to 400ppm with vegetation feedbacks included (C₄₀₀TRIF – C₂₈₀TRIF). For clarity the reader is referred to the online version of this paper where a colour version of this figure is provided.
Figure 11. Improvements in the model-data comparison due to vegetation changes and due to the CO2 changes. Green circles indicate an improvement, red circles indicate deterioration. The datapoints showing ‘no difference’ are plotted underneath the other datapoints in order to highlight the differences. For clarity the reader is referred to the online version of this paper where a colour version of this figure is provided.

Figure 12. The best-fit scenarios to the data. For the top row, A and D (G and J) show which CO2 (vegetation) scenario is closest to the data reconstructions when the vegetation distribution (CO2) imposed is 180ppm. The middle row, B and E (H and K) show which CO2 (vegetation) scenario is closest to the data reconstructions when the vegetation (CO2) imposed is 280ppm. The bottom row C and F (I and L) show which CO2 (vegetation) scenario is closest to the data reconstructions when the vegetation (CO2) imposed is 400ppm. The datapoints for which there is no discernible difference in the model-data comparison between all of the CO2 scenarios (i.e. they all overlap with the data) are shown in white and are plotted underneath the other datapoints in order to highlight the differences. For clarity the reader is referred to the online version of this paper where a colour version of this figure is provided.

Table 1. Factor separation of CO2 forcing and vegetation changes and the synergy calculated from non-linearity between the two. f_{CO2} is the contribution from CO2 forcing, f_{VEG} is the contribution from the vegetation changes and f_{SYN} is the synergy term defined as going from the lower CO2 to the higher CO2.
Table 2. Inferred equilibrium climate sensitivity for the late Miocene and modern boundary conditions. Numbers are obtained by scaling the output from the simulations presented in this work to that for a standard climate sensitivity definition of the global mean near-surface air temperature change for a doubling of CO₂ (using scaling factors of 1.57 for the 180 to 280ppm CO₂ change and 1.94 for the 280ppm to 400ppm CO₂ change (Lunt et al., 2010)). For the modern simulations, results from the homogenous soils experiments are shown in parentheses.

Table 3. Inferred equilibrium climate sensitivity and the contribution from vegetation changes. Numbers are obtained by scaling the output from the simulations presented in this work to that for a standard climate sensitivity definition of the global mean temperature change for a doubling of CO₂ (using scaling factors of 1.57 for the 180 to 280ppm CO₂ change and 1.94 for the 280ppm to 400ppm CO₂ change (Lunt et al., 2010)).
Supplementary Information

S1. Dynamic vegetation model TRIFFID

The interactive global vegetation model coupled to HadCM3L is the Top-down Representation of Interactive Foliage and Flora Including Dynamics (TRIFFID) model, a full description of which is given in Cox, (2001) and Hughes et al. (2004). TRIFFID has been found to be dynamically stable and that the variations in the modelled vegetation distributions are driven by perturbations in the atmosphere (Hughes et al., 2006).

TRIFFID calculates areal coverage, leaf area index and canopy height for five defined plant functional types (PFTs): broadleaf tree, needleleaf tree, C_3 grass, C_4 grass and shrub. These PFTs respond differently to climate and CO_2 forcing (e.g. C_3 and C_4 grasses use different photosynthetic pathways), and also impact differently on the physical properties of the land surface (i.e. possessing different aerodynamic roughness lengths and albedo properties). All PFTs can co-exist within the same gridbox, each possessing a fractional coverage that is equivalent to the population size. The fractional coverage co-existence approach allows smooth transitions to occur when the vegetation distribution changes rather than the sudden discontinuities that would occur in a ‘dominant’ PFT only approach (Svirezhev, 2000).

The MOSES2 scheme calculates the net primary productivity (NPP) as the difference between photosynthesis and respiration for each PFT, and this quantity is then converted into the biomass for each PFT per unit area together with a component of spreading, which results in changes in the fractional distribution for that PFT. Light competition from other PFTs interferes with the spreading. Tree PFTs compete in relation to their canopy heights, as do grass PFTs and a simple dominance hierarchy between tree-shrub-grass determines the competition between trees, grasses and shrubs (Betts et al., 2004). Disturbance such as that due to disease and fire, can be represented by a single disturbance rate for a given PFT but the effect of these impacts is beyond the scope of this study and so no disturbance to PFTs is assumed here.

The NPP is calculated by a coupled photosynthesis-stomatal conductance model (Cox et al., 1998). Factors affecting the rate of photosynthesis are the humidity deficit, the photochemically active radiation, soil moisture and leaf area index. The maximum rate of photosynthesis is directly related to the leaf temperature and the upper and lower temperatures for photosynthesis (defined individually for each PFT). The PFTs compete horizontally in that grasses replace bare soil, shrubs replace grasses and trees replace shrubs.

The predicted vegetation in each grid box feeds back into the climate system in a number of ways, principally through evapotranspiration from the canopy, alteration of surface albedo, and through alteration of mixing at the boundary layer between the surface and the atmosphere (roughness length), selected parameters used in the model for each PFT are given in Table S1. Evaporation from transpiring vegetation is calculated using a photosynthesis model with climatic variables, soil moisture and the vegetation type (Cox et al. 1998; Cox 2001). The surface albedo is based on the fractions of each PFT, the fraction of snow-cover
and a prescribed albedo for that PFT, both snow-free and snow-covered. The prescribed albedos are based on the canopy radiative transfer model of Sellers (1985). The roughness length is calculated according to the modelled height of the vegetation and a parameter corresponding to the rate of change of vegetation roughness length with height, separately defined for each PFT. The roughness length of vegetation is incorporated into the albedo calculations when snow covered, e.g. a forested grid box is given a lower albedo than a shrub or grass filled grid box with the same depth of snow cover. The roughness length of a grid box will contribute to the determination of the sensible heat and moisture fluxes, and also the near surface wind speed.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Broadleaf Tree</th>
<th>Needleleaf Tree</th>
<th>C3 Grass</th>
<th>C4 Grass</th>
<th>Shrub</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial canopy height</td>
<td>19.0</td>
<td>16.38</td>
<td>0.8</td>
<td>1.26</td>
<td>2.0</td>
</tr>
<tr>
<td>Initial leaf area index</td>
<td>5.0</td>
<td>4.0</td>
<td>2.0</td>
<td>4.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Initial canopy conductance</td>
<td>0.014</td>
<td>0.014</td>
<td>0.014</td>
<td>0.014</td>
<td>0.014</td>
</tr>
<tr>
<td>Temperature below which leaves are dropped</td>
<td>0</td>
<td>-30</td>
<td>-15</td>
<td>-15</td>
<td>-30</td>
</tr>
<tr>
<td>Lower temperature for photosynthesis</td>
<td>0.0</td>
<td>-5.0</td>
<td>0.0</td>
<td>13.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Upper temperature for photosynthesis</td>
<td>36.0</td>
<td>31.0</td>
<td>36.0</td>
<td>45.0</td>
<td>36.0</td>
</tr>
<tr>
<td>Critical humidity deficit</td>
<td>0.09</td>
<td>0.06</td>
<td>0.10</td>
<td>0.075</td>
<td>0.10</td>
</tr>
<tr>
<td>Snow-covered albedo for large LAI</td>
<td>0.15</td>
<td>0.15</td>
<td>0.60</td>
<td>0.60</td>
<td>0.40</td>
</tr>
<tr>
<td>Snow-covered albedo for zero LAI</td>
<td>0.30</td>
<td>0.30</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>Snow-free albedo for large LAI</td>
<td>0.10</td>
<td>0.10</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Rate of change of roughness length with height</td>
<td>0.05</td>
<td>0.05</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Rootdepth (m)</td>
<td>3.00</td>
<td>1.00</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Table S1. Selected TRIFFID PFT parameters

Two modes of coupling between the TRIFFID and the GCM are possible: a spinup equilibrium mode in which the fluxes between the land and the atmosphere are calculated by the GCM and averaged over ~5 years, and a more computationally demanding dynamic mode, which is used to incorporate the seasonal cycle with the fluxes calculated on every 30 minute timestep and averaged over 10 days. The averaged fluxes are then passed to TRIFFID which calculates the growth and expansion of the existing vegetation, and updates the land surface parameters based on the new vegetation distribution and structure.

It is important to note that it is not a necessity for the vegetation structure to be in equilibrium with the climate: modelled vegetation may lag the status of the climate and in many cases it has been well documented that vegetation is not sensitive to short timescale variability (Henderson-Sellers, 1993; Woodward et al., 1998), and significant disequilibrium has been observed, e.g. for European tree distributions (Svenning and Skov, 2004). The work of Hughes et al. (2006) suggests that there are substantial lags associated with TRIFFID components, and that simulations should be run for more than 300 years in order to reach vegetative equilibrium.
The TRIFFID model has been compared to IGBP-DIS land cover dataset (Loveland and Belward, 1997), which represents the modern distribution of vegetation as derived from satellite image interpretation (Betts et al., 2004). This suggests that the shrub PFT is overestimated at high latitudes at the expense of forests, perhaps as a result of the high latitude cold bias in the GCM. The broadleaf tree PFT is also overestimated in equatorial regions, with the exception of at the mouth of the River Amazon where model underestimated precipitation leads to TRIFFID modelling the presence of C4 grasses instead of broadleaf trees. Grasses tend to be globally slightly underestimated with the position of vegetation in the Sahara desert and other arid regions well reproduced, but the density is modelled to be too sparse, particularly in south-west Africa, central and south-west Asia, south-west North America and Australia. The discrepancies between the satellite imagery and the TRIFFID model are suggested to be a combination of orographic representation leading to underestimation of precipitation, differences between the anthropogenic masks used in the model and that found on the satellite imagery, and the inadequate treatment of natural disturbance mechanisms such as fire (Betts et al., 2004).

Although there are six vegetation definitions output from TRIFFID (broadleaf trees, needleleaf trees, C3 grass, C4 grass, shrubs and bare soil), the PFT albedos used in the model are identical between broadleaf and needleleaf trees and between C3 and C4 grasses, and there are no differences in the parameters that determine the roughness length between broadleaf and needleleaf trees, and between C3 and C4 grasses. Therefore, although not completely identical, to ease the analysis we consider the results in terms of only four landcover types: trees, grasses, shrubs and bare soil under the general assumption that the potential contribution to the climate from the two tree types are extremely similar and also between the two grass types, but that their actual contribution (the fraction and distribution of each PFT in each gridbox as determined by firstly by climatic thresholds and subsequently by the competition hierarchy between the trees, grasses and shrubs) will be accounted for by their location, i.e. needleleaf trees and C3 grasses at higher latitudes, broadleaf and C4 grasses at lower latitudes, and a mix in mid latitudes.

S2. Experimental Design

S2.1 Late Miocene Boundary Conditions

The geological record provides evidence for an palaeogeographic configuration during the late Miocene that was distinctly different to today including an open Panama Gateway (Duque-Caro, 1990; Keigwin, 1982), an unrestricted Indonesian Seaway (Cane and Molnar, 2001; Edwards, 1975; Kennett et al., 1985; van Andel et al., 1975), a closed Bering Strait (Gladenkov et al., 2002; Marincovich Jr and Gladenkov, 2001; Marincovich and Gladenkov, 1999). On land the palaeorecord suggests major uplift of the Himalayas (Fang et al., 2005; Harrison et al., 1992; Molnar et al., 1993; Rowley and Currie, 2006), the Andes (Garzione et al., 2008; Gregory-Wodzicki, 2002), the North American Rockies (Morgan and Swanberg, 1985), the East African Plateaus (Saggerson and Baker, 1965; Yemane et al., 1985), and the Alps (Kuhlemann, 2007; Spiegel et al., 2001) during the late Miocene. Figure S1 details the boundary condition used in our late Miocene simulations and highlights the major differences to the modern geography.
Figure S1. Late Miocene boundary conditions. Bathymetry is unaltered from modern. The colour scale used in this figure groups elevation into bins.

S2.2 Homogenous soils parameters

For the soils parameters that are unknown for the late Miocene, homogenous values have been used as detailed in Table S2. To provide an example of the implications of using these homogenous parameters, the variables thermal capacity and volumetric soil moisture concentration at field capacity are shown in Figure S2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Homogenous value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumetric soil moisture concentration at wilting point</td>
<td>0.16 m3/m3</td>
</tr>
<tr>
<td>Volumetric soil moisture concentration at critical point</td>
<td>0.24 m3/m3</td>
</tr>
<tr>
<td>Volumetric soil moisture concentration at field capacity</td>
<td>0.24 m3/m3</td>
</tr>
<tr>
<td>Volumetric soil moisture concentration at saturation</td>
<td>0.46 m3/m3</td>
</tr>
<tr>
<td>Clapp-Honberger B coefficient</td>
<td>6.6</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>0.22 J/m/K/s</td>
</tr>
<tr>
<td>Saturated soil conductivity</td>
<td>0.005 kg/m2/s</td>
</tr>
<tr>
<td>Thermal capacity</td>
<td>1.2x106 J/m3/K</td>
</tr>
<tr>
<td>Saturated soil water suction</td>
<td>0.022 m</td>
</tr>
<tr>
<td>Snow-free soil albedo</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Table S2. Homogenous soils parameters
S3. Supplementary Results

S3.1 Vegetation distribution sensitivity to soil parameters

The soil sensitivity experiments that were performed for modern boundary conditions show only minor change to the high northern latitude vegetation distributions presented in Sections Error! Reference source not found. and Error! Reference source not found. when the same uniform soil properties as used for the late Miocene are assumed for the present day (refer to Supplementary Figure S3).

The largest differences in the predicted vegetation occur in the desert regions of Africa, central Asia and north America which reduce in size as compared to the true soil type simulations. The extent of tree cover in Australia and Thailand also reduces when the soil properties are homogenised, being replaced by grasses.
Figure S3. Dominant vegetation distributions for the three CO$_2$ scenarios: 180ppm, 280ppm and 400ppm as simulated by the TRIFFID vegetation model when homogenous soil parameters are used for the potential modern boundary conditions.

S3.2 Model-data comparison

S3.2.1 Warm Month Mean Temperature (WMT)

The warm month mean temperature is the only variable for which the vegetation changes imposed does not result in any deterioration in the model-data comparison (Figure S4, panel 3). For most of the mid-high latitude data, the best-fit CO$_2$ scenario is 400 ppm (Figure S5, panels A-C), but the lower latitudes are equally matched with the 400 ppm and the 280 ppm simulation regardless of the vegetation prescribed. There is a similar latitudinal gradient in the best-fit vegetation with the higher latitude data best matching the 400 ppm CO$_2$ concentration simulation, the mid latitude data best matching the 400 and the 280 ppm simulations and the lowest latitudes being least sensitive to the choice of vegetation, particularly when the CO$_2$ concentration is highest (Figure S5, panels G-I). Even for the highest CO$_2$ concentration scenario with the highest CO$_2$ vegetation distribution the model cannot replicate WMTs as warm as the data reconstructions; only 29% of the datapoints overlap (see Table S5).

S3.2.2 Cold Month Mean Temperature (CMT)

Improvements are seen in the model-data comparison when the vegetation changes from the 180ppm distribution to the 280 ppm distribution (Figure S4, panels A and B) but the number of overlaps between the 400 ppm CO$_2$ simulations and the data is high for all vegetation distributions (94-95% overlap; Table 6) and so little impact is seen from these vegetation changes (Figure S4, panels C-D). It is notable, given the model-data mismatch for MATs that the southernmost Tortonian datapoints in south-east Asia deteriorate with both vegetation distribution changes. The latitudinal gradient for the best-fit CO$_2$ concentration is even more defined for the CMT than the WMT; the lower latitudes fit best with the 180ppm simulation and the higher latitudes the 400ppm simulation (Figure S5, panels D-F), and this result is insensitive to the choice of vegetation distribution. However, the best-fit vegetation distribution is very sensitive to the choice of CO$_2$ concentration - the 180ppm CO$_2$ concentration requiring the 400ppm vegetation distribution to get close to the temperature reconstructions (Figure S5, panels J-L). The C400V400 simulation results in a model-data overlap of 94% (Table S6).

<table>
<thead>
<tr>
<th>Stage</th>
<th>Datatype</th>
<th>C180V180</th>
<th>C180V280</th>
<th>C180V400</th>
<th>C280V180</th>
<th>C280V280</th>
<th>C280V400</th>
<th>C400V180</th>
<th>C400V280</th>
<th>C400V400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messinian</td>
<td>Fauna</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Macroflora</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>15</td>
<td>14</td>
<td>26</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Microflora</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>34</td>
<td>40</td>
<td>65</td>
<td>65</td>
<td>90</td>
<td>101</td>
</tr>
<tr>
<td>Tortonian</td>
<td>Fauna</td>
<td>8</td>
<td>11</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Macroflora</td>
<td>18</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>14</td>
<td>25</td>
<td>23</td>
<td>39</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Microflora</td>
<td>20</td>
<td>20</td>
<td>29</td>
<td>26</td>
<td>27</td>
<td>47</td>
<td>45</td>
<td>57</td>
<td>60</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>63</td>
<td>69</td>
<td>88</td>
<td>102</td>
<td>109</td>
<td>178</td>
<td>173</td>
<td>238</td>
<td>287</td>
</tr>
<tr>
<td>% overlap</td>
<td></td>
<td>15</td>
<td>16</td>
<td>21</td>
<td>24</td>
<td>25</td>
<td>41</td>
<td>40</td>
<td>55</td>
<td>67</td>
</tr>
</tbody>
</table>

Table S3. Number of overlaps between the model simulations and the data reconstructions of the mean annual temperature
Table S4. Number of overlaps between the model simulations and the data reconstructions of the mean annual precipitation

<table>
<thead>
<tr>
<th>Stage</th>
<th>Datatype</th>
<th>C180V180</th>
<th>C180V280</th>
<th>C180V400</th>
<th>C280V180</th>
<th>C280V280</th>
<th>C280V400</th>
<th>C400V180</th>
<th>C400V280</th>
<th>C400V400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messinian</td>
<td>Fauna</td>
<td>136</td>
<td>136</td>
<td>136</td>
<td>135</td>
<td>135</td>
<td>135</td>
<td>135</td>
<td>135</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Macroflora</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Microflora</td>
<td>148</td>
<td>148</td>
<td>148</td>
<td>147</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
<td>146</td>
</tr>
<tr>
<td>Tortonian</td>
<td>Fauna</td>
<td>506</td>
<td>489</td>
<td>487</td>
<td>483</td>
<td>487</td>
<td>480</td>
<td>482</td>
<td>480</td>
<td>478</td>
</tr>
<tr>
<td></td>
<td>Macroflora</td>
<td>76</td>
<td>76</td>
<td>77</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>74</td>
<td>76</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Microflora</td>
<td>75</td>
<td>77</td>
<td>76</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>992</td>
<td>977</td>
<td>975</td>
<td>967</td>
<td>970</td>
<td>963</td>
<td>965</td>
<td>959</td>
<td>959</td>
</tr>
<tr>
<td>% overlap</td>
<td></td>
<td>94</td>
<td>93</td>
<td>93</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>91</td>
<td>91</td>
<td>91</td>
</tr>
</tbody>
</table>

Table S5. Number of overlaps between the model simulations and the data reconstructions of the warm month mean temperature

<table>
<thead>
<tr>
<th>Stage</th>
<th>Datatype</th>
<th>C180V180</th>
<th>C180V280</th>
<th>C180V400</th>
<th>C280V180</th>
<th>C280V280</th>
<th>C280V400</th>
<th>C400V180</th>
<th>C400V280</th>
<th>C400V400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messinian</td>
<td>Fauna</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Macroflora</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Microflora</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Tortonian</td>
<td>Fauna</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Macroflora</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Microflora</td>
<td>9</td>
<td>12</td>
<td>14</td>
<td>24</td>
<td>30</td>
<td>37</td>
<td>34</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>11</td>
<td>15</td>
<td>19</td>
<td>32</td>
<td>44</td>
<td>60</td>
<td>51</td>
<td>83</td>
<td>96</td>
</tr>
<tr>
<td>% overlap</td>
<td></td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>13</td>
<td>18</td>
<td>15</td>
<td>25</td>
<td>29</td>
</tr>
</tbody>
</table>

Table S6. Number of overlaps between the model simulations and the data reconstructions of the cold month mean temperature

<table>
<thead>
<tr>
<th>Stage</th>
<th>Datatype</th>
<th>C180V180</th>
<th>C180V280</th>
<th>C180V400</th>
<th>C280V180</th>
<th>C280V280</th>
<th>C280V400</th>
<th>C400V180</th>
<th>C400V280</th>
<th>C400V400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messinian</td>
<td>Fauna</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Macroflora</td>
<td>22</td>
<td>28</td>
<td>30</td>
<td>33</td>
<td>37</td>
<td>40</td>
<td>43</td>
<td>44</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Microflora</td>
<td>103</td>
<td>106</td>
<td>132</td>
<td>134</td>
<td>135</td>
<td>138</td>
<td>142</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>Tortonian</td>
<td>Fauna</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Macroflora</td>
<td>36</td>
<td>42</td>
<td>47</td>
<td>51</td>
<td>55</td>
<td>63</td>
<td>68</td>
<td>68</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Microflora</td>
<td>42</td>
<td>46</td>
<td>53</td>
<td>56</td>
<td>59</td>
<td>60</td>
<td>64</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>203</td>
<td>222</td>
<td>262</td>
<td>274</td>
<td>286</td>
<td>301</td>
<td>317</td>
<td>315</td>
<td>311</td>
</tr>
<tr>
<td>% overlap</td>
<td></td>
<td>61</td>
<td>67</td>
<td>79</td>
<td>83</td>
<td>86</td>
<td>91</td>
<td>95</td>
<td>95</td>
<td>94</td>
</tr>
</tbody>
</table>

The individual results of the model-data comparisons for all of the vegetation-CO₂ perturbation experiments now follow.
Figure S4. Improvements in the model-data comparison due to vegetation changes. Green circles indicate an improvement, red circles indicate a deterioration. The datapoints showing ‘no difference’ are plotted underneath the other datapoints in order to highlight the differences.
Figure S5. The best-fit scenarios to the data. For the top row, A and D (G and J) show which CO₂ scenario (vegetation) scenario is closest to the data reconstructions when the vegetation distribution (CO₂) imposed is 180ppm. The middle row, B and E (H and K) show which CO₂ (vegetation) scenario is closest to the data reconstructions when the vegetation (CO₂) imposed is 280ppm. The bottom row C and F (I and L) show which CO₂ (vegetation) scenario is closest to the data reconstructions when the vegetation (CO₂) imposed is 400ppm. The datapoints for which there is no discernible difference in the model-data comparison between all of the CO₂ scenarios (i.e. they all overlap with the data) are shown in white and are plotted underneath the other datapoints in order to highlight the differences.
Figure S6. Results from the model-data comparison for mean annual temperature, late Miocene data – 180ppm CO₂ scenarios.
Figure S7. Results from the model-data comparison for mean annual temperature, late Miocene data – 280ppm CO$_2$ scenarios.
Figure S8. Results from the model-data comparison for mean annual temperature, late Miocene data – 400ppm CO₂ scenarios.
1. 180ppm Vegetation Distribution

2. 280ppm Vegetation Distribution

3. 400ppm Vegetation Distribution

Figure S9. Results from the model-data comparison for mean annual precipitation, late Miocene data – 180ppm CO₂ scenarios.
Figure S10. Results from the model-data comparison for mean annual precipitation, late Miocene data – 280ppm CO₂ scenarios.
Figure S11. Results from the model-data comparison for mean annual precipitation, late Miocene data – 400ppm CO₂ scenarios.
Figure S12. Results from the model-data comparison for the coldest month mean temperature, late Miocene data – 180ppm CO₂ scenarios.
1. 180ppm Vegetation Distribution

2. 280ppm Vegetation Distribution

3. 400ppm Vegetation Distribution

Figure S13. Results from the model-data comparison for the coldest month mean temperature, late Miocene data – 280ppm CO₂ scenarios.
1. 180ppm Vegetation Distribution

2. 280ppm Vegetation Distribution

3. 400ppm Vegetation Distribution

Figure S14. Results from the model-data comparison for the coldest month mean temperature, late Miocene data – 400ppm CO₂ scenarios.
Figure S15. Results from the model-data comparison for the warmest month mean temperature, late Miocene data – 180ppm CO₂ scenarios.
Figure S16. Results from the model-data comparison for the warmest month mean temperature, late Miocene data – 280ppm CO$_2$ scenarios.
Figure S17. Results from the model-data comparison for the warmest month mean temperature, late Miocene data – 400ppm CO₂ scenarios
Figure S18. Regions where late Miocene palaeodata could be used to inform potential future climate changes.

S4. References

<table>
<thead>
<tr>
<th>CO₂ Change</th>
<th>Period</th>
<th>Variable</th>
<th>C180TRIF</th>
<th>C280TRIF</th>
<th>C280V180</th>
<th>C180V280</th>
<th>f₁CO₂</th>
<th>f₁VEG</th>
<th>f₁SYN</th>
</tr>
</thead>
<tbody>
<tr>
<td>180 to 280ppm</td>
<td>Late Miocene</td>
<td>Temperature (°C)</td>
<td>10.1</td>
<td>13.2</td>
<td>12.6</td>
<td>10.9</td>
<td>2.4</td>
<td>0.7</td>
<td>-0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Precipitation (mm/yr)</td>
<td>986</td>
<td>1043</td>
<td>1033</td>
<td>1000</td>
<td>45</td>
<td>12</td>
<td>-3.3</td>
</tr>
<tr>
<td>280 to 400ppm</td>
<td>Potential Modern</td>
<td>Temperature (°C)</td>
<td>10.1</td>
<td>12.9</td>
<td>12.2</td>
<td>11.1</td>
<td>1.9</td>
<td>0.8</td>
<td>-0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Precipitation (mm/yr)</td>
<td>987</td>
<td>1040</td>
<td>1024</td>
<td>1007</td>
<td>35</td>
<td>18</td>
<td>-4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temperature (°C)</td>
<td>13.2</td>
<td>15.8</td>
<td>15.0</td>
<td>14.0</td>
<td>1.8</td>
<td>0.8</td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Precipitation (mm/yr)</td>
<td>1043</td>
<td>1082</td>
<td>1072</td>
<td>1055</td>
<td>28</td>
<td>11</td>
<td>-0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temperature (°C)</td>
<td>12.9</td>
<td>15.2</td>
<td>14.7</td>
<td>13.8</td>
<td>1.6</td>
<td>0.7</td>
<td>-0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Precipitation (mm/yr)</td>
<td>1040</td>
<td>1077</td>
<td>1066</td>
<td>1054</td>
<td>25</td>
<td>13</td>
<td>-3.4</td>
</tr>
<tr>
<td>$2 \times CO_2$</td>
<td>Late Miocene</td>
<td>Modern</td>
<td>Late Miocene – Modern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>--------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>from 180 ppm</td>
<td>4.85</td>
<td>4.31(4.25)</td>
<td>0.54(0.6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>from 280 ppm</td>
<td>5.01</td>
<td>4.43(4.21)</td>
<td>0.55(0.8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 x CO₂</td>
<td>Climate Sensitivity (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laté Miocene</td>
<td>Potential Modern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incl. vegetation changes</td>
<td>4.85</td>
<td>4.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excl. vegetation changes</td>
<td>3.61</td>
<td>3.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change due to vegetation</td>
<td>1.24</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incl. vegetation changes</td>
<td>5.01</td>
<td>4.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excl. vegetation changes</td>
<td>3.62</td>
<td>4.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change due to vegetation</td>
<td>1.39</td>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Change due to vegetation values calculated from 180ppm and 280ppm.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM</td>
<td>Late Miocene boundary conditions</td>
</tr>
<tr>
<td>PM</td>
<td>Potential Modern boundary conditions</td>
</tr>
<tr>
<td>BF</td>
<td>Fractional coverage of broadleaf forest</td>
</tr>
<tr>
<td>NF</td>
<td>Fractional coverage of needleleaf forest</td>
</tr>
<tr>
<td>C3</td>
<td>Fractional coverage of C3 grasses</td>
</tr>
<tr>
<td>C4</td>
<td>Fractional coverage of C4 grasses</td>
</tr>
<tr>
<td>SB</td>
<td>Fractional coverage of shrubs</td>
</tr>
<tr>
<td>BS</td>
<td>Fractional coverage of bare soil</td>
</tr>
<tr>
<td>SAT</td>
<td>Near-surface air temperature (deg C)</td>
</tr>
<tr>
<td>PRE</td>
<td>Precipitation (mm/day)</td>
</tr>
<tr>
<td>-9999</td>
<td>Missing data</td>
</tr>
</tbody>
</table>