
Peer reviewed version

Link to published version (if available):
10.1073/pnas.1505356112

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
Fork rotation and DNA pre-catenation is restricted during DNA replication to prevent chromosomal instability

Short title: Replication fork rotation in eukaryotes

S. A. Schalbetter¹, S. Mansoubi¹, A. L. Chambers¹², J. A. Downs¹ and J. Baxter¹*

Affiliations:

¹ Genome Damage and Stability Centre, Science Park Road, University of Sussex, Falmer, Brighton, East Sussex BN1 9RQ, U.K.

² School of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K.

*Correspondence to:
Jonathan Baxter
Genome Damage and Stability Centre,
Science Park Road, University of Sussex,
Falmer, Brighton, East Sussex BN1 9RQ, U.K.

Email: Jon.Baxter@sussex.ac.uk
Tel: +44 (0)1273 876637

Key words:
Genome integrity, DNA replication, catenation, topology, fragile sites
Abstract

Faithful genome duplication and inheritance requires the complete resolution of all intertwines within the parental DNA duplex. This is achieved by topoisomerase action ahead of the replication fork or by fork rotation and subsequent resolution of the DNA pre-catenation formed. Although fork rotation predominates at replication termination, *in vitro* studies have suggested that it also occurs frequently during elongation. However, the factors that influence fork rotation and how rotation and pre-catenation may influence other replication associated processes are unknown. Here we analyze the causes and consequences of fork rotation in budding yeast. We find that fork rotation and pre-catenation preferentially occurs in contexts that inhibit unwinding, including stable protein-DNA fragile sites and termination. However, although fork rotation is induced by these local contexts, generally fork rotation and pre-catenation is actively prevented by Timeless/Tof1 and Tipin/Csm3. In unperturbed cells fork rotation and pre-catenation causes extensive DNA damage following DNA replication. In unperturbed cells, damage related to fork rotation is limited to the fragile protein-DNA sites where pre-catenation occurs. We conclude that although fork rotation and pre-catenation facilitates unwinding in hard to replicate contexts, it intrinsically disrupts normal chromosome duplication and is therefore restricted by Timeless/Tipin.
Significance Statement

Genome inheritance requires the complete resolution of all intertwines within parental DNA. This is facilitated by fork rotation and pre-catenation of the newly replicated DNA. However, the general importance and frequency of fork rotation in vivo is poorly understood. We find that the evolutionarily conserved Timeless and Tipin proteins actively inhibit fork rotation in budding yeast. In their presence fork rotation appears restricted to hard to replicate fragile sites. In their absence excessive fork rotation leads to damage accumulating in the replicated sister chromatids especially at known yeast fragile sites. Therefore fork rotation appears to be restricted to contexts where it is absolutely required for unwinding and that this restriction is required to prevent pre-catenation inducing excessive chromosomal fragility.

Introduction

During DNA replication it is essential to completely unwind and remove all the intertwining between the two strands of the template DNA double helix. This is achieved by the combined action of replicative helicases and topoisomerases. During elongation replicative helicases force the strands apart, generating compensatory topological overwinding stress in the unreplicated region ahead of the fork. If overwinding accumulates it prevents further DNA replication (1, 2). Relaxation of the stress is achieved either by topoisomerase action ahead of the fork, directly on the overwound region, or by coupling helicase action with rotation of the whole fork relative to the unreplicated DNA (SI Appendix, Fig. S1). This latter pathway relaxes topological stress ahead of the fork at the expense of generating double stranded intertwines behind the fork, often referred to as DNA pre-catenanes (3, 4). These intertwines are subsequently resolved by the action of type II topoisomerases. If type II topoisomerases do not completely resolve either the pre-catenanes or the full DNA catenanes formed at the completion of replication the unresolved intertwines will cause chromosome bridging, non-disjunction and aneuploidy (5). Fork rotation and DNA pre-catenation appears to be the primary pathway of unlinking when forks come together at the termination of DNA replication (6, 7). In addition, in vitro, fork rotation appears to be a frequent event during elongation; it can support ongoing replication, and extensive pre-catenation is observed behind elongating forks (8-10). Therefore the prevailing view is that the topological stress caused by DNA unwinding is resolved stochastically during elongation by both topoisomerase action ahead of the fork and fork rotation and DNA decatenation behind the fork (3, 11). At termination the diminishing distance between converging replisomes is thought to prevent topoisomerase action ahead of the fork, leaving fork rotation as the primary pathway for DNA unwinding in this
context. However, unlike viral replisomes and replication complexes established in
in vitro systems, the eukaryotic replisome holo-enzyme is composed of a far greater
number of proteins and activities. These factors are thought to facilitate replication
through the highly variable eukaryotic genomic landscape and co-ordinate lagging
strand synthesis with other chromatid maturation processes such as chromatin
assembly and cohesion establishment (5). These latter processes act on the same
newly replicated DNA potentially braided by pre-catenation. How these processes
occurring in the wake of the fork may be impeded by the formation of pre-
catenation is unexplored (5).

In order to study these events in vivo we have directly examined fork rotation and
pre-catenation in budding yeast. We show that fork rotation and pre-catenation is
not stochastic but rather is actively restricted to distinct contexts by the
evolutionarily conserved homologues of Timeless/Tipin, Tof1/Csm3. Failure to
regulate fork rotation leads to significantly elevated levels of DNA damage,
particularly at known fragile sites. Therefore the eukaryotic replisome appears to
minimize rotation and pre-catenation, so that it is utilized to unwind DNA only when
absolutely necessary to maintain genome stability.

Results

Fork rotation during replication elongation is not stochastic and is restricted to
distinct genomic contexts.

To assess fork rotation in vivo we adapted a previously described plasmid DNA
catenation assay for use with yeast episomal plasmids (12, 13). The conditional loss
of type II topoisomerase activity during DNA replication leads to the accumulation of
catenated replicated plasmids in yeast (14), due to the DNA pre-catenanes formed
through fork rotation not being resolved by Top2. Assaying the extent of DNA
Catenation on these plasmids by agarose gel electrophoresis allows a direct assessment of the frequency of formation of pre-catenation and therefore fork rotation (assay fully outlined in SI Appendix, Fig. S2). To conditionally remove topoisomerase II activity from cells specifically during DNA replication, we synchronized the top2-4 yeast strain (15) in G1, switched the cells to the restrictive temperature to ablate Top2 activity and then released them into the cell cycle, allowing plasmid replication and formation of catenated sister chromatids. For analysis we then purified DNA following replication without Top2, nicked the plasmids with a site specific nuclease and then resolved and quantified the entire distribution of relaxed and catenated plasmids (referred to as CatAn where n = number of catenated linkages), by two dimensional gel electrophoresis, Southern blotting and densitometry. Using this assay we found that replication of the 5kb yeast ARS/CEN episomal plasmid pRS316 produced a normal distribution of catenated states with a median of 13. Analysis of the tail of the distribution indicated that 14% of the population appeared highly catenated (i.e. with plasmids containing more than 20 catenations (CatAn >20)) (Fig. 1A). Bacterial Topo III can resolve precatenation in vitro by acting on gaps in the lagging strand (8). To eliminate the possibility that the activity of yeast Top3 may have led to an underestimation of fork rotation, we assessed DNA catenation of the plasmid in the absence of both Top2 and Top3. However, we did no observe any significant difference in DNA catenation of pRS316 in the absence of Top3 and Top2 compared to Top2 alone (SI Appendix, Fig. S3A), indicating that Top3 does not resolve pre-catenanes in this context.

Finally, to test if residual Top2 activity in the ts allele could be modifying our results we compared catenated plasmids generated immediately following DNA replication with catenated plasmids maintained a further hour in a post-replicative block. No residual decatenation activity could be detected (SI Appendix, Fig. S3B). Therefore
we conclude that our analysis of DNA catenation is providing a direct assessment of fork rotation and pre-catenation on these replicons.

If fork rotation occurs stochastically during elongation, increasing the size of a replicon should increase the incidence of fork rotation during its replication. To assay if increasing the size of the replicon led to increased fork rotation we first ligated 3kb of DNA into pRS316, increasing the size of the plasmid by 60%. However, no difference in the distribution of DNA catenation was observed (median n=12, 14% of plasmids had > 20 catenations) (Fig. 1B). We then ligated a further 4kb of DNA into the plasmid increasing the size of the replicon to by 140% (to 12kb) and re-analyzed DNA catenation. On this plasmid we observed a spreading of the distribution of catenated states, compared to the smaller plasmids, but did not see an increase of the median of the population (median n=13, 21% of plasmids had > 20 catenations) (Fig. 1C). Therefore, in vivo, increasing the size of the plasmid replicon does not significantly alter the overall extent of DNA catenation, indicating that elongation distance is not the primary determinant of the extent of fork rotation during DNA replication. Rather our data suggests that the extent of fork rotation is regulated by distinct contexts within the replicon such as the termination of DNA replication.

Fork rotation is predicted to be more frequent at termination because the convergence of two replisomes spatially restricts topoisomerase access to the unreplicated DNA between them (11). In this model the replisomes have to rotate in order to unwind the final few turns of DNA (Fig. 1D left). Projecting this model onto the different chromosomal contexts of DNA replication we postulated that a similar situation would arise when the fork passes through stable protein-DNA complexes that are known to pause ongoing replication (16) (Fig. 1D right). When the fork
approaches a stable protein-DNA complex that pauses replication, topoisomerases will be spatially inhibited from accessing the DNA between the encroaching replisome and the stable complex, potentially requiring fork rotation to allow ongoing replication. To test this hypothesis we assessed if pausing structures in plasmid replicons led to increased fork rotation during replication. We compared similar sized plasmids that contained either; no known pause site (pRS426), a point centromere pause site (pRS316) or multiple pausing sites consisting of 3 tRNA genes and a centromere (tRNApRS316). Catenation analysis of pRS426, produced a slightly reduced distribution of catenated states compared to the one pause site plasmid pRS316, with pRS426 (median n=12, 8% of plasmids with > 20 catenations) (Fig. 1E). In contrast a substantial increase in catenation was observed for the multiple pause site plasmid tRNApRS316 (median n=16, 28% of plasmids had > 20 catenations) (Fig. 1F). Therefore replication through tRNAs and potentially centromeres increases fork rotation and DNA catenation over and above the catenation that occurs at termination. We extended our analysis to inactive origins, where DNA-bound ORC and MCM proteins pause replication (16). We achieved this by comparing a 7 origin plasmid to a 1 origin plasmid (17). On multi-origin plasmids, only 1 origin is activated and the remaining inactive origins are passively replicated (18). The 7 origin plasmid based on the YIPlac plasmid became highly catenated during DNA replication (median n=16, 35% of plasmids with > 20 catenations) compared to a YIPlac plasmid containing 1 copy of the origin (median n=12 with 12% of plasmids with > 20 catenations) (Fig. 1H, G) (full summary of DNA catenation experiments in SI Appendix, Table S2). Together these data argue that replication through stable structures that pause DNA replication including tRNAs, inactive origins and potentially centromeres (16) induces fork rotation and pre-catenation during replication elongation.
Timeless/Tof1 and Tipin/Csm3 restrict fork rotation

Since stable protein-DNA complexes both pause replication and cause fork rotation, we next examined if factors that influence fork pausing also alter fork rotation. Deletion of the *Timeless* homologue *TOF1* leads to reduced pausing at stable protein-DNA complexes (19). Therefore we examined if deletion of *TOF1* alters fork rotation during replication of plasmid pRS316. In *tof1Δ* cells we observed a radical increase in the number of DNA catenanes formed on the plasmid. The distribution of highly catenated states was dramatically shifted, with a median in excess of 30 (64% of the distribution containing > 30 catenanes) (Fig. 2A). Therefore Tof1 appears to restrict fork rotation during DNA replication on this replicon. We then examined how deletion of other replisome factors linked to Tof1/Timeless altered fork rotation on pRS316. Excessive fork rotation was also observed in cells deleted for the yeast homologue of Tipin, *CSM3*, the conserved partner of Tof1/Timeless in the replisome (20) (Fig. 2B). Claspin/Mrc1 and AND1/Ctf4 have also been reported to be linked to Tof1/Csm3 function (21, 22). However, neither deletion of *MRC1* or *CTF4* increased fork rotation during replication of the plasmid (Figure 2C, SI Appendix, Fig. S4). We also examined the potential role of the protein displacement helicase *RRM3* on fork rotation. Rrm3 is required *in vivo* to minimize fork pausing at stable protein-DNA structures, presumably by promoting their displacement to allow rapid replication passage (16). Deletion of *RRM3* produced a significant increase in fork rotation on plasmid pRS316 (Fig. 2D), however this increase appeared modest compared to *tof1Δ* or *csm3Δ* cells. We conclude that *TOF1/CSM3* and *RRM3* are involved in distinct pathways to inhibit fork rotation *in vivo*.

We next examined the effects on fork rotation of deleting either *RRM3* or *TOF1* on plasmids with and without pause sites. We observed that deletion of *RRM3* increased fork rotation only on plasmids containing pause sites (Fig. 3A, B when
compared to Fig. 1E, F, SI Appendix, Table S2). This suggests that Rrm3 is required to rapidly displace stable protein-DNA complexes and allows accelerated access of topoisomerases ahead of the fork, limiting the need for fork rotation at such sites (SI Appendix, Fig. S5). In contrast, we observed that deletion of TOF1 caused hyper-catenation of plasmids irrespective of the number of pause sites (Figure 3C, D). This suggests that Tof1/Csm3 more generally restricts fork rotation during DNA replication and not just at pause sites. Deletion of TOF1/Timeless is reported to slow replisome elongation rates (23). Potentially excessive fork rotation in tof1/csm3 cells could be due to slower elongation, which could hypothetically favor fork rotation. However, we did not detect any increase in DNA catenation occurring on plasmids replicated either in the presence of hydroxyurea, which would be predicted to arrest fork progression (SI Appendix, Fig. S6A), or in cells deleted for the leading strand polymerase elongation factor DPB3 (SI Appendix, Fig. S6B) which causes a general slowing of DNA replication (SI Appendix, Fig. S6C). Therefore unrestricted fork rotation does not appear to be a consequence of general fork slowing but rather is directly related to Tof1/Csm3 function.

Unrestricted fork rotation and DNA catenation causes aneuploidy and triggers a G2/M arrest in cells

We next sought to confirm that loss of Tof1 function leads to excessive DNA catenation on endogenous chromosomes. Consistent with excessive fork rotation and DNA catenation occurring in the absence of Tof1, tof1Δ cells were acutely sensitive to a partial reduction in Top2 activity induced by transcriptional repression of the top2-td allele (Fig. 4A). We next examined the extent of chromosome mis-segregation in cells where TOF1 is deleted and Top2 either partially depleted (Fig. 4B) or wholly depleted (Fig. 4C). It has previously been shown in budding yeast that unresolved DNA catenation does not inhibit cell cycle progression but does cause
aneuploidy following cell division (14). If deletion of TOF1 causes excessive DNA catenation then it would be predicted to cause aneuploidy at levels of Top2 activity that normally allow chromosome segregation. To test this prediction we first used semi-restrictive growth conditions that reduced Top2 dosage to a level just sufficient to allow normal segregation of endogenous chromosomes in a single cell cycle (Fig. 4B, left panel) with very few “cut” cells (indicative of gross mis-segregation (14)), cytologically observed (Fig. 4B, right panel). However, in the absence of TOF1 this dosage of Top2 was not sufficient to prevent widespread mis-segregation of endogenous chromosomes and aneuploidy (Fig. 4B left panel) and “cut” cells were frequently observed in mitosis (Fig. 4B right panel). Therefore deletion of TOF1 specifically sensitizes cells to partial loss of Top2, resulting in a phenotype that resembles a complete loss of Top2 (Fig. 4C). To control for the possibility that depleting Top2 in tof1Δ cells could also cause aneuploidy by general destabilization of the replisome, leading to frequent fork collapse, we repeated this set of experiments in mrc1Δ cells. Deletion of MRC1, destabilizes the replisome in response to replication stress in a similar manner to tof1Δ (21), but does not cause an increase in DNA catenation (Fig 2C). We observed that mrc1Δ cells are not as sensitive to partial loss of Top2 as tof1Δ cells (SI Appendix, Fig. S7A) and that deletion of MRC1 does not cause the marked increase in “cut” nuclei observed following depletion of Top2 in tof1Δ cells (SI Appendix, Fig. S7B). These data indicate that the observed aneuploidy and mis-segregation observed in tof1Δ cells is not due to a general increase in fork arrest and collapse. Rather our observations are consistent with loss of TOF1 leading to unrestricted fork rotation and formation of excessive DNA catenation on endogenous chromosomes.

Our plasmid analysis indicates that fork rotation is actively inhibited during DNA replication. This inhibition appears to be actively enforced through the cellular
function of Tof1/Csm3. This data raises the question of why fork rotation is actively inhibited? Fork rotation provides an important alternative pathway for unwinding since excessive fork rotation and the resultant DNA pre-catenation does not appear to be immediately lethal until Top2 becomes limiting. However, impaired Tof1/Timeless function leads to chronic genomic instability in cells. Increased levels of gross chromosomal rearrangements are observed in tof1Δ cells (24), whilst depletion of Timeless/Tipin orthologues in several systems causes constitutive DNA damage (20, 25). Potentially the chronic genome instability phenotypes and constitutive DNA damage of cells depleted for Tof1/Timeless could be directly linked to the abnormal excessive fork rotation and pre-catenation occurring during DNA replication. We reasoned that if the excessive fork rotation was leading to chronic genome instability, then such genome instability phenotypes should be exacerbated when Top2 is depleted since this would stabilize the pre-catenanes formed following fork rotation.

Consistent with the formation of excessive DNA pre-catenation destabilizing replication associated processes we observed a slight delay in anaphase onset in tof1Δ cells partially depleted of Top2 (Fig. 4B) and a pronounced G2/M delay following full depletion of Top2 in tof1Δ cells, (Fig. 4C, D). Cells deleted for TOF1 or depleted of Top2 alone did not arrest in G2 (Fig. 4C, D) (14). This data suggests that a combination of tof1Δ and Top2 depletion, generates defects in the newly replicated chromatids that trigger cell cycle checkpoints.

Excessive fork rotation and DNA pre-catenation causes pre-mitotic DNA damage at yeast protein-DNA fragile sites

Deletion of Timeless causes constitutive DNA damage in human cells (25). Using H2A S129 phosphorylation (H2AS129P) as a marker for DNA damage we also
observed a significant increase in constitutive damage in tof1Δ cells in both S phase and post-replicative whole cell extracts (Fig. 5A). Depletion of Top2 alone led to less H2AS129P than in tof1Δ, but we observed the highest levels of H2AS129P in post-replicative cells with both tof1Δ and depleted Top2 (Fig. 5A). In these experiments the synchronized cultures were treated with nocodazole to avoid detection of damage generated during mitosis. Therefore the combination of excessive formation and stabilization of DNA pre-catenation during DNA replication appeared to lead to the highest levels of DNA damage in these cells. Consistent with this we also observed elevated activity of the DNA damage checkpoint effector kinase Rad53 in nocodazole arrested tof1Δ top2-td cells using the in-blot kinase assay (26), but not in similarly arrested tof1Δ or top2 depleted cells (Fig. 5B). In addition, examination of post-replicative protein extracts also showed that PCNA mono-ubiquitylation was increased in tof1Δ top2-td cells (Fig. 5C) indicating that post-replication repair (PRR) was generally active following excessive fork rotation and DNA pre-catenation. This would be consistent with either gaps being left in the newly replicated sister chromatid, triggering PRR, or with ongoing PRR being inhibited by an abnormal sister chromatid structure. Together these data suggest that both excessive fork rotation and stabilization of pre-catenation lead to increased levels of constitutive DNA damage being detected on the newly replicated chromatids, with the combination of both sufficient to trigger widespread DNA repair and activation of the DNA damage checkpoint.

The apparent infliction of DNA damage within newly replicated chromatids following excessive DNA pre-catenation would predict that sites of constitutive fork rotation should be most affected by this pathway, potentially leading these sites to have elevated levels of DNA damage even in unchallenged wildtype cells. Others have identified all the yeast genomic loci that exhibit constitutively elevated levels of DNA
damage in wildtype yeast cells and have defined such sites as the yeast equivalent of mammalian fragile sites (27). Interestingly, this set includes tRNAs and inactive origins where elevated levels of DNA pre-catena
tion are likely to occur. In order to test if DNA damage detected at these fragile sites was linked to increased pre-
catena
tion during DNA replication we examined how loss of Top2 and/or Tof1 altered H2A S129 phosphorylation at candidate fragile sites. ChIP analysis for H2AS129P demonstrated that the absence of Top2 and/or Tof1 during DNA replication led to significantly greater increases of DNA damage at two distinct genomic tRNA pausing sites compared to two tested euchromatic sites (Fig. 5D). Increased DNA damage was not due to passage through mitosis since these cells were arrested in nocodazole following passage through one S phase. We conclude that the elevated frequencies of fork rotation and DNA pre-catena
tion that occur at stable protein-DNA fragile sites is linked to DNA damage and fragile site instability.

Discussion

Previous studies of DNA pre-catena
tion have demonstrated the potential for fork rotation and pre-catena
tion to facilitate ongoing DNA replication in the face of topological stress in vitro (8-10). Here we show that this capability is actively restricted during DNA replication in budding yeast through the activity of the evolutionarily conserved Timeless/Tipin factors Tof1/Csm3. When this complex is present, fork rotation and pre-catena
tion is not determined by replicon size. Rather it appears that the presence of distinctive genomic features within the replicon alter how often fork rotation occurs during replication elongation. Outside of termination (6), we show that the presence of tRNA genes, inactive origins and possibly centromeres in plasmid replicons also increase the incidence of fork rotation during DNA replication. All these genomic contexts pause ongoing replication, presumably due to the stability of the protein-DNA complexes that they generate (16). We
speculate that these large stable complexes inhibit topoisomerase access to the underlying DNA, preventing relaxation of topological stress ahead of the fork, which results in fork rotation at these known hard to replicate and fragile loci (Fig. S8).

Our data suggests that the yeast replisome rarely rotates unless topoisomerase action ahead of the fork proves insufficient for ongoing replication. Potentially topoisomerase action could be similarly inhibited in other genomic contexts, for example at heterochromatin. Regions of transcriptionally induced overwinding, such as converging genes (28) or nuclear membrane attached genes (29), could also induce such high levels of topological stress that topoisomerase action ahead of the fork would be insufficient for ongoing replication. Therefore in all these contexts fork rotation could facilitate replication, resulting in local elevated DNA pre-catenation.

This restriction of fork rotation requires both Tof1 and Csm3, the yeast homologues of Timeless/Tipin. Deletion of tof1/csm3 leads to diminished pausing at stable protein-DNA sites (19). Our data suggest that in wildtype cells Tof1/Csm3 inhibit fork rotation, and therefore DNA unwinding at such sites, contributing to pausing. In the absence of Tof1/Csm3 this inhibition is lifted leading to a more rapid transit of the pause site, utilizing fork rotation to unwind the DNA. Mechanistically, we speculate that Tof1/Csm3 could inhibit fork rotation in either of two ways. Loss of Timeless/Tipin orthologues disrupts replisome configuration (21, 22, 30). Potentially the mutant replisome could have a lower resistance to fork rotation than wildtype. Alternatively, Tof1 has been reported to interact with eukaryotic topoisomerase I (31). This interaction could maximize the local concentration of topoisomerase activity at the fork and minimize the need for fork rotation.
Whatever the exact mechanism of rotation inhibition, our data suggests that fork rotation and pre-catenation is minimized to prevent the generation of DNA damage in the newly replicated sister chromatids. Since yeast fragile sites accumulate both DNA catenation and DNA damage in pathways regulated by Tof1 and Top2 activity, our data argues that excessive fork rotation and DNA pre-catenation is closely linked with endogenous replicative damage and chromosome fragility. We hypothesize that this is through one of two pathways. First the incidence of fork rotation and DNA catenation could actually be a co-marker for other aberrant DNA transactions. High levels of topological stress ahead of a fork can lead to fork reversal (32) as well as fork rotation (9). Consistent with this possibility fork reversal is observed following trapping of Top1 complexes ahead of the fork (33). Potentially in a population of cells, both regression and rotation could be taking place within topologically stressed regions and inappropriate processing of reversed forks would lead to damage. Alternatively, high local levels of fork rotation and DNA pre-catenation could lead to braiding of the newly replicated sister chromatids (Fig. S8). Such braiding would inhibit several processes that occur in the immediate wake of the fork. Such processes include Okazaki fragment maturation, which would be consistent with the high levels of PCNA ubiquitylation we observe (34), as well as intra-S checkpoint signaling and cohesion establishment. Since loss of Tof1/Timeless leads to gaps in the replicated chromosomes, loss of checkpoint signaling and mitotic cohesion defects (20) we currently favor this possibility. However, further investigation is required to determine the exact nature of the connection between fork rotation, DNA pre-catenation and fragile site instability.

Materials and Methods

Yeast Strains. Full genotypes are listed in SI Appendix Table S1.
Plasmids. Plasmids pRS426 and pRS316 described previously (13). To construct tRNApRS316, a fragment containing tA(AGC)F, tY(GUA)F1 and tF(GAA)F was produced by gene synthesis and SmaI cloned into pRS316. 7ARS-Yiplac204 and 1ARS-Yiplac204 were a gift from J. Diffley (35). To allow resolution on the same gel 1ARS-Yiplac204 was extended by the AatII-EcoRI fragment of pRS316 (containing the URA3 marker) cloned into AatII-MfeI. For larger plasmids, 3067bp BamHI/EcoRI fragment of pGT60 cloned into pRS316. additional 4400bp added by cloning NotI/SpeI fragment of mukB gene into 8kb plasmid.

Media and Cell Cycle Synchronisation. Spot test and alpha factor release experiments carried out as described (14). For top2-4 strains, YPD (YP + 2% glucose) was used. Nocodazole at 10 μg/ml used where indicated.

Assessing plasmid DNA catenation. DNA was purified for resolution and non-radioactive Southern blotting and detection carried out as described (13). For catenation 2D gels the DNA was nicked with either Nb.BsmI or Nb.BsrDI (NEB), DNA first resolved in 0.4% agarose (Megasieve, Flowgen) gel in 1x TBE at 1.2V/cm for 13-17h before being excised and embedded into a 0.8-1.2% (depending on plasmid size) agarose gel and resolved at 2-4.8V/cm in 1x TBE. Probes generated from pRS316 including URA3. Images were acquired by ImageQuant LAS4000 (GE Healthcare) and analysed using ImageQuant TL software.

Flow cytometry, western blotting, in-blots kinase assay and chromatin immuno-precipitation. Western blotting, Rad53 kinase assay carried out as described (14). Antibodies used anti-H2AP (Abcam, ab15083), anti-PGK1 antibody (Invitrogen, 459250), anti-PCNA antibody [5E6/2] (ab70472) (Abcam). Detection of PCNA ubiquitylation as described (34) and Chromatin immuno-precipitation carried out as described (36).
An extended description of all methods used in this study is provided in the SI Appendix.

Acknowledgments:

We thank members of G.D.S.C. for discussions and critical reading of the manuscript. This work was funded by the Royal Society (J. B.), by the Biotechnology and Biological Sciences Research Council United Kingdom (S.A.S.) and by Cancer Research U.K (A. L. C. and J. A. D.).

References

Figure Legends

Figure 1

Fork rotation and DNA catenation occurs on replication through stable protein-DNA pause sites.
(A-C and E-H) Cells containing the top2-4 allele and plasmid (A) pR316 (B) pRS316 containing 3kb (C) or 7kb of additional bacterial sequence, (E) pRS426, (F) CEN and 3x tRNA genes plasmid tRNApRS316, (G) YIPlac plasmid with 1xARSH4 or (H) 7xARSH4 origins in a YIPlac plasmid (represented in cartoon format) were assessed for DNA catenation following one round of DNA replication in the absence of Top2 activity (representative autoradiograms shown). Histograms showing the relative intensity of catenanes containing 1 to 27 catenanes are shown, along with median of the whole distribution and % of catenanes from plasmids with >20 catenanes. Arrows indicate mobility of plasmids containing 1 catenane (CatAn=1) and 20 (CatAn=20). Histograms and % of plasmids > 20 catenanes represent the average of ≥ 3 independent experiments. Error bars or values are average deviation. See Fig. S2 for full explanation.

(C) Model for topoisomerase exclusion at both termination (left) and stable protein-DNA structures (right). As replisomes converge, topoisomerases are sterically inhibited from relaxing helical tension in the final few turns. Therefore fork rotation is required for unwinding. Theoretically a similar situation arises when a replisome approaches a stable protein-DNA complex.

Figure 2

The yeast *Timeless* and *Tipin* homologues *TOF1* and *CSM3* and the displacement helicase *RRM3* are required to restrict fork rotation and DNA catenation.

DNA catenation analysis of plasmid pRS316 in top2-4 cells and the different deletion alleles (A) *tof1Δ*, (B) *csm3Δ*, (C) *mrc1Δ*, (D) *rrm3Δ* were analyzed as in Fig. 1. Histograms and % of plasmids > 20 or >30 catenanes represent the average of ≥ 2 independent experiments. See SI Appendix Fig. S2 for full explanation.

Figure 3

Rrm3 limits the frequency of fork rotation and pre-catenation at stable protein-DNA isites while Tof1 acts more generally.
Cells deleted for \textit{RRM3} and containing the top2-4 allele and (A) plasmid pRS426 or (B) plasmid tRNApRS316 and cells deleted for \textit{TOF1} and containing the top2-4 allele and (C) plasmid pRS426, or (D) plasmid tRNApRS316 were cultured, collected, DNA prepared and DNA catenation analysis carried out as described in Fig. 1.

Figure 4
Deletion of \textit{TOF1} triggers excessive catenation of endogenous chromosomes and G2 cell cycle arrest.

(A) Viability assay of strains under the permissive condition of growth on YPD at 25°C or with partial transcriptional repression of TOP2 (+doxycycline). (B) Deletion of \textit{TOF1} causes chromosome non-disjunction following partial depletion of Top2 activity. Cells grown under semi-restrictive conditions following synchronous release from G1 and analysed for chromosome mis-segregation by FACSs for DNA content (left panel) or cytological analysis for “cut” and divided nuclei. Examples of “cut” cells (arrow heads) shown (right) (DAPI stained DNA (blue) shown over light image of cells).

(C) Indicated strains arrested in alpha factor and Top2 degraded (YPRaf Gal, 37°C +doxycycline). Samples were taken at mid-log phase (25°C exp), prior to alpha factor release (0) and at time points shown for analysis FACS to assess DNA content (left) or nuclear cytologies of cells (right). % of single (diamonds and solid line) or divided nuclei (squares and dashed line) shown.

Figure 5
Unrestricted fork rotation and excessive DNA catenation causes DNA damage and extended post-replicative repair of replicated chromatids.

(A) Indicated cells released from alpha factor following Top2 depletion, into a nocodazole arrest. Samples from timepoints analyzed by western blot for phosphorylation of H2A S129 (PGK1 used for loading control) and FACS for DNA.
(B) Experiment carried out as in (A) but samples were assayed for Rad53 activation using the Rad53 auto-phosphorylation assay. Control samples of MMS treated exponential *top2-td and rad53Δ top2-td* cells also shown.

(C) PCNA ubiquitylation monitored in post-replicative cells (80 min following release) by western blotting. Blotting for PCNA in MMS treated cells containing either HIS-tagged wild type PCNA or HIS-tagged K164R confirmed specificity of PCNA antibody for mono-ubiquitylated PCNA (U1) or poly-ubiquitylated PCNA (U2).

(D) Chromatin immunoprecipitation (ChIP) of H2A S129 phosphorylation at tRNA, and euchromatic loci in isogenic *top2-td, tof1Δ*, and *tof1Δ top2-td* strains following one S phase under the restrictive conditions relative to wildtype cells. ChIP signal was normalized to amplification of input DNA prior to calculation of the relative change at each locus in wildtype cells. Data shown are the mean of three independent experiments +/-1 SD.
A

`tof1Δ top2-4 pRS316`

- Median of distribution n > 30
- % CatA > n = 20 = 89 +/- 2

B

`csm3Δ top2-4 pRS316`

- Median of distribution n > 30
- % CatA > n = 30 = 67 +/- 1

C

`mrc1Δ top2-4 pRS316`

- Median of distribution n = 12
- % CatA > n = 20 = 23 +/- 6

D

`rrm3Δ top2-4 pRS316`

- Median of distribution n = 14
- % CatA > n = 20 = 23 +/- 6
YPD No doxycycline
YPD + 12.5 µg/ml doxycycline (partial TOP2 repression)

25°C permissive temperature

Nuclear morphology at time points indicated after release from G1 arrest
DNA content assayed by FACS

A

B

C

DNA content assayed by FACS

Nuclear morphology at time points indicated after release from G1 arrest

wt
top2-td
tof1Δ
tof1Δ top2-td

1C 2C 1C 2C 1C 2C 1C 2C

37°C 25°C exp

37°C exp

37°C YPRaf/Gal
+ DOX

25°C exp

wt
top2-td
tof1Δ
tof1Δ top2-td

1C 2C 1C 2C 1C 2C

80 100

60 100

40 100

20 100

0 100

% of cells

% of cells

% of cells

wt
top2-td
tof1Δ
tof1Δ top2-td

1C 2C 1C 2C 1C 2C

DNA content assayed by FACS

Nuclear morphology at time points indicated after release from G1 arrest
A. Enrichment of H2A phosphorylation relative to wildtype.

B. Auto-phosphorylated Rad53.

C. 80 min after release (Raf/Gal DOX 37°C) + 0.033% MMS.

D. Enrichment of H2A phosphorylation relative to wildtype.
Fork rotation and DNA pre-catenation is restricted during DNA replication to prevent chromosomal instability

SI Appendix

Contents

Supplemental Material and Methods p2
SI Appendix Figure Legends p5
Table S1 - Yeast strains p9
Table S2 – Summary of DNA catenation assays p10
SI Appendix Figures p11
Supplemental Material and Methods:

Methods

Yeast Strains

Yeast containing top2-td were derived from W303-1a (MATa ade2-1 ura3-1 his3-11, trp1-1 leu2-3, can1-100), top2-4 cells derived from (Holm et al. 1985). Full genotypes are listed in Table S1.

Media and Cell Cycle Synchronisation

Top2-td cell cultures for alpha factor release experiments were prepared as described previously (Baxter and Diffley 2008). For plasmid experiments with top2-4 strains, yeast cells were grown in minimal media 2% glucose selecting for the plasmid (-ura or -trp) to log phase at 25°C before transferring to YP +ade 2% glucose and grown to midlog phase. Cells were then arrested in G1 with 10μg/ml alpha factor until 90% of cells were in G1 (120 min). The culture was incubated at 37°C for 1h and cells were released from the block into YP +ade 2% Glucose. Time 0 was taken as time of addition of first wash. Nocodozole was added to cultures at 10 μg/ml. Samples were taken at the indicated time points, pelleted and frozen on dry ice.

Flow cytometry (FACS) analysis

For FACS analysis cells were prepared as described previously {Baxter:2008hn}.

DNA preparation

DNA was extracted as described in Baxter et al. 2011 (Baxter et al. 2011).

Gel electrophoresis for detection of plasmid catenation

For catenation 2D gels the DNA was nicked with either Nb.BsmI or Nb.BsrDI (NEB) according to the manufacturer’s instructions.
Nicked catenanes were separated in the first dimension on a 0.4% agarose (Megasieve, Flowgen) gel in 1x TBE at 1.2V/cm for 13-17h at room temperature. The respective lanes were excised and embedded into a 0.8-1.2% (depending on plasmid size) agarose (Megasieve, Flowgen) gel and run at 2-4.8V/cm in 1x TBE (in the coldroom if more than 2V/cm were used). Non-radioactive Southern blotting and detection were carried out as described (Baxter et al. 2011). Blots were probed with either DNA amplified from sequences of pRS316 including the URA3 sequences or from pRS314 including the TRP1 gene as appropriate. Non-saturating exposures of the blot were acquired by an ImageQuant LAS4000 (GE Healthcare) and densitometry analysis carried out using ImageQuant TL software. Overexposed images were taken to clearly identify the CatAn=1 signal, which was often weak in non-saturating exposures.

Protein Extraction and analysis

Whole protein extracts were prepared by alkaline lysis followed by TCA precipitation. Cells were resuspended in lysis buffer (1.85M NaOH, 7.5% β-Mercaptoethanol) and incubated on ice for 15min. Proteins were precipitated with TCA (6.4% final concentration) on ice for 10min. Precipitates were resuspended in HU buffer (8M urea, 5% SDS, 200mM Tris-HCl pH6.8, 1mM EDTA, 1.5% DTT, bromophenol blue) and separated by 15% SDS-PAGE. Phosphorylation of S129 of H2A and PGK1 expression have been detected using antibody against H2Ap (Abcam, ab15083) and anti-PGK1 antibody (Invitrogen, 459250). Detection of PCNA ubiquitylation as described in Karras and Jentsch (Karras:2010kj) using anti-PCNA antibody [5E6/2] (ab70472) (Abcam).

Rad53 Kinase assay

In situ autophosphorylation assay was carried out as described {Pellicioli:1999bn}.

Chromatin Immunoprecipitation of H2A S129 Phosphorylation.
Synchronized cultures were fixed with 1% formaldehyde for 10 min at room temperature before immunoprecipitation with anti-phospho H2A S129 antibody (Abcam ab15083). CHIP assays were performed essentially as in {StrahlBolsinger:1997vv}. Immunoprecipitated and input DNA was quantified by qPCR. Enrichment was analyzed at tRNA loci t(AAU)N1 and t(AUC)L, and within the euchromatic loci ASI1 and HXT7 (primer sequences available on request). ChIP signal was normalized to amplification from input DNA and expressed relative to wt. Data shown is the mean enrichment +/- 1SD.
SI Appendix Figure Legends

Figure S1
Model of topological stress generation and relaxation during elongation of DNA replication. (A) During elongation, unwinding of the parental template separates the parental strands but does not resolve the linkages that exist between the two strands. (B) The linkages between the strands are displaced into the region ahead of the fork leading to this becoming overwound, i.e. positively supercoiled (+). (C) This tension is normally resolved by the action of either topoisomerase I (Top1) or topoisomerase II (Top2), which act as effective “swivelases” ahead of the fork to generate a (D) relaxed replication region. (E) However, Champoux and Been proposed a second mode of topological stress unwinding where the helical tension is relaxed by rotation of the fork to generate DNA pre-catenation behind the fork. Although these linkages should not arrest forward elongation of replication, it is essential that the type II topoisomerase II (Top2) resolves all DNA catenation before the completion of cell division.

Figure S2
Quantification of fork rotation during DNA replication. In wildtype cells Top2 decatenates both pre-catenanes and catenanes formed during DNA replication. Therefore to assay how often fork rotation and pre-catenation occurs during replication on a plasmid replicon we allow one round of replication in the absence of Top2 activity and collect DNA from the cells blocked in G2 by nocodazole, 80 minutes after release into the cell cycle (plasmid products shown in left hand panel). The catenated products of replication in this background are negatively supercoiled due to nucleosome deposition in the sister chromatids. Supercoiling in de-proteinized plasmids normally compacts all catenated states into an unresolvable
population. In order to resolve individual catenated states the purified DNA is treated with a site-specific nicking enzyme to remove supercoiling but maintain catenated nodes. The nicked DNA is resolved by agarose gel electrophoresis on two separate dimensions to be able to resolve both low and high catenated states before Southern blotting and probing for plasmid sequences (middle panel). The relative intensities of each state were then calculated by densitometry in two ways. First by quantifying signal in equally sized regions centred on each catenated signal state on states 1 to 27 (or 1-30 for hypercatenated samples where the signal >27 were definable), correcting for local background and then expressing the relative intensity as a % of the total signal in all regions. The second measure was to compare the signal from the arc related to states 1 to 20 to states 21 and above. For this measure regions were drawn around all states 1 to 20 and from the remainder of the arc of relating to 21 and above. Then each set of states is expressed as a % of the sum of both. This measure has the advantage of being able to quantify the signal from the individually unresolvable catenated states that produced detectable signal.

Figure S3
Quantification of DNA catenation is directly related to incidence of fork rotation on plasmids.

(A) Deletion of TOP3 does not alter the level of DNA catenation generated in catenated plasmids. DNA catenation analysis of plasmid pRS316 in sgs1Δ top3Δ top2-4 cells were analyzed as in Fig. 1. Histograms and % of plasmids > 20 catenanes represent the average of 2 independent experiments. Error bars or values are equal to the average deviation of the experiments.

(B) No residual decatenation activity can be detected in top2-4 cells maintained under the restrictive conditions. DNA catenation analysis of plasmid pRS316 in
top2-4 cells isolated either 50 minutes or 110 minutes after release from alpha factor arrest. DNA was analysed as described in Fig.1

Figure S4

Deletion of CTF4 does significantly increase DNA catenation in pRS316 DNA catenation analysis of plasmid pRS316 in ctf4Δ top2-4 cells, analyzed as in Fig. 1. Histograms and % of plasmids > 20 represent the average of 2 independent experiments. Error bars or values are equal to the average deviation of the experiments.

Figure S5

Model for how Rrm3 displacement activity alters fork rotation at stable protein-DNA fragile sites.

As the replisome approaches a stable protein-DNA complex, topoisomerases are inhibited from acting between the complex and the converging replisome. (A) If the Rrm3 helicase is active at the site, the protein complex will be rapidly displaced, allowing access of topoisomerases ahead of the fork and the curtailing of replisome rotation and DNA catenation. (B) If RRM3 is deleted then rotation continues until the replisome itself physically displaces the stable protein complex, thereby allowing access for topoisomerases ahead of the fork. However, in this case more rotation-coupled unwinding is required until the protein complex is displaced.

Figure S6

Artificial slowing of replication elongation does not increase fork rotation and DNA catenation. (A) DNA catenation analysis of plasmid pRS316 in top2-4 cells released from alpha factor arrest into 200mM hydroxyurea. The cells were collected 80 minutes after release and extracted DNA analysed as described in Fig.1. (B) DNA catenation analysis of plasmid pRS316 in dpb3Δ top2-4 cells. (C) FACS analysis of dpb3Δ and dpb3Δ top2-td cells following release from alpha factor in the restrictive
condition shown that deletion *DPB3* appears to significantly slow down S phase, consistent with its known role as a polymerase epsilon processivity factor.

Figure S7
Western blot analysis of Top2 in exponential cells, grown under the semi-restrictive conditions in *wt*, *top2-td* and *tof1Δ top2-td* cells. PGK1 western blot of the same lanes is shown for loading comparison.

Figure S8
Viability assay of wildtype (*wt*), *top2-td*, *tof1Δ*, *tof1Δ top2-td*, *mrc1Δ* and *mrc1Δ top2-td* cells under the permissive condition of growth on YPD at 25°C or conditions of partial transcriptional repression of TOP2 (+doxycycline). (B) Partial depletion of Top2 activity does not lead to an increase in “cut” mitosis in *mrc1Δ* cells. *top2-td*, *mrc1Δ* and *mrc1Δ top2-td* cells grown under semi-restrictive conditions (YPD, 37°C +doxycycline) following synchronous release from G1 were analysed for cytological analysis for “cut” and divided nuclei and chromosomal aneuploidy by cellular DNA content using FACS analysis (bottom).

Figure S9
Model of causes and consequences of fork rotation and pre-catenation. During normal DNA replication the Tof1/Csm3 structured replisome inhibits fork rotation and topoisomerases act ahead of the fork (left column). At certain genomic contexts, such as stable-protein-DNA structures topoisomerases are impeded from acting ahead of the fork (right, top). Here fork rotation aids unwinding resulting in elevated pre-catenation. Excessive pre-catenation could impede several processes including Okazaki fragment maturation resulting in gaps in the newly replicated chromosomes that require repair and leave chromatids fragile.
Table S1 – Yeast strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>top2-4</td>
<td>top2-4 Mat a his4-539 lys2-801 ura3-52⁷⁸</td>
</tr>
<tr>
<td>top2-4 pRS316</td>
<td>top2-4 pRS316 Mat a his4-539 lys2-801 ura3-52</td>
</tr>
<tr>
<td>top2-4 pRS426</td>
<td>top2-4 pRS426 Mat a his4-539 lys2-801 ura3-52</td>
</tr>
<tr>
<td>top2-4 tRNA-pRS316</td>
<td>top2-4 tRNA-pRS316 Mat a his4-539 lys2-801 ura3-52</td>
</tr>
<tr>
<td>top2-4 tof1Δ pRS316</td>
<td>top2-4 3tRNA-pRS316 Mat a his4-539 lys2-801 ura3-52 tof1::hphMX</td>
</tr>
<tr>
<td>top2-4 tof1Δ pRS426</td>
<td>top2-4 pRS426 Mat a his4-539 lys2-801 ura3-52 tof1::hphMX</td>
</tr>
<tr>
<td>top2-4 csm3Δ pRS316</td>
<td>top2-4 pRS316 Mat a his4-539 lys2-801 ura3-52 csm3::natMX</td>
</tr>
<tr>
<td>top2-4 mrc1Δ pRS316</td>
<td>top2-4 pRS316 Mat a his4-539 lys2-801 ura3-52 mrc1::natMX</td>
</tr>
<tr>
<td>top2-4 ctf4Δ pRS316</td>
<td>top2-4 pRS316 Mat a his4-539 lys2-801 ura3-52 ctf4::natMX</td>
</tr>
<tr>
<td>top2-4 sgs1Δ top3Δ pRS316</td>
<td>top2-4 pRS316 Mat a his4-539 lys2-801 ura3-52 sgs1::NATNT2 top3::hphMX</td>
</tr>
<tr>
<td>top2-4 dpb3Δ pRS316</td>
<td>top2-4 pRS316 Mat a his4-539 lys2-801 ura3-52 dpb3::natNT2</td>
</tr>
<tr>
<td>yST114 (wt)</td>
<td>MATa ade2-1 ura3-1 his3-11, trp1-1, can1-100 UBR1::pGAL-myc-UBR1 (HIS3), leu2-3 LEU2::pCM244 x3</td>
</tr>
<tr>
<td>top2-td</td>
<td>yST114 + kanMX-tTA-tetO2-UB-DHFRts-myc-top2</td>
</tr>
<tr>
<td>top2-td tof1Δ</td>
<td>yST114 + kanMX-tTA-tetO2-UB-DHFRts-myc-top2 tof1::hphMX</td>
</tr>
<tr>
<td>top2-td dpb3Δ</td>
<td>yST114 + kanMX-tTA-tetO2-UB-DHFRts-myc-top2 dpb3::natNT2</td>
</tr>
<tr>
<td>dpb3Δ</td>
<td>yST114 + dpb3::natNT2</td>
</tr>
<tr>
<td>top2-td mrc1Δ</td>
<td>top2-td + mrc1::hphMX</td>
</tr>
<tr>
<td>mrc1Δ</td>
<td>yST114 + mrc1::hphMX</td>
</tr>
<tr>
<td>tof1Δ</td>
<td>yST114 + tof1::hphMX</td>
</tr>
</tbody>
</table>
Table S2 – Summary of DNA catenation quantification experiments

<table>
<thead>
<tr>
<th>Strain</th>
<th>Plasmid size (bp)</th>
<th>Number of replicates</th>
<th>Median CatAn=</th>
<th>% >20</th>
</tr>
</thead>
<tbody>
<tr>
<td>top2-4 pRS316</td>
<td>4887</td>
<td>5</td>
<td>13</td>
<td>14 +/-4</td>
</tr>
<tr>
<td>top2-4 8kb pRS316</td>
<td>7936</td>
<td>3</td>
<td>12</td>
<td>14 +/-1</td>
</tr>
<tr>
<td>top2-4 12kb pRS316</td>
<td>12391</td>
<td>3</td>
<td>13</td>
<td>21 +/-1</td>
</tr>
<tr>
<td>top2-4 pR426</td>
<td>5726</td>
<td>5</td>
<td>12</td>
<td>8 +/-2</td>
</tr>
<tr>
<td>top2-4 tRNApRS316</td>
<td>6060</td>
<td>7</td>
<td>16</td>
<td>28 +/-4</td>
</tr>
<tr>
<td>top2-4 1ori YIPlac</td>
<td>5640</td>
<td>4</td>
<td>12</td>
<td>12 +/-2</td>
</tr>
<tr>
<td>top2-4 7ori YIPlac</td>
<td>6144</td>
<td>5</td>
<td>16</td>
<td>35 +/-6</td>
</tr>
<tr>
<td>tof1Δ top2-4 pRS316</td>
<td>4887</td>
<td>2</td>
<td>>30</td>
<td>89 +/-2</td>
</tr>
<tr>
<td>tof1Δ top2-4 pRS426</td>
<td>5726</td>
<td>2</td>
<td>>30</td>
<td>93 +/-1</td>
</tr>
<tr>
<td>tof1Δ top2-4 tRNApRS316</td>
<td>6060</td>
<td>2</td>
<td>>30</td>
<td>95 +/-2</td>
</tr>
<tr>
<td>csm3Δ top2-4 pRS316</td>
<td>4887</td>
<td>2</td>
<td>>30</td>
<td>89 +/-2</td>
</tr>
<tr>
<td>mrc1Δ top2-4 pRS316</td>
<td>4887</td>
<td>2</td>
<td>12</td>
<td>10 +/-2</td>
</tr>
<tr>
<td>ctf4Δ top2-4 pRS316</td>
<td>4887</td>
<td>2</td>
<td>12</td>
<td>17 +/-7</td>
</tr>
<tr>
<td>rrm3Δ top2-4 pRS316</td>
<td>4887</td>
<td>2</td>
<td>14</td>
<td>23 +/-6</td>
</tr>
<tr>
<td>rrm3Δ top2-4 pRS426</td>
<td>5726</td>
<td>2</td>
<td>12</td>
<td>10 +/-6</td>
</tr>
<tr>
<td>rrm3Δ top2-4 tRNApRS316</td>
<td>6060</td>
<td>2</td>
<td>18</td>
<td>38 +/-2</td>
</tr>
<tr>
<td>sgs1Δ top3Δ top2-4 pRS316</td>
<td>4887</td>
<td>2</td>
<td>12</td>
<td>17 +/-1</td>
</tr>
<tr>
<td>top2-4 pRS316 + 200mM HU</td>
<td>4887</td>
<td>2</td>
<td>11</td>
<td>11 +/-1</td>
</tr>
</tbody>
</table>

Median calculated as explained in Fig. S2
Supplemental information for Introduction; Topological stress generation and relaxation during elongation of DNA replication.

Elongating replisome

A

lagging strand polymerase

leading strand polymerase

MCM helicase

Helicase unwinds DNA generating positive superhelical stress

B

Relaxation of superhelical stress

Topoisomerases directly relax supercoiling

C

Top1

Top2

E

Top2 resolves DNA catenation after fork passage

D

Elongation proceeds
Analysis of replication fork rotation by resolution of individual catenation states and quantification of relative strengths of the signal from each state

1. Treat with nicking enzyme NbBsmI and resolve products on 2D agarose gels.
2. Quantify signal from each nicked catenated dimer by densitometry, correcting for local background.
3. Calculate 1: Relative intensities of all signals associated with region 1 to 27 correcting for background. 2: Quantify relative amount of all signal in arc including regions 1 to 20 and 21 and above correcting for background. 3: Calculate median of entire distribution by relating signal in regions 1 to 20 to total signal of large region 1-20 and determining position along arc where 50% of total signal (total signal in regions 1 to 20 and 21 and above) has accumulated. 4. Take average of at least 3 experiments for quantifying differences in DNA catenation of plasmids and at least twice for quantifying differences between different genetic backgrounds (See Table S2 for exact number of replicates for each experiment).

Allow plasmids to replicate once in absence of Top2 activity, block in G2 and purify total DNA. Individial catenated states are not resolvable when they retain supercoiling. Illustrated below in one dimensional analysis of purified DNA.
A

50 minutes post G1 release

B

110 minutes post G1 release
Schalbetter_ Fig. S4
RRM3

- Inhibition of topoisomerase action ahead of fork triggers fork rotation
- Block rapidly displaced
- Fork rotation minimized

rrm3Δ

- Stable protein-DNA blockage to DNA replication
- Block not rapidly displaced
- More fork rotation occurs until block displaced by replisome

Fork rotation minimized
A

1st dimension

2nd dimension

CatAn=1

CatAn=20

top2-4 pRS316 plus 200mM HU

% CatA signal

No. of catenated nodes

median of distribution n=11

% CatA >n=20 = 11 +/− 1%

B

1st dimension

2nd dimension

CatAn=1

CatAn=20

dpb3Δ top2-4 pRS316

% CatA signal

No. of catenated nodes

median of distribution n=12

% CatA >n=20 = 11%

C

wt

top2-td

dpb3Δ

dpb3Δ top2-td

Time after release (mins)

37°C

25°C exp

1C 2C

1C 2C

1C 2C

1C 2C
Schalbetter_ Fig.S7

permissive semi-restrictive conditions

Top2-td
Top2^-
Pkg1
A

- **YPD**
 - No doxycycline
 - + 12.5µg/ml doxycycline
- Temperature: 25°C

B

- **top2-td**
 - DNA content assayed by FACS
- **mrc1Δ**
- **top2-td (semi-restrictive conditions)**

DNA content assayed by FACS
Excessive pre-catenation disrupts processes occurring behind the fork. Fork rotation results in DNA damage and chromosome fragility in replicated chromatids.

Post replication repair

Timeless/Tipin inhibits fork rotation

Stable protein-DNA complex

Topoisomerases able to act ahead of fork to unwind DNA during elongation

Topoisomerases NOT able to act ahead of fork to unwind DNA

Faithfully replicated sister chromatids