
Peer reviewed version

Link to published version (if available):
10.1016/j.ijar.2014.07.004

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html
Borderline vs. Unknown
comparing three-valued representations of imperfect information

Davide Ciucci\textsuperscript{a}, Didier Dubois\textsuperscript{b}, Jonathan Lawry\textsuperscript{c}

\textsuperscript{a}Dipartimento di Informatica, Sistemistica e Comunicazione, Università di Milano-Bicocca
Via Bicocca degli Arcimboldi 8 – 20126 Milano, Italy
\textsuperscript{b}IRIT, Université Paul Sabatier
118 route de Narbonne, 31062 Toulouse cedex 4 (France)
\textsuperscript{c}Department of Engineering Mathematics, University Of Bristol
Queen’s Building, University Walk, Bristol BS8 1TR, United Kingdom

Abstract
In this paper we compare the expressive power of three-valued representation formats instrumental for vague, incomplete or conflicting information. These include Boolean valuation pairs of Lawry and Gonzalez-Rodriguez, orthopairs of sets of variables, Boolean possibility and necessity measures, three-valued valuations, supervaluations. We make explicit their connections with strong Kleene logic and with Belnap logic of conflicting information. The formal similarities between 3-valued approaches to vagueness, and formalisms that handle incomplete information often leads to a confusion between degrees of truth and degrees of uncertainty. Yet there are important differences that appear at the interpretive level: while truth-functional logics of vagueness are mathematically consistent (even if questioned by supervaluationists), the truth-functionality assumption of three-valued calculi for handling incomplete information is much more problematic, compared to the non-truth-functional approaches based on Boolean possibility-necessity pairs. This paper contributes to a clarification of the two situations. In each context (vagueness, or incomplete information), we also study to what extent operations for merging information items can be expressed by means of operations on valuation pairs, orthopairs, three-valued valuations and underlying possibility distributions.

Keywords: Kleene logic, partial models, orthopairs, vagueness, incomplete information, Belnap logic, supervaluations

1. Introduction
Three-valued logics have been used for different purposes, depending on the meaning of the third truth-value. Among them, Kleene logic \cite{kleene} is typically
assumed to deal with incomplete knowledge, with the third truth-value interpreted as unknown. Another possibility is to interpret the additional truth-value as borderline, as a means of representing borderline cases for vague predicates [28]. It is then tempting to use Kleene logic as a simple logic of non-Boolean predicates as done recently by Lawry and Gonzalez-Rodriguez [32]. They introduced a new formalism to handle three-valued vague predicates by means of upper and lower Boolean valuations. Basic three-valued connectives of conjunction, disjunction and negation can be expressed by composing Boolean valuation pairs. Moreover they showed how to recover the connectives of Belnap 4-valued logic of conflict in terms of Boolean valuation pairs. They also use another equivalent representation consisting of pairs of subsets of atomic variables, that are disjoint when they represent Kleene valuations. Lawry and Tang [33] interpret the supervaluation approach to vagueness in terms of general non-truth functional valuation pairs respecting Boolean tautologies.

However, three-valued valuations also encode Boolean partial models, like for instance in Kleene logic. Orthopairs of variable sets then represent the sets of Boolean variables that are known to be true and of those that are known to be false. The third truth-value then refers to the unknown. The natural generalisation of partial models consists of epistemic sets, understood as non-empty subsets of interpretations of a Boolean language, representing the information possessed by an agent, which can be viewed as all-or-nothing possibility distributions [45]. Such possibility distributions generalize to formulas in the form of possibility and necessity functions [42, 18]. Possibility theory, even in its all-or-nothing form, is not truth-functional, which explains apparent anomalies in Kleene logic for handling incomplete information [19]. More recently Lawry and Dubois [31] proposed operations for merging valuation pairs and study their expression in terms of three-valued truth-tables, as well as pairs of subsets of variables.

In this paper, we compare the expressive power of three-valued valuations, Boolean valuation pairs, and orthopairs for handling vague or incomplete information. The aim is to expose the differences between these three representation tools. In particular, we show that orthopairs are more difficult to handle than three-valued valuations and Boolean valuation pairs when it comes to evaluating logical expressions in Kleene logic, even if the three notions are in one-to-one correspondence. We then study informational orderings and combination rules for the merging of pieces of information that can be expressed under each format. Again, some discrepancies are highlighted in the expressive power of the three representation formats. In contrast with these truth-functional representation tools, we consider non-truth functional ones, such as possibility-necessity pairs and supervaluations, respectively used for modeling incomplete information and vagueness, and show their formal similarities, as well as their differences with Boolean valuation pairs.

This paper is structured as follows. The next section presents three different ways of encoding three-valued valuations. Section 3 presents two uses of these representations, for modeling borderline cases of vague predicates, and for incomplete Boolean information. Section 4 casts them in the setting of possi-
bility theory. The strong formal similarity between supervaluation pairs and possibility-necessity pairs is highlighted. Section 5 extends these representations so as to account for conflict in agreement with Belnap logic. We then get generalized valuation pairs that can be inconsistent, and general pairs of subsets of variables that can overlap (on variables for which knowledge is inconsistent). The problem of carrying the recursive definitions of consistent pairs of valuations for logical expressions, to the framework of orthopairs of variables is discussed in detail in Section 6. Section 7 considers various notions of ordering relations between three-valued valuations and various combination rules. It studies whether they can be encoded in the three formats proposed in this paper. Finally in Section 8, we check whether these combination operations are expressible in terms of fusion of general subsets of interpretations.

2. Three-valued valuations

Let \( \mathcal{A} \) be a finite set of (propositional) variables. We denote by \( 3 \) the set \( \{0, \frac{1}{2}, 1\} \), equipped with total order \( 0 < \frac{1}{2} < 1 \), loosely understood as a set of truth-values with 0 and 1 respectively referring to true and false.

**Definition 2.1.** A three-valued valuation is a mapping \( \tau : \mathcal{A} \to 3 \).

We denote by \( 3^\mathcal{A} \) the set of three-valued valuations. A remarkable subset of \( 3^\mathcal{A} \) is made of Boolean valuations (or interpretations), i.e. mappings \( w : \mathcal{A} \to \{0, 1\} \); we denote by \( \Omega = \{0, 1\}^\mathcal{A} \) the set of all such valuations.

There are two alternative representations of three-valued valuations: orthopairs, and ordered pairs of Boolean valuations that we introduce, in this section, along with their extensions to logical expressions in Kleene logic.

2.1. Representations of three-valued valuations

**Definition 2.2.** By an orthopair, we mean a pair \( (P, N) \) of disjoint subsets of variables: \( P, N \subseteq \mathcal{A} \) and \( P \cap N = \emptyset \).

A three-valued valuation \( \tau : \mathcal{A} \to 3 \) induces an orthopair as follows: \( a \in P \) if \( \tau(a) = 1 \), \( a \in N \) if \( \tau(a) = 0 \). So \( P \) and \( N \) stand for positive and negative, respectively. Conversely, given an orthopair \( (P, N) \) we can define the following three-valued function:

\[
\tau(a) = \begin{cases} 
0 & a \in N \\
1 & a \in P \\
\frac{1}{2} & \text{otherwise}
\end{cases}
\]

There is indeed a bijection between orthopairs and three-valued valuations.

Lawry & Gonzalez-Rodriguez [32] propose yet another representation of ternary valuations \( \tau \) by means of consistent Boolean valuation pairs:

**Definition 2.3.** A consistent Boolean valuation pair (BVP) is a pair \( \bar{v} = (\underline{v}, \overline{v}) \in \Omega^2 \) of Boolean valuations on \( \{0, 1\} \), such that \( \underline{v} \leq \overline{v} \) holds. \( \underline{v} \) is called a lower Boolean valuation, and \( \overline{v} \) is an upper Boolean valuation.
A three-valued valuation induces a consistent BVP as follows. For variables \( a \in A \):

- if \( \tau(a) = 1 \) then \( v(a) = \tau(a) = 1 \);
- if \( \tau(a) = 0 \) then \( v(a) = \tau(a) = 0 \);
- if \( \tau(a) = \frac{1}{2} \) then \( v(a) = 0, \tau(a) = 1 \).

Clearly the property \( v \leq \tau \) holds. There is also a one-to-one correspondence between consistent BVP’s such that \( v \leq \tau \) and orthopairs \((P,N)\) defining \( P = \{ a \in A : v(a) = \tau(a) = 1 \} \), \( N = \{ a \in A : v(a) = \tau(a) = 0 \} \), and \( v(a) = 0, \tau(a) = 1 \) if \( a \notin P \cup N \). Obviously, \( \tau(a) = \frac{v(a) + \tau(a)}{2} \).

So, in the case where \( v \leq \tau \) there are bijections between three-valued functions, orthopairs and consistent BVP’s as pictured in Fig.1.

2.2. Kleene logic expressions

In this paper we focus on the simplest three-valued logic known as Kleene logic [29]. It uses two connectives: an idempotent conjunction \( \sqcap \) and the involutive negation \( ' \). Based on these connectives, we can construct a language \( \mathcal{L}_K \) recursively generated by: \( a \in \mathcal{L}_K, \phi' \in \mathcal{L}_K, \phi \sqcap \psi \in \mathcal{L}_K \). Connectives are defined truth-functionally, as follows (see also Table 1):

- \( 0' = 1, 1' = 0, \frac{1}{2}' = \frac{1}{2} \), which reads \( \tau(\phi') = 1 - \tau(\phi) \).
- \( \tau(\phi \sqcap \psi) = \min(\tau(\phi), \tau(\psi)) \)

The corresponding disjunction is \( \phi \sqcup \psi \) that stands for \((\phi \sqcap \psi)' \) such that \( \tau(\phi \sqcup \psi) = \max(\tau(\phi), \tau(\psi)) = \tau((\phi' \sqcap \psi')') \).

This language defines a class of three-valued functions whose expressions are the same as those of Boolean logic, but for the possibility of simplifying terms.
of the form \(a \sqcup a'\) and \(a \sqcap a'\). Remarkably, there is no tautology in Kleene logic, that is, no constant function \(f : 3^A \to 3\) taking the value \(\{1\}\) that can be expressed in the Kleene logic language. In fact any proposition in Kleene logic takes value \(\frac{1}{2}\) if all its variables take value \(\frac{1}{2}\).

Upper and lower Boolean valuations can be extended to formulas \(\phi\) built from variables and Kleene connectives \(\sqcup, \sqcap, \sqsubseteq\):

\[
\psi(\phi') = 1 - \overline{\psi}(\phi); \\
\overline{\psi}(\phi \sqcap \psi) = \min(\overline{\psi}(\phi), \overline{\psi}(\psi)); \\
\overline{\psi}(\phi \sqcup \psi) = \max(\overline{\psi}(\phi), \overline{\psi}(\psi));
\]

In terms of orthopairs corresponds on orthopairs to a swapping operation:

\((P, N)' := (N, P)\).

It can be checked that if \(\tau(\phi)\) is computed by means of Kleene truth tables and the pair \((\psi, \overline{\psi})\) is computed by the above identities,

- if \(\tau(\phi) = 1\) then \(\psi(\phi) = \overline{\psi}(\phi) = 1\);
- if \(\tau(\phi) = 0\) then \(\psi(\phi) = \overline{\psi}(\phi) = 0\);
- if \(\tau(\phi) = \frac{1}{2}\) then \(\psi(\phi) = 0, \overline{\psi}(\phi) = 1\);

It can be shown by induction that the three-valued valuation \(\tau\) as can be defined as an arithmetic mean of \(\psi, \overline{\psi}\) for all expressions in Kleene logic:

**Proposition 2.1.** For any formula \(\phi\) formed using the Kleene connectives it holds that \(\tau(\phi) = \frac{\psi(\phi) + \overline{\psi}(\phi)}{2}\).

**Proof.** It is easy to check that for atomic propositions \(\tau(a) = \frac{\psi(a) + \overline{\psi}(a)}{2}\). By induction, we get the result, \(\tau(\phi') = \frac{\psi(\phi') + \overline{\psi}(\phi')}{2}\), (enumerating the possible situations) and \(\tau(\phi \sqcap \psi) = \min(\frac{\psi(\phi) + \overline{\psi}(\phi)}{2}, \frac{\psi(\psi) + \overline{\psi}(\psi)}{2}) = \frac{\min(\psi(\phi), \overline{\psi}(\phi)) + \min(\psi(\psi), \overline{\psi}(\psi))}{2}\).

The question whether the evaluation of Kleene expressions can be obtained by recursively combining orthopairs is much less obvious and will be addressed in Section 6. However, we first point out two areas where Kleene logic has been used.

3. Three-valued logic: vagueness vs. incomplete information

There are two main understandings of Kleene logic: it provides a representation of borderline cases in the modeling of vagueness, or it may account for reasoning under incomplete knowledge.
3.1. Kleene logic as a coarse framework for vague predicates

The existence of borderline cases when evaluating the truth status of propositions is supposed to be one of the main characteristics of vagueness in languages [28]. The most elementary representation of vagueness may then assume variables are three-valued, the third truth value \( \frac{1}{2} \) being then interpreted as borderline. In this approach, each three-valued valuation is a complete model whereby some variables may be neither true nor false. This is the approach of Lawry & Gonzalez-Rodriguez [32], who cast this elementary idealized model of vague propositions in Kleene three-valued logic [29]. Since while \( \frac{1}{2} \) means borderline, the truth-values 1 and 0 respectively mean clearly true and clearly false; the value \( \frac{1}{2} \) indicates a situation where a proposition is neither clearly true nor clearly false. It is patent that the lower valuation \( v_1 \) evaluates whether a proposition is clearly true or not, while the upper valuation \( v_\frac{1}{2} \) evaluates whether a proposition is at least borderline true or not. In this view, an orthopair \((P, N)\) is interpreted as follows: \( P \) is the set of variables that are clearly true in the situation under concern, \( N \) the set of clearly false ones, and the rest are considered to be borderline.

The corresponding three-valued set-theory is a very elementary variant of fuzzy set theory [44] where sets possess central elements and peripheral ones as first studied, in the scope of linguistics, by Gentilhomme [25]. For instance, in the scale \([0, 250]\) cm., men heights from 1.80 m. up are considered typical of tall heights, hence central, while heights between 1.70 to 1.80 m. correspond to borderline cases of tall. So, the predicate tall may be better described as a three-valued one than as a Boolean notion, as some persons may be judged neither clearly tall nor clearly not tall (as opposed, e.g. to other clearcut predicates such as single, see e.g., Table 2). But these persons may as well be judged at the same time peripherally tall and peripherally not tall, (the weak forms of opposite predicates overlap) even if not clearly so.

<table>
<thead>
<tr>
<th>Name</th>
<th>Tall</th>
<th>Single</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Paul</td>
<td>Borderline</td>
<td>1</td>
</tr>
<tr>
<td>George</td>
<td>0</td>
<td>Unknown</td>
</tr>
<tr>
<td>Ringo</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

This elementary modeling of borderline cases is discussed in the book of Shapiro ([36], page 64). The three-valued setting reflects the open texture of vague predicates leading to propositions that can go either way. He elaborates a supervaluationist approach on top of the three-valued setting: the borderline truth-value is then understood as reflecting the fact that the truth status of the statement \( \text{tall}(x) \) is likely to move from true to false and back in conversational scores. For instance, in Table 2, Paul may alternatively be declared tall and not tall.
tall, because his height lies between 1.6 and 1.8 meters. Of course, this is just a coarse idealisation of the vagueness phenomenon, in fact the most elementary one might think of, since the borderline interval \([1.6, 1.8]\) is questionably over-precise. The clear-cut boundaries between the borderline area and the truth and falsity ones may be found counterintuitive. However, it is maybe worth noting that Sainsbury [35] argues against the introduction of higher order vagueness in terms of borderline borderlines etc. He says that even if you do such a thing the important question is which cases are definitely true and which are definitely false. And, following Shapiro [36], one may consider such precise boundaries as artefacts of the model, whose aim is solely to expose the presence of borderline cases in the extension of vague predicates. They do not represent something significant for the understanding of natural languages. As to the assumption of truth-functionality of this logic of \textit{borderline}, while it is not mathematically inconsistent (it has a well-founded algebraic setting), the adequacy of this assumption is widely questioned by supervaluationists, among others [22]. There is no point here of engaging in the debate regarding higher-order vagueness and the limitations of the three-valued logic of borderline to account for the representation of vagueness. Our purpose is only to use a very basic representation of non-Boolean predicates (as advocated by Lawry and colleagues) and contrast it with the logic of \textit{unknown}.

3.2. Kleene logic and incomplete information

The original intuition in [29] regarding the interpretation of the third truth-value \(\frac{1}{2}\) corresponds to the idea of \textit{unknown} instead of \textit{borderline}. In this section, we consider that the third truth-value \(\frac{1}{2}\) means \textit{unknown}, and refers to the ignorance of the actual Boolean truth values of classical binary propositional variables. The truth-tables of Kleene logic are then traditionally used to propagate incomplete knowledge.

In many applications, such as relational databases [11], or logic programming [23], we assume that an agent expresses knowledge only about elementary Boolean variables. In the database area, the value \(\frac{1}{2}\) is called a \textit{null} value. For instance, in Table 2, the variable pertaining to the predicate \textit{single} is Boolean, but it is not known whether George is single or not. However, the predicate \textit{single} is not vague whatsoever. This example explicates the difference between \textit{borderline} and \textit{unknown}.

An orthopair \((P, N)\) then does not have the same meaning as in the previous Subsection 3.1. Here, \(P\) is the set of atomic propositions \textit{known to be} true (in the usual sense), and \(N\) is the set of atomic propositions \textit{known to be} false. Clearly, \(\mathcal{A}\backslash(P \cup N)\) represents variables on which the agent has no knowledge. Note that this is formally the same orthopair as in the previous section, and it can again be encoded as a three-valued valuation. However, the intended meanings of orthopairs are quite different: in the vagueness situation, an orthopair represents \textit{complete} knowledge about a \textit{non-Boolean} description, while here it represents incomplete knowledge about a Boolean proposition in a standard propositional language \(L\) equipped with usual conjunction, disjunction and negation connectives respectively denoted by \(\land, \lor, \neg\).
In this Boolean language, the orthopair \((P, N)\) corresponds to a conjunction of literals in \(A\), i.e., \(\wedge_{a \in P} a \land \wedge_{a \in N} \neg a\). At the semantic level, \((P, N)\) is sometimes called a partial interpretation or partial model. In partial logic [6], usual satisfiability definitions are applied to partial models instead of Boolean valuations, which can be questioned [13].

Let the set of Boolean models of a formula \(\phi\) (that is, the set of Boolean valuations that make \(\phi\) true) be denoted by \(E = [\phi]\). An orthopair \((P, N)\) viewed as a partial model corresponds to a non-empty set \(E(P, N) = [\wedge_{a \in P} a \land \wedge_{a \in N} \neg a]\) of Boolean valuations, namely all Boolean interpretations \(w\) that complete the partial model. A Boolean valuation \(w\) then corresponds to an orthopair \((P, P^c)\), where \(P^c\) denotes the complement of \(P\), that partitions the set of propositional variables; or, equivalently, \(w\) is the only model of a maximal conjunction of literals \(\wedge_{a \in P_w} a \land \wedge_{a \notin P_w} \neg a\). Boolean valuations that complete an orthopair \((P, N)\) can be represented by \((P_w, P^c_w)\) where \(P \subseteq P_w\) and \(N \cap P_w = \emptyset\). It is often the case (e.g. in logic programming) that a Boolean valuation \(w\) is simply represented by the subset \(P_w = \{a \in A : w(a) = 1\} = P\) of positive literals it satisfies as per the above expression. It lays bare the one-to-one correspondence between \(\Omega\) and \(2^A\).

Now, let us suppose that an agent expresses knowledge by means of positive literals, \(P \subseteq A\). We can have two attitudes with respect to the other variables in \(A \setminus P\). First, the open world assumption. In this case nothing is assumed about \(A \setminus P\). Then the corresponding orthopair is \((P, \emptyset)\). In contrast, under the closed world assumption, it is supposed that what is not said to be true is false, thus \(N = A \setminus P\) contains the negative facts. This corresponds to pick-up just a single valuation \((P, P^c)\) among all the possible ones in \(E(P, \emptyset)\).

Now let us turn to the use of upper and lower Boolean valuations in this context. The lower valuation \(\underline{v}(a) = 1\) means that variable \(a\) is known to be true, the upper valuation \(\overline{v}(a) = 0\) means that \(a\) is known to be false, while the case where \(\underline{v}(a) = 0\) and \(\overline{v}(a) = 1\) corresponds to the case where it is unknown whether \(a\) is true or false. Very naturally, the set \(\{\underline{v}(a), \overline{v}(a)\}\) represents the set of possible (Boolean) truth-values of \(a\), according to the available state of information. The truth-tables of Kleene logic are thus precisely the set-valued extensions of the Boolean truth-tables [34, 15], namely:

\[
\{\underline{v}(a \land b), \overline{v}(a \land b)\} = \{w(a \land b) : \underline{v} \leq w \leq \overline{v}\} = \{\min(\underline{v}(a), \underline{v}(b)), \min(\overline{v}(a), \overline{v}(b))\}
\]

\[
\{\underline{v}(a \lor b), \overline{v}(a \lor b)\} = \{w(a \lor b) : \underline{v} \leq w \leq \overline{v}\} = \{\max(\underline{v}(a), \underline{v}(b)), \max(\overline{v}(a), \overline{v}(b))\}
\]

\[
\{\underline{v}(\neg a), \overline{v}(\neg a)\} = \{w(\neg a) : \underline{v} \leq w \leq \overline{v}\} = \{1 - \overline{v}(a), 1 - \underline{v}(a)\}
\]

However, if used to evaluate the knowledge about the truth or falsity of any Boolean formula, the recursive application of these definitions becomes counterintuitive in the incomplete information setting. Indeed, using Kleene logic (or the recursive formulas on the upper and lower Boolean valuations as in the previous section), one finds that for instance, \(\{\underline{v}(a \land \neg a), \overline{v}(a \land \neg a)\}\) = \{0, 1\}, if
τ(a) = \frac{1}{2}. However, under the incomplete information setting, since \(w(a)\) can only be true or false, the truth-value \(w(a \land \neg a)\) is necessarily 0 (known to be false). And this can be retrieved directly applying the set-valued calculus to all formulas \(\phi\), namely, by computing

\[ V(\phi) = \{ w(\phi) : v(a) \leq w(a) \leq \overline{v}(a), \forall a \in A \}, \]

rather than using the truth-tables for conjunction, and negation recursively. For instance, \(\forall \leq v, V(a \land \neg a) = \{0\}\) (and not \(\{1,0\}\) provided by Kleene truth-tables) since \(\forall w, w(a \land \neg a) = 0\). It suggests that the lack of tautology in Kleene logic is questionable in the scope of incomplete Boolean information: if variables are Boolean, tautologies should remain tautologies, even if the truth-value of some variables is unknown. For instance, from Table 2 we do not know whether George is single, but it is always true that he is “single or not single”.

So, while there is a one-to-one correspondence between partial models representing incomplete information and three-valued valuations (relying on the bijection between 3 and the set \(\{\{0\}, \{1\}, \{0,1\}\}\) of non-empty subsets of the unit interval), Kleene truth-tables improperly apply to the incomplete information setting for evaluating the epistemic status of complex Boolean formulae. To overcome the limited expressiveness of orthopairs when modeling incomplete information, one needs a more general view of epistemic states and the setting of possibility theory [42, 18].

4. Non-truth-functional frameworks for incomplete or vague information

In this section, we first explicate the limitation of orthopairs in the representation of epistemic states, viewing them as Boolean possibility distributions over the set of classical interpretations. Then we recall Boolean possibility and necessity measures that we compare to upper and lower Boolean valuations. We show their close connection with modalities in epistemic logic. Finally, we show that the theory of supervaluations, that usually applies to the modeling of vagueness, is formally very close to possibility theory.

4.1. The limited expressiveness of orthopairs for incomplete information

In the following, a non-empty subset of Boolean valuations \(E \subseteq \Omega\) is called an epistemic set. It represents an agent’s epistemic state, that is, a state of information according to which all that is known is that the real world is properly described by one and only one of the valuations in \(E\). Subsets \(E_{(P,N)}\) of Boolean valuations compatible with a partial model \((P,N)\) are special cases of epistemic sets.

We can equivalently represent an epistemic set \(E\) by a possibility distribution [45], i.e., a mapping \(\pi : \Omega \rightarrow \{0,1\}\) of the form

\[ \pi_E(w) = \begin{cases} 1 & \text{if } w \in E \text{ (it means possible)} \\ 0 & \text{otherwise (impossible)} \end{cases} \]  \hspace{1cm} (4)
Then, the possibility distribution \( \pi_{(P,N)} \) of the epistemic set \( E_{(P,N)} \) associated to an orthopair \((P,N)\), that is the set of models of \( \phi = \land_{a\in P} a \land \land_{a\in N} \neg a \) can be factorized as:

\[
\pi_{(P,N)}(w) = \min(\min_{a\in P} \pi_a(w), \min_{a\in N} 1 - \pi_a(w)) \tag{5}
\]

with convention \( \min_\emptyset = 0 \) and

\[
\pi_a(w) = \begin{cases} 
1 & \text{if } a \in P \\
0 & \text{otherwise}. 
\end{cases}
\]

The epistemic set \( E_{(P,N)} \) is a set of Boolean valuations that takes the form of a Cartesian product of subsets of \( \{a, \neg a\}, a \in A \), what can be called an hyper-rectangle, by analogy with the Cartesian product of intervals in the real line \( \mathbb{R}^n \). Thus, partial models are viewed as hyper-rectangles in the space \( \{0,1\}^n \) if there are \( n \) variables. In the case of the special orthopair \((P,P^c)\), the possibility distribution \( \pi_{(P,P^c)} \) takes value 1 only for the valuation characterized by \( P \).

Table 3 shows basic epistemic sets that are modelled by orthopairs. Note that the use of orthopairs highlights the interpretation with all positive literals and the one with all negative literals, that play no specific role in the more general possibility theory setting. Moreover, there is no way of representing the empty set of interpretations (the contradiction) with orthopairs or consistent valuations.

However we can build a rectangular upper approximation of any non-empty subset \( E \subseteq \Omega \) of Boolean interpretations by means of a single partial model \( RC(E) = (P_E, N_E) \) as follows:

- \( a \in P_E \) iff \( w(a) = 1, \forall w \in E \),
- \( a \in N_E \) iff \( w(a) = 0, \forall w \in E \).

The map \( E \mapsto (P_E, N_E) \) defines an equivalence relation on possibility distributions over \( \Omega \) and \( E_{(P,N)} = \cup\{E : (P_E, N_E) = (P, N)\} \). \( RC(E) \) can be called the rectangular closure of \( E \). Note that the rectangular closure of \( E \) may even lose all information contained in \( E \) (namely, when \( RC(E) = \Omega \), for instance if \( E \) is a disjunction of interpretations having different projections on each atomic space, e.g. any diagonal of the hyper rectangle \( \Omega \)).
In general, a non-empty epistemic set $E \subseteq \Omega$ can be represented by a collection of orthopairs, which encodes a disjunction of partial models. To see it, consider a Boolean formula $\phi$ whose set of models is exactly $E$. Then, put $\phi$ in the disjunctive normal form (as a disjunction of conjunctions of literals). Each such conjunction can be represented by an orthopair.

**Remark 1.** We can always represent $E$ by a set of mutually exclusive orthopairs. This is because it is always possible to put a disjunction of conjunctions into a disjunction of mutually exclusive conjuncts, for instance using specific normal forms (such as binary decision diagrams [7]).

So, the use of Kleene logic to handle incomplete knowledge is subject to severe limitations in terms of expressiveness, since only a small subfamily of epistemic sets can be captured by orthopairs. Using orthopairs to represent incomplete knowledge presupposes that information can only have a bearing on variables, independently of each other. While in logical representations, variables are supposed to be logically independent, the use of orthopairs carries this assumption over to epistemic independence (independence between pieces of knowledge pertaining to variables). Replacing possibility distributions by probability distributions, it is similar to assuming stochastic independence between variables (which is a strong assumption).

### 4.2. Possibility-Necessity pairs

If the available information takes the form of an epistemic set $E$, we can attach to any proposition its possibility and necessity degrees $N(\phi)$ and $\Pi(\phi)$ [19] defined by

1. $N(\phi) = 1$ if and only if $\exists w \in E, w \models \phi$ and 0 otherwise; \hspace{1cm} (6)
2. $\Pi(\phi) = 1$ if and only if $\forall w \in E, w \models \phi$ and 0 otherwise. \hspace{1cm} (7)

$N$ is called a necessity measure and $\Pi$ a possibility measure. $N(\phi) = 1$ means that $\phi$ is certainly true, and $\Pi(\phi) = 1$ that $\phi$ is possibly true, in the corresponding epistemic state. So, if $N(\phi) = 0$ and $\Pi(\phi) = 1$, it means that the truth of $\phi$ is unknown in the epistemic state [19]. The set-function $\Pi(\phi)$ (resp. $N$) is an extreme case of numerical possibility measure [45] (resp. necessity measure [18]).

We can compute the pair $(N, \Pi)$ of functions $\mathcal{L} \rightarrow \{0, 1\}$ induced by the epistemic set representing an orthopair $(P, N)$ as follows:

- $N(\phi) = 1$ if $\bigwedge_{a \in P} a \land \bigwedge_{a \in N} \neg a \models \phi$ and 0 otherwise.
- $\Pi(\phi) = 1$ if $\bigwedge_{a \in P} a \land \bigwedge_{a \in N} \neg a \land \phi$ is consistent, and 0 otherwise.

There is an obvious similarity between extended consistent valuation pairs $(\mathcal{V}, \mathcal{V})$ and necessity-possibility pairs $(N, \Pi)$, namely the following identities hold:

1. $N(\neg \phi) = 1 - \Pi(\phi)$ and $\Pi(\neg \phi) = 1 - N(\phi)$ \hspace{1cm} (8)
2. $N(\theta \land \varphi) = \min(N(\theta), N(\varphi))$ \hspace{1cm} (9)
3. $\Pi(\theta \lor \varphi) = \max(\Pi(\theta), \Pi(\varphi)).$ \hspace{1cm} (10)
However there is a difference between them: while $v(\theta \land \varphi) = \min(v(\theta), v(\varphi))$ and $\Pi(\theta \lor \varphi) = \max(\Pi(\theta), \Pi(\varphi))$, in general, it only holds that

\[
\Pi(\theta \land \varphi) \leq \min(\Pi(\theta), \Pi(\varphi))
\]

and

\[
\mathcal{N}(\theta \lor \varphi) \geq \max(\mathcal{N}(\theta), \mathcal{N}(\varphi)).
\]

In particular, $\Pi(\theta \land \neg \theta) = 0$ (non-contradiction law) and $\mathcal{N}(\theta \lor \neg \theta) = 1$ (excluded middle law), thus escaping the anomaly of losing the Boolean tautologies when information is incomplete. Due to these properties, it is clear that:

**Proposition 4.1.** If the epistemic set is a partial model encoded by the consistent BVP $(v, \overline{v})$ the associated possibility-necessity pairs are recovered as

\[
\Pi(\phi) = \max_{v \leq w \leq \overline{v}} w(\phi)
\]

\[
\mathcal{N}(\phi) = \min_{v \leq w \leq \overline{v}} w(\phi)
\]

**Proof.** $v \leq w \leq \overline{v}$ is equivalent to saying that $w$ is a completion of the partial model $(P, N)$ encoded by $(v, \overline{v})$, i.e. $w \in E_{(P, Q)}$. $\square$

It is easy to identify logical expressions $\phi$ for which extended consistent BVP’s $(v, \overline{v})$ and possibility-necessity pairs $(\Pi, \mathcal{N})$ differ.

**Example 4.1.** $a \lor b$ and $a \lor (\neg a \land b)$ are not equivalent propositions under extended consistent BVP’s. Indeed, consider the orthopair $(P, N) = (\{b\}, \emptyset)$. Since $\overline{v}(b) = v(b) = 1$, it is obvious that $\overline{v}(a \lor b) = v(a \lor b) = 1$ too. For the other formula, we can proceed as follows:

- $\overline{v}(a) = 1$ and $v(a) = 0$ since $a \notin P \cup N$;
- $\overline{v}(\neg a) = 1$ and $v(\neg a) = 0$ likewise;
- $\overline{v}(\neg a \land b) = \min(\overline{v}(\neg a), \overline{v}(b)) = 1$;
- $v(\neg a \land b) = \min(v(\neg a), v(b)) = 0$;
- So $\overline{v}(a \lor (\neg a \land b)) = \max(\overline{v}(a), \overline{v}(\neg a \land b)) = 1$;
- So $v(a \lor (\neg a \land b)) = \max(v(a), v(\neg a \land b)) = 0$;

Note that this result is more easily checked with Kleene truth-tables, since, with $\tau(a) = \frac{1}{2}$, $\tau(b) = 1$, $\tau(a \lor b) = \max(\frac{1}{2}, 1) = 1$, while $\tau(a \lor (a' \land b)) = \max(\frac{1}{2}, \min(\frac{1}{2}, 1)) = \frac{1}{2}$. However, in the Boolean setting the two formulas $a \lor b$ and $a \lor (\neg a \land b)$ have the same set of models, so $\mathcal{N}(a \lor b) = \mathcal{N}(a \lor (\neg a \land b))$, and $\Pi(a \lor b) = \Pi(a \lor (\neg a \land b))$.
More generally, given a tautological Boolean formula $\phi$, there exists a consistent BVP $(\pi, \varphi)$ such that $\pi(\phi) = 1$, $\varphi(\phi) = 0$ (third truth-value $\frac{1}{2}$). In contrast, for any possibility necessity pair, it holds that $\mathcal{N}(\phi) = \Pi(\phi) = 1$. Conversely, given an inconsistent Boolean formula $\phi$, there exists a consistent BVP $(\pi, \varphi)$ such that $\pi(\phi) = 1$, $\varphi(\phi) = 0$ (third truth-value $\frac{1}{2}$). In contrast, for any possibility necessity pair, it holds that $\mathcal{N}(\phi) = \Pi(\phi) = 0$. So there is no equality between $\pi$ and $\Pi$, nor between $\varphi$ and $\mathcal{N}$. However, a consistent BVP $(\varphi, \pi)$ determines a unique possibility-necessity pair: the former determines an orthopair $(P, N)$ and the induced possibility-necessity pair $(\Pi, N)$ is the one that is induced by the rectangular epistemic set $E_{(P, N)}$.

4.3. Possibility theory and epistemic logic

In fact, necessity-possibility pairs $(N, \Pi)$, as witnessed by their characteristic axioms (8), are also pairs of dual KD modalities, and as such it is legitimate to connect them to epistemic logic [27]. This connection is made under the form of a simplified epistemic logic called MEL [2, 3]. It is based on a fragment of the KD language, with no nesting of modalities and no objective (modality-free) formulas. In other words, it is a higher-order standard propositional language with atomic formulas of the form $\square \alpha$, where $\alpha$ is any propositional formula of an underlying standard propositional language. Its axioms are the usual K, D, and a necessitation axiom for propositional tautologies, on top of propositional axioms for the modal axioms. Even though one may consider MEL as a genuine special case of KD or S5, there are differences with the usual epistemic logic such as S5:

- It cannot distinguish belief from knowledge (true belief) since axiom $\square \alpha \rightarrow \alpha$ cannot be expressed in the MEL language.
- MEL does not deal with introspection: it accounts for partial knowledge of the epistemic state of an external agent (e.g. the perception of what a computer knows of believes). However the present paper is not concerned with introspection either.
- Its semantics is in terms of epistemic sets $E \neq \emptyset$, not in terms of accessibility relations (in fact MEL is just a propositional logic, adopting the language of epistemic logic). Namely a modal formula in MEL is evaluated on epistemic sets, not on possible worlds.

In [10], we have shown that Kleene logic (and other three-valued logics of unknown) can be encoded in MEL. We then have to restrict the MEL language to atomic formulas of the form $\square \ell$ where $\ell$ is a literal. It clearly highlights the limited expressive power of three-valued logics, namely a disjunction of literals such as $a \sqcup b^\prime$ in Kleene logic (Kleene implication) corresponds to $\square a \lor \square \neg b$ in MEL, while $\square(a \lor \neg b)$ has no counterpart in Kleene logic. In other words, the sub-logic of MEL accounting for three-valued logics of unknown uses a language where only literals are prefixed by modalities, and the semantic account can be restricted to rectangular epistemic sets corresponding to three-valued valuations, or equivalently, to orthopairs $(P, N)$.
Remark 2. A truth-functional pair of two-valued dual functions or modalities reduces to two standard Boolean valuations [19], while, in the three-valued propositional setting accommodating borderline cases, such deviant modalities (where the lower necessity-like valuation distributes over disjunctions) are not trivial. More general Kleene algebras displaying such deviant modalities are studied in [8].

4.4. Supervaluations and possibility theory

Supervaluationism, proposed by Fine [22], is an alternative model of borderline cases as yielding truth-gaps between clearly true and clearly false. In this approach the fundamental idea is that variables taking borderline values can be indifferently assigned any of the clearcut values. Such completions correspond to a set of admissible Boolean valuations. Then, a sentence is supertrue if it is true in every admissible valuation and superfalse if it is false in every admissible valuation. Accordingly, a sentence is borderline, if it is neither supertrue or superfalse or, in other words, if there are some admissible valuations for which the sentence is true and other ones for which it is false. Unlike three-valued logics, the supervaluationist approach is non-compositional and it also preserves Boolean logical equivalences, tautologies and contradictions. For example, even if propositional variable \( a \) and its negation \( \neg a \) are both borderline, nonetheless, the sentences \( a \lor \neg a \) and \( a \land \neg a \) are always supertrue and superfalse respectively. This is in contrast to the same scenario in Kleene logic where both sentences would be allocated a borderline truth-value. This example is a particular case of what Fine [22] refers to as penumbral connections as corresponding to logical relations holding between borderline sentences. For instance, given a set of borderline literals, penumbral connections may result in certain logical combinations of these literals being either clearly true or clearly false. In general, its advocates argue that the supervaluationist approach is better able to represent penumbral connections than three-valued logics.

Example 4.2. Consider the following type of penumbral connections related to the vague predicate Tall of Table 2. Suppose we have an increasing sequence of heights \( h_1 < h_2 < \ldots < h_n \) where \( h_1 \) is classed as being clearly not tall, whilst \( h_n \) is clearly tall. All other heights are taken to be borderline cases of tall. However, despite their borderline classification if we were to learn that height \( h_i \) was indeed considered tall we would immediately infer that \( h_j \) should be also considered tall for \( j \geq i \). Now defining propositional variables such that \( a_i \) denotes the statement ‘a person of height \( h_i \) is tall’ for \( i = 1, \ldots, n \), then such penumbral connections can be captured by the epistemic set \( E = \{w_2, \ldots, w_n\} \) where \( w_i(a_j) = 1 \) if and only if \( j \geq i \).

In the setting of propositional logic, a natural formalisation of supervaluationism is in terms of (non-truth-functional) lower and upper truth valuations

---

1In fact the term supervaluation was originally introduced by van Fraassen [39] with regard to the situation in predicate logic when some terms of the language do not have referents in a particular interpretation.
as recently proposed by Lawry and Tang [33]. In this approach a set of admissible Boolean valuations is identified, and then for any sentence $\phi \in \mathcal{L}$, the lower valuation of $\phi$ is 1 if and only if $\phi$ is true in each of the admissible valuations i.e. $\phi$ is supertrue. Similarly, the upper valuation of $\phi$ is 1 if and only if $\phi$ is true in at least one admissible valuation, i.e., $\phi$ is not superfalse. This formalisation is mathematically identical to the Boolean possibility-necessity pairs described in Subsection 4.2. More specifically,

**Proposition 4.2.** Let $E \subseteq \Omega$ be the set of admissible valuations of the language $\mathcal{L}$. Consider the necessity and possibility measures defined in equations 6 and 7. Then $\phi$ is supertrue if and only if $N(\phi) = 1$ and superfalse if and only if $\Pi(\phi) = 0$.

The proof of this proposition is straightforward (see also [14]). So, the Lawry and Tang supervaluationist lower and upper valuations in the supervaluation framework then respectively correspond to necessity and possibility measures.

Despite this formal identity between supervaluations and Boolean possibility-necessity pairs there is none-the-less a subtle interpretational difference between the two models. Interestingly, this difference is inherently linked to the interpretation of the intermediate value. The notions of *conjunctive and disjunctive sets* [41], [20] are fundamental to understanding these two distinct semantics. A conjunctive set is an conjunction of elements representing the value of a set-valued property, whereas a disjunctive set is a collection of mutually exclusive elements, each representing one of a number of possibilities, only one of which can actually be realised. For example, the set of people who have bought a lottery ticket is a conjunctive set, whilst the set of people who may possibly have the winning lottery ticket is a disjunctive set. From this perspective then the supervaluationist set of admissible valuations is a conjunctive set of Boolean valuations in the sense that each precisification of the given truth-model is on a par with another whilst for Boolean possibility-necessity pairs the underlying epistemic set is a disjunctive set of possible Boolean valuations only one of which captures the actual precisification. The latter disjunctive view is closer to the epistemic approach to vagueness, advocated by Williamson [40]. The conjunctive view can actually in turn be interpreted in two ways: supervaluationists consider that none of the precisifications is appropriate, while plurivaluationists (like Smith [37]) consider all precisifications are equally good.

### 4.5. Bounded epistemic sets

Many of the theoretical results concerning supervaluationism can be easily translated from Lawry and Tang [33] into possibility theory. This translation highlights the relationship between Boolean possibility theory and Kleene three-valued logic of *borderline*. Such relationships are best formulated within the context of a particular restricted class of epistemic sets defined as follows:

**Definition 4.1.** An epistemic set $E \subseteq \Omega$ is said to be bounded whenever $\{w_E, \bar{w}_E\} \subseteq E$ where $\forall a \in A$, $\bar{w}_E(a) = \min\{w(a) : w \in E\}$ and $w_E(a) = \max\{w(a) : w \in E\}$.
max{\( w(a) : w \in E \)}.

Notice that an epistemic set \( E_{(P,N)} \) induced by an orthopair \((P,N)\) is a special case of a bounded epistemic set in which \( \underline{w}_{E} = \underline{\nu}_{(P,N)} \) and \( \overline{w}_{E} = \overline{\nu}_{(P,N)} \), the consistent BVP \((\underline{\nu}_{(P,N)},\overline{\nu}_{(P,N)})\) induced by \((P,N)\). In fact we can view such states as being bounded and complete since \( E_{(P,N)} = \{ w \in \Omega : \underline{\nu}_{(P,N)} \leq w \leq \overline{\nu}_{(P,N)} \} \). There are, however, many cases of bounded epistemic sets which cannot be generated in this way.

**Example 4.3.** A simple example of bounded epistemic set is the consistent BVP \((\underline{\nu}_{(P,N)},\overline{\nu}_{(P,N)})\) induced by \((P,N)\) that cannot be generated in this way.

**Example 4.4.** Considering again the penumbral connection of Example 4.2, \( E \) is a bounded epistemic set with \( \underline{w}_{E} = w_{n} \) and \( \overline{w}_{E} = w_{2} \) so that the corresponding orthopair is \((P,N) = (\{a_{n}\},\{a_{1}\})\). However, the associated epistemic set \( E_{(a_{n},\{a_{1}\})} \) includes valuations \( w \) for which \( w(a_{i} \land \neg a_{j}) = 1 \) where \( j > i \), and hence \( E \subset E_{(a_{n},\{a_{1}\})} \).

**Definition 4.2.** An entirely positive (resp. entirely negative) sentence is a sentence generated recursively from the propositional variables (resp. the negated propositional variables) using only \( \land \) and \( \lor \). The set of entirely positive (resp. entirely negative) sentences is denoted by \( L^{+} \) (resp. \( L^{-} \)).

**Example 4.5.** The formulas \( a_{1} \land (a_{2} \lor a_{3}) \in L^{+} \) and \( \neg a_{1} \land (\neg a_{2} \lor \neg a_{3}) \in L^{-} \).

Let \( \Pi_{E} \) and \( N_{E} \) denote the Boolean possibility and necessity measures representing an epistemic set \( E \) as given by equations (7) and (6). We recall the following results from Lawry and Tang [33]:

**Proposition 4.3.** Let \( E \) be a bounded epistemic set and let \( E' = \{ \underline{w}_{E}, \overline{w}_{E} \} \) then \( \forall \theta \in L^{+} \cup L^{-}, N_{E}(\theta) = N_{E'}(\theta) \) and \( \Pi_{E}(\theta) = \Pi_{E'}(\theta) \).

Proposition 4.3 shows that for a bounded epistemic set \( E \) and for entirely positive or entirely negative sentences, the necessity and possibility values are dependent only on the bounding Boolean assignments \( \underline{w}_{E} \) and \( \overline{w}_{E} \).

**Proposition 4.4.** Let \( E \) be a bounded epistemic set then \( \forall \theta, \varphi \in L^{+} \) and \( \forall \theta, \varphi \in L^{-} \) it holds that:

\[
N_{E}(\theta \lor \varphi) = \max(N_{E}(\theta),N_{E}(\varphi)) \quad \text{and} \quad \Pi_{E}(\theta \land \varphi) = \min(\Pi_{E}(\theta),\Pi_{E}(\varphi))
\]

This result shows that possibility-necessity pairs representing bounded epistemic sets are strongly compositional when restricted either to entirely positive or entirely negative sentences. Indeed for this fragment of the logic they share the same conjunction and disjunction rules as lower and upper Boolean valuations encoding Kleene truth-values. In fact, as the following result shows, possibility-necessity pairs representing bounded epistemic sets are particularly related to the consistent BVP generated by the orthopair \((P,N)\) where \( P = \{ a : \underline{w}_{E}(a) = 1 \} \) and \( N = \{ a : \overline{w}_{E}(a) = 0 \} \).
Proposition 4.5. If \( E \) is a bounded epistemic set, then there is a unique extended consistent BVP \( \bar{v} = (\bar{v}, \bar{\pi}) \) such that \( \forall \theta \in \mathcal{L}^+ \cup \mathcal{L}^- \), \( N_E(\theta) = \bar{v}(\theta) \) and \( \Pi_E(\theta) = \bar{\pi}(\theta) \), and in general \( \forall \theta \in \mathcal{L} \), \( \bar{v}(\theta) \leq N_E(\theta) \leq \Pi_E(\theta) \leq \bar{\pi}(\theta) \). Furthermore, \( \bar{v} = \bar{v}_{(P,N)} \) where \( P = \{a : w_E(a) = 1\} \) and \( N = \{a : \overline{w}_E(a) = 0\} \) or alternatively \( \bar{v} = \bar{v}_{RC(E)} \).

Hence, in an epistemic/partial knowledge setting involving bounded epistemic sets, we may think of Kleene valuations (in the form extended consistent BVP’s) as a generally more imprecise approximation of the underlying possibility-necessity pair (see also [12]), which only agrees with the possibilistic model when restricted to entirely positive or entirely negative sentences. From the alternative perspective of truth-gaps or borderline cases induced by inherently vague propositions, the above proposition indicates that Kleene valuations can always be viewed as a semantic weakening of a strongly related supervaluationist truth-model.

5. Representations for conflicting information

In order to extend the expressive power of orthopairs of sets of variables, we may wish to relax the condition \( P \cap N = \emptyset \). The epistemic understanding of this license is that if \( a \in P \cap N \), it means that there are reasons to believe the truth of \( a \) and reasons to believe \( a \) to be false as well. For instance, there may be agents claiming the truth of \( a \) and other agents claiming its falsity. This approach is akin to the semantics of some paraconsistent logics such as Belnap’s [4]. Dubois, Konieczny and Prade [16] used such paraconsistent pairs of sets of variables for the study of a possibilistic logic counterpart of quasi-classical logic of Besnard and Hunter [5].

5.1. Paraconsistent valuations and Belnap truth-values

We call such pairs of subsets of variables \( (F,G) \in 2^A \times 2^A \) with \( F \cap G \neq \emptyset \) paraconsistent. For these pairs, it is clear that \( E_{(F,G)} = \emptyset \). Another semantics is necessary for them. We use a set \( 4 = \{0,1,u,b\} \) of truth-values, where \( u \) stands for unknown (it corresponds to \( 1/2 \) in Kleene logic) and \( b \) stands for contradictory (both true and false). A four-valued valuation is a mapping \( \mathcal{A} \rightarrow 4 \) denoted by \( \sigma \). A pair \( (F,G) \) in the paraconsistent case is closely related to Belnap [4] 4-valued logic, namely, in his terminology:

- If \( a \in F \setminus G \) then \( \sigma(a) = 1 \): \( a \) is asserted but not negated (Belnap truth-value TRUE).
- If \( a \in G \setminus F \) then \( \sigma(a) = 0 \): \( a \) is negated but not asserted (Belnap truth-value FALSE).
- If \( a \in F \cap G \) then \( \sigma(a) = b \): \( a \) is both negated and asserted (Belnap truth-value BOTH).
- If \( a \notin F \cup G \) then \( \sigma(a) = u \): \( a \) is neither negated nor asserted (has Belnap truth-value NONE).
Table 4: Belnap disjunction and conjunction

<table>
<thead>
<tr>
<th>□</th>
<th>0</th>
<th>u</th>
<th>b</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>u</td>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>u</td>
<td>u</td>
<td>u</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>1</td>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>□</th>
<th>0</th>
<th>u</th>
<th>b</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>u</td>
<td>0</td>
<td>u</td>
<td>0</td>
<td>u</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>0</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>u</td>
<td>b</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4: Belnap disjunction and conjunction

$\tau \in \mathcal{A}$ ← $(v, \overline{v})$

$(F, G)$

Figure 2: Equivalences for paraconsistent information representation

The epistemic truth set $\mathcal{A}$ is equipped with a bi-lattice structure [24], namely there is the truth-ordering $<$ such that $0 < u < 1$ and $0 < b < 1$; and the information ordering (ranging from no information ($u$) to too much information ($b$)) such that $u < 1 < b$ and $u < b < 0$. The truth-tables are those of Kleene logic for $\{0, u, 1\}$ and $\{0, b, 1\}$ according to the truth ordering, plus $u \sqcup b = 1$, $u \sqcap b = 0$ (see Table 4). The second borderline truth-value $b$ plays the same role as the first one with respect to $1$ and $0$.

Four-valued valuations can be captured by general Boolean valuation pairs. The case where $v \not\geq \overline{v}$ exactly corresponds to pairs $(F, G)$ of sets of variables such that $F \cap G \neq \emptyset$, letting $F = \{a \in A : v(a) = 1\}$ and $G = \{a \in A : \overline{v}(a) = 0\}$. We call such pairs $(v, \overline{v})$ paraconsistent BVP’s.

Lawry and Gonzalez-Rodriguez [32] have shown that truth-tables corresponding to the inductive definitions (1), (2), (3) of consistent BVP’s over the language become Belnap 4-valued truth-tables when these inductive definitions are applied to all BVP’s $(v, \overline{v})$ without the restriction $\overline{v} \geq v$. In particular, $b$ corresponds to the pair $(1, 0)$, and

- $b \sqcap u$ corresponds to the componentwise Boolean conjunction of $(0, 1)$ and $(1, 0)$, which is $(0, 0)$, i.e., $0$.

- $b \sqcup u$ corresponds to the componentwise Boolean disjunction of $(0, 1)$ and $(1, 0)$, which is $(1, 1)$, i.e., $1$.

In this case the diagram of Figure 1 should be updated as on Figure 2. Table 5 completes Table 3, accounting for non-consistent valuation pairs.

Just as for Kleene logic, the truth-functionality of Belnap approach does not sound very natural in the scope of handling paraconsistent Boolean formulas other than literals [13].
### 5.2. Paraconsistent orthopairs as pairs of consistent ones

A Belnap set-up, justifying his 4 truth-values, is made of several conflicting but internally consistent sources of information about variables. Since $E_{(F,G)} = \emptyset$ for a paraconsistent pair $(F,G)$, one may accordingly represent such a paraconsistent pair by means of two standard consistent orthopairs of the form $(F,G \setminus F)$ and $(F \setminus G,G)$ that conflict with each other. They are pairs of orthopairs $(P_1,N_1),(P_2,N_2)$, corresponding to the epistemic states of two conflicting agents, with $P_2 \subseteq P_1, N_1 \subseteq N_2, N_1 \cap P_2 = \emptyset, P_1 \cup N_1 = P_2 \cup N_2$. The corresponding paraconsistent pair is of the form $(F,G) = (P_1,N_2)$. It corresponds to two disjoint epistemic sets $E_i = E_{(P_i,N_i)}, i = 1,2$.

More generally we could reconstruct a paraconsistent pair from any two orthopairs $(P_1,N_1),(P_2,N_2)$ as $(F,G) = (P_1 \cup P_2, N_1 \cup N_2)$ as follows

- If $a \in (P_1 \setminus N_2) \cup (P_2 \setminus N_1)$ then $a$ has truth-value 1;
- If $a \in (N_1 \setminus P_2) \cup (N_2 \setminus P_1)$ then $a$ has truth-value 0;
- If $a \in (P_1 \cap N_2) \cup (P_2 \cap N_1)$ then $a$ has truth-value $b$;
- If $a \not\in P_1 \cup N_2 \cup P_2 \cup N_1$ then $a$ has truth-value $u$.

Letting $(P_1,N_1) = (F,G \setminus F)$ and $(P_2,N_2) = (F \setminus G,G)$, we do recover $(P_1 \cup P_2, N_1 \cup N_2) = (F,G)$.

Whether we can define a counterpart to the simplified epistemic logic MEL using pairs of orthopairs representing conflicting epistemic states is a matter of further research. However, a modal setting for such a kind of non-truth-functional approach to Belnap-like paraconsistent reasoning is outlined in [15].

### 6. Kleene logic connectives and orthopairs

In this section, we check whether Kleene and Belnap logic expressions can be recursively described in terms of orthopairs of sets of Boolean variables. It turns out that the restriction to (non-paraconsistent) orthopairs for Kleene logic is problematic. In the following, the notation $(P,N)$ corresponds to genuine orthopairs, while we use $(F,G)$ in the general case.

<table>
<thead>
<tr>
<th>3</th>
<th>Generalized pairs</th>
<th>Valuation pairs</th>
<th>Subsets of Boolean valuations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0$</td>
<td>$(\emptyset,A)$</td>
<td>$0 = (\emptyset,\emptyset)$</td>
<td>${w_0} = [\land_{a \in A} \neg a]$</td>
</tr>
<tr>
<td>$u$</td>
<td>$(\emptyset,\emptyset)$</td>
<td>$(\emptyset,1)$</td>
<td>$\Omega$</td>
</tr>
<tr>
<td>$1$</td>
<td>$(A,\emptyset)$</td>
<td>$1 = (1,1)$</td>
<td>${w_1} = [\land_{a \in A} a]$</td>
</tr>
<tr>
<td>$b$</td>
<td>$(A,A)$</td>
<td>$(1,\emptyset)$</td>
<td>$\emptyset$</td>
</tr>
</tbody>
</table>

Table 5: Basic epistemic sets representable by general valuation pairs.
6.1. Semantics of Kleene logic formulas in terms of orthopairs

Lawry and Gonzalez-Rodriguez [32] propose a semantics for both Belnap four-valued logic and Kleene three-valued logic in terms of pairs of sets of variables \((F,G)\) \(\in 2^A \times 2^A\). However the construction in [32] for Kleene logic expressions involve paraconsistent pairs. We show here how to express Kleene valuations over the language in terms of orthopairs only. Let \(\mathcal{O} = \{(P,N) \in 2^A \times 2^A : P \cap N = \emptyset\}\) denote the set of all orthopairs. Then, for Kleene logic, we can recursively define a pair of dual mappings \(T_k : \mathcal{L} \to 2^\mathcal{O}\) and \(F_k : \mathcal{L}_K \to 2^\mathcal{O}\) from sentences to sets of orthopairs as follows:

**Definition 6.1.** Let \(T_k : \mathcal{L}_K \to 2^\mathcal{O}\) and \(F_k : \mathcal{L}_K \to 2^\mathcal{O}\) be defined recursively as follows: \(\forall \theta, \varphi \in \mathcal{L}_K\) and \(\forall a \in \mathcal{A}\) then:

- \(T_k(a) = \{(P,N) \in \mathcal{O} : a \in P\}\) and \(F_k(a) = \{(P,N) \in \mathcal{O} : a \in N\}\)
- \(T_k(\theta \land \varphi) = T_k(\theta) \cap T_k(\varphi)\) and \(F_k(\theta \land \varphi) = F_k(\theta) \cup F_k(\varphi)\)
- \(T_k(\theta \lor \varphi) = T_k(\theta) \cup T_k(\varphi)\) and \(F_k(\theta \lor \varphi) = F_k(\theta) \cap F_k(\varphi)\)
- \(T_k(\theta') = F_k(\theta)\) and \(F_k(\theta') = T_k(\theta)\)

The following proposition shows that for any sentence \(\theta \in \mathcal{L}_K\), \(T_k(\theta)\) exactly identifies those orthopairs for which \(\theta\) is clearly true given the corresponding Kleene valuation. Similarly, \(F_k(\theta)\) is the set of orthopairs for which \(\theta\) is clearly false given the associated valuation.

**Proposition 6.1.** \(\forall \Psi \in \mathcal{L}_K, T_k(\Psi) = \{(P,N) : \mathcal{V}(P,N)(\Psi) = 1\}\) and \(F_k(\Psi) = \{(P,N) : \mathcal{V}(P,N)(\Psi) = 0\}\)

**Proof.** Let \(\mathcal{L}_K^0 = \mathcal{A}\) and for \(n \geq 1\) let \(\mathcal{L}_K^n = \mathcal{L}_K^{n-1} \cup \{\theta \land \varphi, \theta \lor \varphi, \theta' : \theta, \varphi \in \mathcal{L}_K^{n-1}\}\).

Now by induction on \(n\): Suppose \(\Psi = a_i \in \mathcal{A}\) then \(\mathcal{V}(P,N)(a_i) = 1\) iff \(a_i \in P\) and \(\mathcal{V}(P,N)(a_i) = 0\) iff \(\mathcal{V}(P,N)(\neg a_i) = 1\) iff \(a_i \in N\) as required. Now suppose the result holds for \(\mathcal{L}_K^n\) and let \(\Psi \in \mathcal{L}_K^{n+1}\) then either \(\Psi \in \mathcal{L}_K^n\), in which case the result holds trivially, or one of the following holds: For \(\theta, \varphi \in \mathcal{L}_K^n\) either:

- \(\Psi = \theta \land \varphi\): In this case we have by definition that
- \(T_k(\Psi) = T_k(\theta \land \varphi) = T_k(\theta) \cap T_k(\varphi)\) (inductive hypothesis)
- \(\{(P,N) \in \mathcal{O} : \mathcal{V}(P,N)(\theta) = 1\} \cap \{(P,N) \in \mathcal{O} : \mathcal{V}(P,N)(\varphi) = 1\}\)
- \(= \{(P,N) \in \mathcal{O} : \mathcal{V}(P,N)(\theta) = 1\} \land \{(P,N) \in \mathcal{O} : \mathcal{V}(P,N)(\varphi) = 1\}\)
- \(= \{(P,N) \in \mathcal{O} : \mathcal{V}(P,N)(\theta \land \varphi) = 1\}\)
- \(= \{(P,N) \in \mathcal{O} : \mathcal{V}(P,N)(\Psi) = 1\}\) as required.

Also, \(F_k(\Psi) = F_k(\theta \land \varphi) = F_k(\theta) \cup F_k(\varphi)\) (by the inductive hypothesis)
- \(\{(P,N) \in \mathcal{O} : \mathcal{V}(P,N)(\theta) = 0\} \cup \{(P,N) \in \mathcal{O} : \mathcal{V}(P,N)(\varphi) = 0\}\)
- \(= \{(P,N) \in \mathcal{O} : \mathcal{V}(P,N)(\theta \land \varphi) = 0\}\)
- \(= \{(P,N) \in \mathcal{O} : \mathcal{V}(P,N)(\Psi) = 0\}\) as required.
\[ \forall \] between the BVP's induced by the dual pairs \((F,G)\)

Example 6.1. \(\forall \) stance, disjoint, further highlighting the paraconsistent nature of Belnap logic. For in-

extended dual mappings be denoted by \(\downarrow\) the restriction to orthopairs in Definition 6.1. Let these extended dual map-

\[ \theta \cup \varphi: \text{In this case we have that } T_k(\Psi) = T_k(\theta \cup \varphi) = T_k(\theta) \cup T_k(\varphi) = (\text{by the inductive hypothesis}) \]

\[ \{(P, N) \in O : \downarrow_{\theta}(\Psi) = 1\} \cup \{(P, N) \in O : \downarrow_{\varphi}(\Psi) = 1\} \]

\[ = \{(P, N) \in O : \downarrow_{\theta}(\Psi) = 1 \text{ or } \downarrow_{\varphi}(\Psi) = 1\} \]

\[ = \{(P, N) \in O : \max(\downarrow_{\theta}(\Psi), \downarrow_{\varphi}(\Psi)) = 1\} \]

\[ = \{(P, N) \in O : \downarrow_{\theta \cup \varphi}(\Psi) = 1\} \]

\[ = \{(P, N) \in O : \downarrow_{\theta}(\Psi) = 1\} \text{ as required.} \]

Also, \(F_k(\Psi) = \downarrow_{\theta}(\Psi) = \downarrow_{\theta}(\Psi) \cap \downarrow_{\varphi}(\Psi) = (\text{by the inductive hypothesis}) \)

\[ = \{(P, N) \in O : \uparrow_{\varphi}(\Psi) = 0 \text{ and } \uparrow_{\varphi}(\Psi) = 0\} \]

\[ = \{(P, N) \in O : \max(\uparrow_{\varphi}(\Psi), \uparrow_{\varphi}(\Psi)) = 0\} \]

\[ = \{(P, N) \in O : \uparrow_{\theta \cup \varphi}(\Psi) = 0\} \]

\[ = \{(P, N) \in O : \uparrow_{\theta}(\Psi) = 0\} \text{ as required.} \]

\[ \Psi = \theta': \text{In this case we have that } T_k(\Psi) = T_k(\theta') = F_k(\theta') = (\text{by the inductive hypothesis}) \]

\[ = \{(P, N) \in O : \uparrow_{\theta}(\Psi) = 0\} = \{(P, N) \in O : \uparrow_{\theta}(\Psi) = 1\} \text{ as required.} \]

\[ F_k(\Psi) = \downarrow_{\theta}(\Psi) = T_k(\theta) = (\text{by the inductive hypothesis}) \]

\[ = \{(P, N) \in O : \uparrow_{\varphi}(\Psi) = 0 \text{ or } \uparrow_{\varphi}(\Psi) = 0\} \]

\[ = \{(P, N) \in O : \max(\uparrow_{\varphi}(\Psi), \uparrow_{\varphi}(\Psi)) = 0\} \]

\[ = \{(P, N) \in O : \uparrow_{\theta \cup \varphi}(\Psi) = 0\} \]

\[ = \{(P, N) \in O : \uparrow_{\theta}(\Psi) = 0\} \text{ as required.} \]

\[ \square \]

Example 6.1. \(T_k(\neg(a_i \cup a_j)) = F_k(a_i \cup a_j) = F_k(a_i) \cap F_k(\neg a_j) = F_k(\neg a_i) \cap T_k(a_j) = \{(P, N) \in O : a_j \in P, a_i \in N\}. \) Similarly, \(F_k(\neg(a_i \cap a_j)) = T_k(\neg a_j) \cup T_k(a_i) \cup F_k(a_j) = \{(P, N) \in O : a_i \in P \text{ or } a_j \in N\}. \)

6.2. Semantics of Kleene logic formulas in terms of paraconsistent pairs

The characterization of Kleene valuations in terms of orthopairs can be extended to Belnap valuations by extending the mappings described in the previous section so as to include paraconsistent pairs of sets. More specifically, a more general pair of dual mappings can be defined simply by dropping the restriction to orthopairs in Definition 6.1. Let these extended dual mappings be denoted by \(T_b : \mathcal{L}_K \rightarrow 2^{A} \times 2^{A}\) and \(F_b : \mathcal{L}_K \rightarrow 2^{A} \times 2^{A}\) respectively. Now it is straightforward to see that Proposition 6.1 extends to paraconsistent pairs. We can show that \(T_b(\theta) = \{(F, G) \in 2^{A} \times 2^{A} : \uparrow_{(F,G)}(\theta) = 1\}\) and \(F_b(\theta) = \{(F, G) \in 2^{A} \times 2^{A} : \uparrow_{(F,G)}(\theta) = 0\}\). Notice that, unlike the Kleene mappings given in Definition 6.1, sets \(T_b(\theta)\) and \(F_b(\theta)\) are generally not disjoint, further highlighting the paraconsistent nature of Belnap logic. For instance, \(\forall a \in A, T_b(a) \cap F_b(a)\) consists of those paraconsistent pairs \((F,G)\) for which \(a \in F \cap G\).

It turns out that, in this context, we can give independent recursive definitions of each of \(T_b\) and \(F_b\). To see this, we need to understand the relationship between the BVP’s induced by the dual pairs \((F,G)\) and \((G^c, F^c)\) as identified in the following proposition:

Proposition 6.2. \(\forall (F,G) \in 2^{A} \times 2^{A}, \{(\uparrow_{(F,G)}), \uparrow_{(F,G)}\} = \{(\uparrow_{(G^c,F^c)}), \uparrow_{(G^c,F^c)}\}\)
Proof. For atomic formula the result is straightforward since \(\forall a \in \mathcal{A}, \vartheta_{(F,G)}(a) = 1\) iff \(a \in F\) iff \(a \notin F^c\) iff \(\tau_{(G^c,F^c)}(a) = 1\), and also \(\tau_{(F,G)}(a) = 1\) iff \(a \in G^c\) iff \(\vartheta_{(G^c,F^c)}(a) = 1\). These equalities can then be extended to all formula in \(\mathcal{L}_K\) by recursion on the complexity of formula in \(\mathcal{L}_K\) along similar lines to those in the proof of Proposition 6.1. \(\square\)

Corollary 6.1. \(\forall \theta \in \mathcal{L}_K, \tau_b(\theta') = \{(F,G) \in 2^{A} \times 2^{A} : (G^c,F^c) \in \tau_b(\theta))^c\}

Proof. \(\forall \theta \in \mathcal{L}_K, \tau_b(\theta') = \{(F,G) \in 2^{A} \times 2^{A} : \vartheta_{(F,G)}(\theta') = 1\} = \{(F,G) \in 2^{A} \times 2^{A} : \tau_{(G^c,F^c)}(\theta') = 1\} \) (by Proposition 6.2)

\(= \{(F,G) \in 2^{A} \times 2^{A} : \vartheta_{(G^c,F^c)}(\theta) = 0\} = \{(F,G) \in 2^{A} \times 2^{A} : \vartheta_{(G^c,F^c)}(\theta) = 1\}^c\)

\(= \{(F,G) \in 2^{A} \times 2^{A} : (G^c,F^c) \in \tau_b(\theta))^c\} \) \(\square\)

As a consequence of Corollary 6.1, it follows that there is an alternative recursive definition of \(\tau_b\) which does not make direct reference to \(F_b\). This corresponds to the definition proposed by Lawry and González-Rodríguez [32].

Definition 6.2. Alternative Definition of \(\tau_b\)

Let \(\tau_b : \mathcal{L}_K \rightarrow 2^{2A \times 2A}\) be defined recursively as follows: \(\forall \theta, \varphi \in \mathcal{L}_K\) and \(\forall a \in \mathcal{A}\) then:

- \(\tau_b(a) = \{(F,G) \in 2^{A} \times 2^{A} : a \in F\}\).
- \(\tau_b(\theta \cap \varphi) = \tau_b(\theta) \cap \tau_b(\varphi)\).
- \(\tau_b(\theta \cup \varphi) = \tau_b(\theta) \cup \tau_b(\varphi)\).
- \(\tau_b(\theta') = \{(F,G) \in 2^{A} \times 2^{A} : (G^c,F^c) \in \tau_b(\theta))^c\}.

Notice that a similar alternative definition cannot be given for \(\tau_b\) if we restrict to orthopairs. The difficulty arises due to the fact that if \((P,N) \in \mathcal{O}\) and \(N \neq P^c\) then \((N^c,P^c) \notin \mathcal{O}\).

Remark 3. It is not clear how to interpret the four-valued framework outlined above in the scope of modeling vagueness, as the two truth-values other than true and false play symmetric roles in Belnap logic. In fact, this logic aims at treating the issue of conflicting information only. [13].

7. Order relations and aggregation operations on orthopairs

In [9] and [31] some order relations and operations on orthopairs are considered. In our setting, orthopairs are compared in terms of informativeness or sharpness, or yet positiveness and negativeness. In fact the meaning of the proposed ordering relations changes according to whether the aim is to model vagueness in the language or incomplete information. Concerning aggregation operations, they include Kleene three-valued logic conjunction and disjunction, plus some which differ from these known ones. They may be used to evaluate complex non-Boolean statements, or, in the epistemic view, they recover methods for incomplete information fusion. We give here a complete picture of these.
methods to compare and combine orthopairs, and the corresponding notions using consistent BVP’s (on the set of propositional variables) and three-valued functions.

7.1. The truth ordering

First of all, let us consider the standard order on $3$: $0 < \frac{1}{2} < 1$. Given two three-valued valuations, $\tau_1, \tau_2$, we can let $\tau_1 \preceq_t \tau_2$ mean $\tau_1(a) \leq \tau_2(a), \forall a \in A$. In bilattices, this ordering is known as the truth ordering [4]. It expresses the idea of a three-valued valuation making variables “not more true than” another one. If $\tau_1, \tau_2$ correspond to respective orthopairs $(P_1, N_1), (P_2, N_2)$ and consistent valuation pairs $\vec{\tau}_1, \vec{\tau}_2$ then $\tau_1 \preceq_t \tau_2$ reads on orthopairs as

$P_1 \subseteq P_2, N_2 \subseteq N_1$

On BVP’s, it is the canonical extension of the order $0 < 1$ to subsets of $\{0, 1\}$:

$\forall a \quad \vec{\tau}_1(a) \leq \vec{\tau}_2(a) \quad \vec{\tau}_1(a) \leq \vec{\tau}_2(a)$.

The corresponding join and meet operations induced by this ordering are well-known (see for instance [9]) and have been met here from the start:

$(P_1, N_1) \cap_t (P_2, N_2) := \left( P_1 \cap P_2, N_1 \cup N_2 \right)$ (11)

$(P_1, N_1) \cup_t (P_2, N_2) := \left( P_1 \cup P_2, N_1 \cap N_2 \right)$ (12)

They are the conjunction and disjunction in Kleene logic (see Table 1), since $\cap_t = \cap$ and $\cup_t = \cup$.

7.2. The information ordering

Another natural order relation $\preceq_I$ on orthopairs is:

$(P_1, N_1) \preceq_I (P_2, N_2) \quad \text{iff} \quad P_1 \subseteq P_2, N_1 \subseteq N_2$ (13)

This relation is known as the knowledge ordering [4, 43] or, in the setting of vagueness modeling, semantic precision [31] or sharpening relation [36]. On valuations, it reads:

$\vec{\tau}_1 \preceq_I \vec{\tau}_2 \quad \text{iff} \quad \forall a \quad \vec{\tau}_1(a) \leq \vec{\tau}_2(a) \quad \vec{\tau}_2(a) \leq \vec{\tau}_1(a)$.

Under an epistemic reading, it means $\vec{\tau}_2$ is at least as informative as $\vec{\tau}_1$. In the scope of a logic of vagueness, it means that $\vec{\tau}_2$ is at least as clear-cut as (or less fuzzy than) $\vec{\tau}_1$ (the latter involves more variables taking the borderline value).

Once interpreted on $3$, it can be seen that it does not generate a lattice structure but only the meet-semilattice of Figure 3.

The meet with respect to this order is defined on orthopairs as

$(P_1, N_1) \cap_I (P_2, N_2) := \left( P_1 \cap P_2, N_1 \cap N_2 \right)$ (14)
Figure 3: The semilattice structure of 3.

It is pessimistic as it only keeps what both orthopairs retain as true or false, so that $(P_1, N_1) \cap_I (P_2, N_2)$ is less informative (epistemic reading) or less sharp (vagueness) than each of the arguments of the combination. It is akin to the union of epistemic sets. This fusion operation can be expressed via a connective $\cap_I$ on consistent BVP’s as follows [31]:

$$\vec{v}_1 \cap_I \vec{v}_2 = \vec{v}(P_1 \cap P_2, N_1 \cap N_2) = (\min(\vec{v}_1, \vec{v}_2), \max(\vec{v}_1, \vec{v}_2))$$

In terms of truth-values, it corresponds to an idempotent operation $\min_I$ on 3 such that $\min_I(1, 0) = \min_I(0, 1) = \min_I(0, \frac{1}{2}) = \min_I(\frac{1}{2}, 1) = \frac{1}{2}$ (see Table 6). Remarkably, $\min_I(x, y)$ is the median of $\{x, y, \frac{1}{2}\}$, the only associative operation $*$ such that $x \cap y \leq x * y \leq x \cup y$, known as a nullnorm [26].

Clearly, the corresponding join can be naturally defined in terms of orthopairs as

$$(P_1, N_1) \cup_I (P_2, N_2) := (P_1 \cup P_2, N_1 \cup N_2) \quad (15)$$

It does not always yield an orthopair as the result may become paraconsistent. It corresponds to the optimistic combination operator $\cup_I$ on consistent valuation pairs [31]:

$$\vec{v}_1 \cup_I \vec{v}_2 = \vec{v}(P_1 \cup P_2, N_1 \cup N_2) = (\max(\vec{v}_1, \vec{v}_2), \min(\vec{v}_1, \vec{v}_2)),$$

where the resulting valuation pairs may fail to be consistent. In terms of an operation $\max_I$ on 3, it is a partially defined idempotent one such that $\max_I(0, \frac{1}{2}) = 0, \max_I(\frac{1}{2}, 1) = 1$, but $\max_I(0, 1)$ is undefined. Interestingly, it is the restriction to $\{0, \frac{1}{2}, 1\}$ of the (associative) uninorm $xy + (1-x)(1-y)$ [26] on $[0, 1]$, which is indeed undefined for $(0, 1)$ and $(1, 0)$.

It is optimistic as it keeps what at least one orthopair retains as true or false, so that $(P_1, N_1) \cup_I (P_2, N_2)$ is more informative (epistemic reading) or sharper (vagueness) than each of the arguments of the combination, when it is defined. It is akin to the consistent intersection of epistemic sets, undefined when empty. The cases where the result exists then correspond to the situation where the two orthopairs are logically consistent, that is: $P_1 \cap N_2 = P_2 \cap N_1 = \emptyset$. Generalizing both orderings to paraconsistent pairs yields a bilattice structure laid bare by Belnap [4], corresponding to the bilattice 4 (and then $\max_I(0, 1) = b$).
7.3. One-sided ordering relations

Now, by relaxing the requirements of the information ordering \( \preceq_I \), we can obtain two other ordering relations on orthopairs, which generate two lattice operations. They are one-sided in the sense that the negative and positive literals do not play the same role. In one case, we keep the inclusion condition on the negative part of the orthopair and on the positive part in the second case. These order relations on orthopairs are:

\[
(P_1, N_1) \preceq_N (P_2, N_2) \text{ iff } N_1 \subseteq N_2 \text{ and } P_1 \cup N_1 \subseteq P_2 \cup N_2, \quad (16)
\]

\[
(P_1, N_1) \preceq_P (P_2, N_2) \text{ iff } P_1 \subseteq P_2, \text{ and } P_1 \cup N_1 \subseteq P_2 \cup N_2, \quad (17)
\]

In fact, \((P_1, N_1) \preceq_N (P_2, N_2)\) means that \((P_2, N_2)\) is at least as negative as \((P_1, N_1)\) and not less informed than the latter and likewise for \(\preceq_P\), replacing negative by positive. It can be easily seen that the information ordering \(\preceq_I\) implies orders \(\preceq_N\) and \(\preceq_P\) but not conversely, but, together, they reconstruct the information ordering\(^2\):

\[
(P_1, N_1) \preceq_I (P_2, N_2) \iff (P_1, N_1) \preceq_N (P_2, N_2) \text{ and } (P_1, N_1) \preceq_P (P_2, N_2). \quad (18)
\]

Figure 4 represents these three orderings on orthopairs.

Figure 4: Representations of orders \(\preceq_N\), \(\preceq_P\) and \(\preceq_I\).

On pairs of valuations the two orders are translated as:

\[
\bar{v}_1 <_N \bar{v}_2 \text{ iff } \min(1 - \bar{v}_2(a), \bar{v}_2(a)) \leq \min(1 - \bar{v}_1(a), \bar{v}_1(a)) \\
\text{ and } \bar{v}_2(a) \leq \bar{v}_1(a)
\]

\[
\bar{v}_1 <_P \bar{v}_2 \text{ iff } \min(1 - \bar{v}_2(a), \bar{v}_2(a)) \leq \min(1 - \bar{v}_1(a), \bar{v}_1(a)) \\
\text{ and } \bar{v}_1(a) \leq \bar{v}_2(a).
\]

\(^2\)Condition \(P_1 \cup N_1 \subseteq P_2 \cup N_2\) becomes redundant.
In terms of truth-values, it reads

\[ \forall x \, \tau_1(x) = 0 \Rightarrow \tau_2(x) = 0 \text{ and } \tau_1(x) \neq \frac{1}{2} \Rightarrow \tau_2(x) \neq \frac{1}{2} \]

\[ \forall x \, \tau_1(x) = 1 \Rightarrow \tau_2(x) = 1 \text{ and } \tau_1(x) \neq \frac{1}{2} \Rightarrow \tau_2(x) \neq \frac{1}{2} \]

the order relations (16) and (17) do not correspond to the standard ordering on numbers, but are expressed as follows:

\[ \forall x \, \tau_1(x) \leq_N \tau_2(x) \text{ where } \frac{1}{2} < N 1 < N 0. \quad (19) \]

\[ \forall x \, \tau_1(x) \leq_p \tau_2(x) \text{ where } \frac{1}{2} < p 0 < p 1. \quad (20) \]

These two linear orderings on 3 are naturally associated to the following meet and join operations on orthopairs:

\[(P_1, N_1) \cup_N (P_2, N_2) := (P_1 \setminus N_2 \cup P_2 \setminus N_1, N_1 \cup N_2)\]

\[(P_1, N_1) \cap_N (P_2, N_2) := ((P_1 \cap (P_2 \cup N_2)) \cup (P_2 \cap (P_1 \cup N_1), N_1 \cap N_2))\]

\[(P_1, N_1) \cup_p (P_2, N_2) := (P_1 \cup P_2, N_1 \cup P_2 \cup \emptyset)\]

\[(P_1, N_1) \cap_P (P_2, N_2) := (P_1 \cap P_2, (N_1 \cap (P_2 \cup N_2)) \cup (N_2 \cap (P_1 \cup N_1)))\]

Clearly, the orthopair \((P_1, N_1) \cup_N (P_2, N_2)\) is always more negatively balanced than its operands, while \((P_1, N_1) \cap_N (P_2, N_2)\) is less negatively balanced. Likewise, \((P_1, N_1) \cup_p (P_2, N_2)\) is always more positively balanced than its operands, while \((P_1, N_1) \cap_P (P_2, N_2)\) is less positively balanced.

**Proposition 7.1.** The two following equivalences hold:

1. \((P_1, N_1) \leq_N (P_2, N_2)\) if and only if \((P_1, N_1) \cup_N (P_2, N_2) = (P_2, N_2)\) if and only if \((P_1, N_1) \cap_P (P_2, N_2) = (P_1, N_1)\)

2. \((P_1, N_1) \leq_P (P_2, N_2)\) if and only if \((P_1, N_1) \cup_P (P_2, N_2) = (P_2, N_2)\) if and only if \((P_1, N_1) \cap_P (P_2, N_2) = (P_1, N_1)\)

**Proof.** \(\cup_N\): Let us prove that if \(N_1 \subseteq N_2\) and \(N_1 \cup P_1 \subseteq N_2 \cup P_2\) then \((P_1 \setminus N_2) \cup (P_2 \setminus N_1) = P_2\).

- \(P_2 \cap ((P_1 \setminus N_2) \cup (P_2 \setminus N_1)) = P_2 \cap (P_1 \setminus N_2)\) since \(P_2 \cap P_2\) is empty and \(P_2 \cap (P_1 \setminus N_2) = \emptyset.\) Indeed, proceeding by refutation, if there exists \(a \in P_2 \cap (P_1 \setminus N_2)\) then \(a \notin P_2, a \notin N_2\) and \(a \in P_1\) implies \(a \notin N_1,\) which violates the condition \(N_1 \cap P_1 \subseteq N_2 \cup P_2.\) Hence \((P_1 \setminus N_2) \cup (P_2 \setminus N_1) \subseteq P_2.\)

- Now, \(P_2 \cap ((P_1 \setminus N_2) \cup (P_2 \setminus N_1))^c = P_2 \cap (P_1 \setminus N_2) \cap (P_2 \setminus N_1) = \emptyset.\) since \(P_2 \cap (P_2 \setminus N_1) = P_2 \cap N_1 = \emptyset.\) Indeed, \(N_1 \subseteq N_2\) and \(P_2, N_2\) is an orthopair. So \(P_2 \subseteq (P_1 \setminus N_2) \cup (P_2 \setminus N_1).\) Hence \((P_1 \setminus N_2) \cup (P_2 \setminus N_1) = P_2.\)

Conversely, we must prove that if \(N_1 \subseteq N_2\) and \((P_1 \setminus N_2) \cup (P_2 \setminus N_1) = P_2\) then \(N_1 \cup P_1 \subseteq N_2 \cup P_2.\) Let us suppose that there exists an element \(a\) such that \(a \in N_1 \cup P_1\) and \(a \notin N_2 \cup P_2.\) Then we have two cases:

- \(a \in N_1.\) However, \(N_1 \subseteq N_2\) leads immediately to a contradiction.
• \(a \in P_1\). Since \(a \not\in P_2\) then \(a \not\in (P_1 \setminus N_2) \cup (P_2 \setminus N_1)\), which leads to \(a \in N_2\), a contradiction.

The other cases can be proved similarly.

Expressed as operations on \(3\), \(\sqcup_N\) and \(\sqcup_P\) become \(\max_N\) and \(\max_P\) displayed on Table 7. These operations are not new. They are the only two everywhere defined uninorms on \(\{0, \frac{1}{2}, 1\}\) (semi-groups with identity \(\frac{1}{2}\) [26]); \(\max_N\) and \(\max_P\) also coincide with \(\max_I\) when the latter is defined. In the probabilistic literature, the operation \(\max_N\) is named quasi-conjunction [1] and we call \(\max_P\) quasi-disjunction. They are used in the three-valued logic of conditional events [17] to combine conditionals (which are indeed orthopairs of examples and counterexamples). Actually, these operations first appear in Sobociński’s three-valued logic [38]. On orthopairs, \(\sqcap_N\) looks like a disjunction, but the truth-table of \(\max_N\) (right-hand side of Table 7) makes it clear it is a generalised conjunction.

Expressed as operations on \(3\), \(\sqcap_N\) and \(\sqcap_P\) become \(\min_N\) and \(\min_P\) displayed on Table 8. Interestingly, the table of operation \(\min_I\) (Table 6) can be obtained as the arithmetic mean of the tables of operation \(\min_N\) and \(\min_T\), which reflects property (18). We note that \(\sqcap_P\) corresponds to Kleene weak conjunction and \(\sqcap_N\) to Kleene weak disjunction [29], where the third value is interpreted as undefined. Again, \(\sqcap_N\) looks like a conjunction on orthopairs and its truth-table (right-hand side of Table 8) makes it clear it is a generalised disjunction.

If we apply the two meet operations \(\sqcap_N, \sqcap_P\) to two orthopairs, one dominating the other in the sense of \(\preceq_N\) or \(\preceq_P\), then they both reduce to \(\sqcap_I\).

Let us note that we can express the two conjunctions of orthopairs in the following way:

\[
\begin{align*}
\sqcap_N : & \quad ((P_1 \cap P_2) \cup [(P_1 \cap N_2) \cup (P_2 \cap N_1)], N_1 \cap N_2) \\
\sqcap_P : & \quad (P_1 \cap P_2, (N_1 \cap N_2) \cup [(N_1 \cap P_2) \cup (N_2 \cap P_1)])
\end{align*}
\]

from which we better understand that we “add” something to the intersection of positive (resp., negative) parts. The corresponding operations on valuation
pairs are:

\[
\vec{v}_1 \land_N \vec{v}_2 : (\max(\min(\vec{v}_1, \vec{v}_2), \min(\vec{v}_1, 1 - \vec{v}_2)), \min(\vec{v}_2, 1 - \vec{v}_1), \max(\vec{v}_1, \vec{v}_2))
\]

(23)

\[
\vec{v}_1 \land_P \vec{v}_2 : (\min(\vec{v}_1, \vec{v}_2), \min(\max(\vec{v}_1, \vec{v}_2), \max(\vec{v}_1, 1 - \vec{v}_2), \max(\vec{v}_2, 1 - \vec{v}_1)))
\]

(24)

\[
\vec{v}_1 \lor_N \vec{v}_2 = (\max(\min(\vec{v}_1, \vec{v}_2), \min(\vec{v}_2, \vec{v}_1)), \min(\vec{v}_1, \vec{v}_2))
\]

(25)

\[
\vec{v}_1 \lor_P \vec{v}_2 = (\max(\vec{v}_1, \vec{v}_2), \min(\max(\vec{v}_1, \vec{v}_2), \max(\vec{v}_2, \vec{v}_1)))
\]

(26)

Thus, orderings \(\preceq_P\) and \(\preceq_N\) are less demanding from the “knowledge” point of view than the information ordering, but they have the advantage to generate a lattice structure, with the possibility to define genuine operations of conjunction and disjunctions on 3.

### 7.4. Fusion of orthopairs by consensus

Lawry and Dubois [31] also consider a difference operation on orthopairs:

\[
\vec{v}_1 \ominus \vec{v}_2 := (\min(\vec{v}_1, \vec{v}_2), \max(\vec{v}_1, \vec{v}_2))
\]

\[
(P_1, N_1) \ominus (P_2, N_2) := (P_1 \setminus N_2, N_1 \setminus P_2)
\]

\[
(\tau_1 \ominus \tau_2)(x) := \begin{cases} 
1 & \tau_1 = 1, \tau_2 \neq 0 \\
0 & \tau_1 = 0, \tau_2 \neq 1 \\
\frac{1}{2} & \text{otherwise}
\end{cases}
\]

It consists in dropping from \((P_1, N_1)\) the literals that make this partial model inconsistent with \((P_2, N_2)\). This can be viewed as a revision operation, or a prerequisite for a consistent fusion step.

If we consider the so-called consensus operation \(\odot\) in [31], defined as

\[
(P_1, N_1) \odot (P_2, N_2) = (P_1 \setminus N_2 \cup P_2 \setminus N_1, N_1 \setminus P_2 \cup N_2 \setminus P_1)
\]

we can see that it is a sequence of difference operations followed by operation \(\cup_I\) that increases information. The difference operations are used to symmetrically eliminate the discrepancies between the orthopairs \((P_1, N_1)\) and \((P_2, N_2)\) prior to merging, eliminating conflicting literals. This is akin to variable forgetting [30] in propositional logic for the handling of inconsistency: the truth-value of conflicting variables (in \((P_1 \cap N_2) \cup (P_2 \cap N_1)\)) is forgotten. So we have that

\[
(P_1, N_1) \odot (P_2, N_2) = ((P_1, N_1) \ominus (P_2, N_2)) \cup_I ((P_2, N_2) \ominus (P_1, N_1)).
\]

We can also relate the consensus operation to the asymmetric relations \(\sqcup_N\) and \(\sqcup_P\). Namely it can be checked that:

\[
(P_1, N_1) \odot (P_2, N_2) = ((P_1, N_1) \sqcup_N (P_2, N_2)) \cap_I ((P_2, N_2) \sqcup_P (P_1, N_1)). \quad (27)
\]

Thus we can think of interpreting \(\sqcup_N\) and \(\sqcup_P\) as one-sided consensus operations where in \(\sqcup_N\) both agents give up their conflicts on the positive parts and in \(\sqcup_P\) on the negative parts of the orthopairs.

28
The consensus operation can be expressed in terms of valuation pairs as 
\((\vec{v}_1 \odot \vec{v}_2) \sqcup_I (\vec{v}_2 \odot \vec{v}_1)\):

\[ (\vec{v}_1 \odot \vec{v}_2) = (\max_\min(\min(\vec{v}_1, \vec{v}_2), \min(\vec{v}_1, \vec{v}_2)), \min_\max(\max(\vec{v}_1, \vec{v}_2), \max(\vec{v}_1, \vec{v}_2))) \]  

(28)

On 3 the consensus operator is based on the following three-valued commutative connective:

\[ (\tau_1 \odot \tau_2)(x) = \begin{cases} 
1 & \text{if } \tau_1(x) = 1, \tau_2(x) \neq 0 \\
0 & \text{if } \tau_1(x) = 0, \tau_2(x) \neq 1 \\
\frac{1}{2} & \text{otherwise}
\end{cases} \]

which is pictured on Table 9. It lays bare the fact that it is a kind of degenerated qualitative counterpart of an average. It has \(\frac{1}{2}\) as an identity and differs from the conjunctive and disjunctive uninorms only for the result of \(1 \odot 0 = 0 \odot 1 = \frac{1}{2}\), hence it is not the extension of a Boolean connective. Moreover it is not associative. It can be obtained as the arithmetic average of the two uninorms \(\max_\mathcal{P}\) and \(\max_\mathcal{N}\) of Table 7, which is consistent with the abstract construction of \(\odot\) from \(\sqcup_\mathcal{N}\) and \(\sqcup_\mathcal{P}\) in equation (27).

Table 10 summarizes the results of this section in terms of mutual translation of orderings and connectives between 3-valued logic and orthopairs. For consistent BVP’s, not all the above results apply over the whole language, involving more complex formulas. The problem seems to lie in the formulas containing negations. However, this issue will need a further in-depth study.
8. From orthopairs to epistemic sets of interpretations

We now investigate whether it is feasible to translate all the above orderings and operations so as to express them in terms of comparison and combinations of Boolean subsets of $\Omega$, i.e., possibility distributions.

8.1. Order relations

The order relation $\preceq_I$ is just the subsethood relation of $2^\Omega$, i.e., $E(P_1,N_1) \preceq_I E(P_2,N_2)$ iff $E(P_2,N_2) \subseteq E(P_1,N_1)$. In the case of orders $\preceq_I, \preceq_N, \preceq_P$, we only get a partial overlap of the two subsets, which displays no special features. This is due to the fact that the representation in terms of orthopairs highlights the polarity of the known variables (positive or negative) while the standard propositional setting represents an epistemic set by any subset of Boolean interpretations where positive or negative literals play no specific roles.

Let us consider order $\preceq_N$. We have $N_1 \subseteq N_2$ and $P_1 \cup N_1 \subseteq P_2 \cup N_2$. So, we can also derive $P_1 \subseteq P_2 \cup N_2$. That is, for all $p \in P_1$, agent 2 may believe that $w(p) = 1$ (like agent 1) or that $w(p) = 0$ (contrary to agent 1). A similar explanation can be given in the case of $\preceq_P$. Also the case of order $\preceq_I$ is similar. This order requires that agent 1 has more knowledge on the negative part $(N_2 \not\subseteq N_1)$ but less on the positive one $(P_1 \subseteq P_2)$. So, we can have the case where a valuation belongs to the epistemic set $E_1$ but not to $E_2$ and another one to the epistemic set $E_2$ but not to $E_1$. So, most of the orderings introduced previously are dedicated to orthopairs of sets of variables and hardly extend to the general propositional setting.

8.2. Intersection and Union

Considering the fact that on possibility distributions we can only account for the order relation $\preceq_I$ we take into account here only the operations derived from it: $\cap_I$ and $\cup_I$. As we have seen, they are the meet and join (when it exists) on orthopairs. Generally, the join and meet with respect to the subsethood relation are the intersection and union of sets, respectively. However, $\cap_I$ does not correspond to the union between possibility distributions, i.e., $E((P_1,N_1) \cap (P_2,N_2)) \neq E(P_1,N_1) \cup E(P_2,N_2)$. Indeed $E(P_1,N_1) \cup E(P_2,N_2)$ is generally not rectangular. We can just prove:

**Proposition 8.1.**

$$E(P_1,N_1) \cup E(P_2,N_2) \subseteq E((P_1,N_1) \cap (P_2,N_2)).$$

**Proof.** We have that $(P_1 \cap P_2) \subseteq P_1$ and $(N_1 \cap N_2) \subseteq N_1$. That is, $(P_1,N_1) \cap_I (P_2,N_2) \preceq_I (P_1,N_1)$. So, $E((P_1,N_1) \cap (P_2,N_2)) \subseteq E((P_1,N_1) \cap (P_2,N_2))$. Likewise for $E(P_2,N_2)$. Hence $E(P_1,N_1) \cup E(P_2,N_2) \subseteq E((P_1,N_1) \cap (P_2,N_2))$. 

The other direction does not hold. Indeed, consider the following valuation $w^*$ characterized by the orthopair $(P_1 \cap P_2, (P_1 \cap P_2)^c)$: then $w^* \in E((P_1,N_1) \cap (P_2,N_2))$ but $w^* \notin E((P_1,N_1) \cup E(P_2,N_2))$.
This behaviour is due to the impossibility of representing non-rectangular regions by orthopairs. Indeed, we can only represent the smallest hyper-rectangle which contains \( E(p_1,N_1) \) and \( E(p_2,N_2) \) (the rectangular closure of their union), which corresponds indeed to \( E((p_1,N_1) \cup (p_2,N_2)) \).

**Proposition 8.2.** \( E((p_1,N_1) \cap (p_2,N_2)) = \times_i(\text{Proj}_i E(p_1,N_1) \cup \text{Proj}_i E(p_2,N_2)) = \text{RC}(E(p_1,N_1) \cup E(p_2,N_2)) \).

*Proof.* It is clear that \( E((p_1,N_1) \cap (p_2,N_2)) = E(p_1 \cap p_2, N_1 \cap N_2) \) contains all the valuations \( w \) that have value 1 on \( P_1 \cap P_2 \) and value zero on \( N_1 \cap N_2 \). Now, if we consider the Cartesian product of the union of the projections of \( E(p_1,N_1) \) and \( E(p_2,N_2) \), we have that, for each variable \( a_i \), \( a_i \) must be equal to 1 iff both \( E(p_1,N_1) \) and \( E(p_2,N_2) \) assume value 1 for \( a_i \). This is only possible if \( a_i \in P_1 \cap P_2 \). The same applies to the negative part. Thus, \( \times_i(\text{Proj}_i E(p_1,N_1) \cup \text{Proj}_i E(p_2,N_2)) \) is the set of all the valuations \( w \) that have value 1 on \( P_1 \cap P_2 \) and value zero on \( N_1 \cap N_2 \). \( \square \)

As pointed out before, the disjunction of two rectangular possibility distributions is generally not representable by one orthopair, but by several orthopairs, since it corresponds to the disjunction of two partial models. We can denote this disjunction of orthopairs as \( (P_1,N_1) + (P_2,N_2) \) with the meaning that it refers the set \( \{(P_1,N_1),(P_2,N_2)\} \) of orthopairs, and compute the disjunction of the corresponding partial models:

\[
E((P_1,N_1) + (P_2,N_2)) = E(P_1,N_1) \cup E(P_2,N_2)
\]

From an interpretive standpoint, we can think that we desire to collect all the situations where at least one of two agents is right, without specifying which one. Of course, we cannot express this operation on three-valued functions, since this operation is not closed: it just collects the two valuations representing the two orthopairs \( \tau(P_1,N_1) + \tau(P_2,N_2) = \{\tau(P_1,N_1), \tau(P_2,N_2)\} \). Similarly in the case of valuations pairs.

If we consider the case of two consistent orthopairs, then the operation \( \cup_I \) is defined, and we have:

**Proposition 8.3.** If \( (P_1,N_1) \) and \( (P_2,N_2) \) are consistent orthopairs, then \( E(P_1,N_1) \cap E(P_2,N_2) = E(P_1,N_1) \cup_I (P_2,N_2) = E(P_1,N_1) \cup (P_2,N_2) \).

*Proof.* Under consistency we have that \( (P_1,N_1) \cup_I (P_2,N_2) = (P_1,N_1) \cup (P_2,N_2) \). Then, \( E(P_1,N_1) \cup_I (P_2,N_2) = E((P_1,N_1) \cup (P_2,N_2)) \), the latter being equal by definition to: \( \{w \in \Omega : w(p) = 1, \forall p \in P_1 \cup P_2 \text{ and } w(p) = 0, \forall p \in N_1 \cup N_2 \} = \{w \in \Omega : w(p) = 1, \forall p \in P_1 \text{ and } w(p) = 0, \forall p \in P_2 \text{ and } w(p) = 0, \forall p \in N_1 \text{ and } w(p) = 0, \forall p \in N_2 \} \), from which \( E(P_1,N_1) \cap E(P_2,N_2) = E(P_1,N_1) \cup_I (P_2,N_2) \) follows. \( \square \)

8.3. Consensus and Difference

By a straightforward application of its definition, we get that the consensus \( E(P_1,N_1) \cap (P_2,N_2) \) contains the intersection of the two epistemic subsets \( E(P_1,N_1) \) and \( E(P_2,N_2) \), and is also contained in \( E(P_1,N_1) \cap (P_2,N_2) \).
Proposition 8.4.

\[ E(P_1, N_1) \cap E(P_2, N_2) \subseteq E(P_1, N_1) \odot (P_2, N_2) \subseteq E(P_1, N_1) \cap_t (P_2, N_2). \]

However, it is incomparable with their union \( E(P_1, N_1) \cup E(P_2, N_2) \), that is there exists \( w \in E(P_1, N_1) \cap E(P_2, N_2) \) such that \( w \notin E(P_1, N_1) \cup E(P_2, N_2) \) and conversely.

Example 8.1. Consider the Boolean valuation \( w_1 \), corresponding to the orthopair \( (P_1 \setminus N_2 \cup P_2 \setminus N_1, ((P_1 \setminus N_2 \cup P_2 \setminus N_1)^c) \). It belongs to \( E(P_1, N_1) \cap E(P_2, N_2) \) (by definition) and not to \( E(P_1, N_1) \cup E(P_2, N_2) \), since it belongs neither to \( E(P_1, N_1) \) nor to \( E(P_2, N_2) \).

Conversely, the Boolean valuation \( w_2 \) encoded by \( (N_1 \cup (P_2 \setminus P_1)^c, N_1 \cup (P_2 \setminus P_1)) = (N_1^c \cap (P_2^c \cup P_1), N_1 \cup (P_2 \setminus P_1)) \) belongs to \( E(P_1, N_1) \cup E(P_2, N_2) \) (since it lies in \( E(P_1, N_1) \) and not to \( E(P_1, N_1) \cap E(P_2, N_2) \), since any \( a \in P_1^c \cap P_2^c \cap N_1 \cap N_2 \) is such that \( w_2(a) = 1 \) but note that \( \forall w \in E(P_1, N_1) \cap E(P_2, N_2), w(a) = 0 \) since \( a \in (N_1 \setminus P_2) \cup (N_2 \setminus P_1) \) (the negative literals of \( (P_1, N_1) \cap (P_2, N_2) \)).

Further, by Propositions 8.1 and 8.4 we can derive

\[ E(P_1, N_1) \cup E(P_2, N_2) \cup E((P_1, N_1) \cap (P_2, N_2)) \subseteq E(P_1, N_1) \cap E(P_2, N_2). \]

But not the opposite direction, as can be seen by considering the valuation \( w^* \) above, characterized by the orthopair \( (P_1 \cap P_2, (P_1 \cap P_2)^c) \).

If we write \( (P_1, N_1) \cap (P_2, N_2) \) in terms of unions among orthopairs, namely \( (P_1, N_1) \cap (P_2, N_2) = (P_1 \setminus N_2, N_1 \setminus P_2) \cup I \ (P_2 \setminus N_1, N_2 \setminus P_1) \), by Proposition 8.3, we get

\[ E((P_1, N_1) \cap (P_2, N_2)) = E(P_1, N_1) \cap E(P_2, N_2) \cap E(N_1, N_2) \cap E(N_2, N_1), \]

which expresses the already outlined relation between consensus and difference. The latter operation can be expressed in terms of possibility distributions associated to \( E(P, N) \). Consider an orthopair \( (P, N) \) and a valuation \( w \in \Omega \) such that \( w \notin E(P, N) \). Then define:

\[ E^+_w(P, N) = RC(E(P, N) \cup \{w\}) \]

Now clearly we get: \( E^+_w(P, N) = E(P \cap P_w, N \cap P_w^c) \), where \( P_w = \{a : w(a) = 1\} \), and \( \forall w_1 \neq w_2 \) it holds that \( E^+_w(P, N) \cap E^+_w(P, N) \neq \emptyset \) (it contains \( E(P, N) \)).

Proposition 8.5. Let \( (P_1, N_1) \) and \( (P_2, N_2) \) be mutually inconsistent orthopairs (i.e. \( E(P_1, N_1) \cap E(P_2, N_2) = \emptyset \)). Then

\[ E(P_1, N_1) \cap E(P_2, N_2) = E(P_1, N_1) \cap E(P_2, N_2) = \bigcap_{w \in E(P_2, N_2)} E^+_w(P_1, N_1) \]

Proof. By proposition 8.3 it follows that:

\[ \bigcap_{w \in E(P_2, N_2)} E^+_w(P_1, N_1) = \bigcap_{w \in E(P_2, N_2)} E(P_1 \cap P_w, N_1 \cap P_w^c) = E \bigcup_{w \in E(P_2, N_2)} (P_1 \cap P_w, N_1 \cap P_w^c) \]

Now, \( \bigcup_{w \in E(P_2, N_2)} (P_1 \cap P_w, N_1 \cap P_w^c) = (P_1 \cap \bigcup_{w \in E(P_2, N_2)} P_w, N_1 \cap \bigcup_{w \in E(P_2, N_2)} P_w^c) = (P_1 \cap \{a_i : \exists w \in E(P_2, N_2), w(a_i) = 1\}, N_1 \cap \{a_i : \exists w \in E(P_2, N_2), w(a_i) = 0\}) = (P_1 \cap N_2, N_1 \cap P_2^c) \) as required. \[ \square \]
Finally, from this proposition it follows that:
\[
E(P,N) \cup (P,N) = \left( \bigcap_{w \in E(P,N)} E^+(P,N) \right) \cap \left( \bigcap_{w \in E(P,N)} E^-(P,N) \right)
\]

8.4. Negations vs. complements

Let us consider now the case of negation. The set of models of the negation of a Boolean proposition with set of models \(E\) is its set complement \(E^c\). For a partial model \((P,N)\), we get:
\[
(E(P,N))^c = \{ w : \exists p \in P, w(p) = 0 \text{ or } \exists p \in N, w(p) = 1 \}
\]

which is clearly different from the epistemic set we obtain from the Kleene (involutive) negation of \((P,N)\):
\[
E(N,P) = E(P,N)
\]

that swaps positive and negative literals in the orthopair. The latter comes down to considering the projections of \(E(P,N)\) on each variable domain and complementing them with respect to these variable domains. This operation cannot be extended to general epistemic sets.

In contrast, the + operation, that concatenates orthopairs (see Subsection 8.2) can express the complement of an epistemic set corresponding to an orthopair. Let us define the unary operations \(\mathcal{E}(P,N) = (+_{P \in P}(\{p_i\}, \emptyset)) + (+_{n_i \in N}(\emptyset, \{n_i\}))\), that is, \(\mathcal{E} = \{(\{p_i\}, \emptyset), (\emptyset, \{n_i\}) : p_i \in P, n_i \in N\}\). Then:
\[
(E(P,N))^c = E(\mathcal{E}(P,N)) = (\bigcup_{p_i \in P} E(P,\{p_i\})) \cup (\bigcup_{n_i \in N} E(N,\{n_i\}, \emptyset)).
\]

The operation \(\mathcal{E}\) on three-valued valuations is a multimapping that collects all the following three-valued valuations \(\mathcal{E}(\tau) = \{\tau_i^+ : p_i \in P\} \cup \{\tau_i^- : n_i \in N\}\) where:
\[
\tau_i^+(x) = \begin{cases} 1 & x = p_i \\ 1/2 & \text{otherwise} \end{cases} \quad \tau_i^-(x) = \begin{cases} 0 & x = n_i \\ 1/2 & \text{otherwise} \end{cases}
\]
and we can define the 3-valued logic counterpart of the complement of an epistemic set as \(\tau^c = \mathcal{E}(\tau^c) = \{\tau_i^+ : p_i \in A\}, \tau(p_i) = 1\} \cup \{\tau_i^- : n_i \in A, \tau(n_i) = 0\}\). Likewise on Boolean valuations, we must collect all pairs such that:
\[
(\mathcal{E}(x), \mathcal{E}(\pi)) = \begin{cases} (1,1) & x = p_i \\ (0,1) & \text{otherwise} \end{cases} \quad \mathcal{E}(x, \pi) = \begin{cases} (0,0) & x = n_i \\ (0,1) & \text{otherwise} \end{cases}
\]

Table 11 summarizes these translations that make sense from the language of orthopairs, three-valued valuations to the language of general epistemic sets. Not all three-valued connectives can be expressed in terms of general epistemic sets. The impossibility to express \(\sqcup\) and \(\sqcap\), or likewise, \(\sqcup_N\) and \(\sqcap_N\), \(\sqcup_P\) and \(\sqcap_P\) in terms of general subsets of valuation comes from the fact that the former operations do not consider positive and negative literals on a par. Other impossible direct translations come from the fact that the set-union of hyper-rectangles of interpretations is generally not an hyper-rectangle, or stated otherwise, that the disjunction of partial models is not a partial model.
Orthopairs

\( (P_1, N_1) \preceq_I (P_2, N_2) \)

\( (P_1, N_1) \cap_I (P_2, N_2) \)

\( (P_1, N_1) \cup_I (P_2, N_2) \)

\( (P_1, N_1) \odot (P_2, N_2) \)

Kleene negation \((P, N)'\)

\( E((P, N)') \)

<table>
<thead>
<tr>
<th>Orthopairs</th>
<th>Epistemic sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>( (P_1, N_1) \preceq_I (P_2, N_2) )</td>
<td>( E_{(P_1, N_1)} \supseteq E_{(P_2, N_2)} )</td>
</tr>
<tr>
<td>( (P_1, N_1) \cap_I (P_2, N_2) )</td>
<td>( RC(E_{(P_1, N_1)} \cup E_{(P_2, N_2)}) )</td>
</tr>
<tr>
<td>( (P_1, N_1) \cup_I (P_2, N_2) )</td>
<td>( E_{(P_1, N_1)} \cap E_{(P_2, N_2)} ) (if consistency)</td>
</tr>
<tr>
<td>( (P_1, N_1) \odot (P_2, N_2) )</td>
<td>( (\bigcap_{w \in E_{(P_1, N_1)}} E^+<em>w) \cap (\bigcap</em>{w \in E_{(P_2, N_2)}} E^+_w) )</td>
</tr>
<tr>
<td>( (P_1, N_1) + (P_2, N_2) )</td>
<td>( E_{(P_1 \setminus N_2, N_1 \setminus P_2)} = \bigcap_{w \in E_{(P_2, N_2)}} E^+_w (P_1, N_1) ) (Prop. 8.5)</td>
</tr>
<tr>
<td>Kleene negation ((P, N)')</td>
<td>( E_{(P, N)} \cap E_{(P_2, N_2)} )</td>
</tr>
<tr>
<td>( E((P, N)') )</td>
<td>( E_{(P, N)} \cup E_{(P_2, N_2)} )</td>
</tr>
</tbody>
</table>

Table 11: Translation between epistemic sets and orthopairs

9. Conclusion

The bijection between three-valued valuations and partial models (and, in the same vein, the similarities between fuzzy sets and probability theory) has often been a source of confusion, as the truth-functionality assumption of three-valued logic, which is not mathematically inconsistent in an elementary modeling of vagueness, becomes counterintuitive when applied to incomplete Boolean information. A well-known example of such confusion is the alleged inconsistency of fuzzy set theory, claimed by Elkan [21], on the grounds that degrees of uncertainty cannot be compositional.

This paper has presented a comparative overview of the simplest representation frameworks for the truth-functional account of vagueness or incomplete information, namely three-valued logics where the third truth-value means borderline or unknown. We have shown the connections existing between pairs of sets of literals, pairs of Boolean valuations, and three-valued valuations. We have explored their differences with non-truth-functional accounts using possibility theory or, in the case of vagueness, supervaluations. We have shown that supervaluations play the same role with respect to truth-functional approaches to vagueness as possibility and necessity functions with respect to partial or Kleene logic approaches to incomplete information. Besides, we have highlighted the difference in expressive power between partial model approaches and the use of general epistemic sets for handling incomplete information.

Finally, we have described various natural orderings and aggregation operations in the three-valued setting, in terms of orthopairs and Boolean valuation pairs. We have shown that some of these aggregations, expressed on the three-valued truth-set are actually known in the literature. The systematic assumption that knowledge pertains to individual variables has led to asymmetric ordering relations where positive and negative literals do not play the same role (as in logic programming, or logic-based diagnosis). As a consequence these polarity-sensitive orderings between partial models as well as the aggregation operations they induce make sense for partial models but no so much for general epistemic sets, where positive literals do not play a specific role.
Hopefully, the landscape offered in this paper will contribute to bridging the gap between various communities (databases, logic programming, epistemic logic, possibilistic logic, vagueness) that use different languages for handling similar issues in the modeling of vague predicates or incomplete information.

References


