A RELATION BETWEEN MULTIPLICITY ONE AND
BÖCHERER’S CONJECTURE

ABHISHEK SAHA

Abstract. We show that a weak form of the generalized Böcherer’s conjecture
implies multiplicity one for Siegel cusp forms of degree 2.

1. Multiplicity one

Let \(S_k(\Gamma) \) denote the space of classical holomorphic cusp forms of weight \(k \) for \(\Gamma = \text{SL}_2(\mathbb{Z}) \). Suppose that \(f_1 \) and \(f_2 \) are two Hecke eigenforms in \(S_k(\Gamma) \) such that
the Hecke eigenvalues \(\lambda_p(f_1) \) and \(\lambda_p(f_2) \) are equal for all primes \(p \). Then, it is well
known that there exists a constant \(c \) such that \(f_1 = cf_2 \). Indeed, the various Hecke
eigenvalues \(\lambda_p(f_i) \) determine all the Fourier coefficients of \(f_i \), hence the form \(f_i \)
itself, up to a common multiple.

The above fact is a special case of the “multiplicity one theorem” for \(\text{GL}_2 \) due to
Jacquet–Langlands. Multiplicity one was extended to the case of cuspidal represen-
tations on the group \(\text{GL}_n \) independently by Shalika [17] and Piatetski-Shapiro [10].
However, much less is known for cuspidal representations on other reductive groups.

In this note, we consider the space \(\mathcal{S}_k(\Gamma_2) \) of holomorphic Siegel cusp forms of
weight \(k \) for \(\Gamma_2 = \text{Sp}_4(\mathbb{Z}) \). These forms give rise to cuspidal representations on the
group \(\text{GSp}_4 \), for which multiplicity one remains unknown. In particular, one has
the following conjecture.

Conjecture 1.1 (Multiplicity one for Siegel cusp forms of degree 2 and full level).
Let \(f_1 \) and \(f_2 \) be two Hecke eigenforms in \(\mathcal{S}_k(\Gamma_2) \) such that for all primes \(p \), we
have an equality of Hecke eigenvalues \(\lambda_p(f_1) = \lambda_p(f_2) \) and \(\lambda_{p^2}(f_1) = \lambda_{p^2}(f_2) \).
Then, there exists a constant \(c \) such that \(f_1 = cf_2 \).

The above conjecture is deep. For instance, it does not appear to follow from
the transfer to \(\text{GL}_4 \) that was proved in [12] even though multiplicity one is known
for \(\text{GL}_4 \). We can get some idea about the difficulties involved by looking at the
proof of multiplicity one for cusp forms on \(\text{GL}_n \). The proof involves combining
the Whittaker expansion of cusp forms on \(\text{GL}_n \) with the uniqueness of Whittaker
models. This approach does not work for holomorphic Siegel cusp forms because
the corresponding Whittaker expansion does not exist (Hecke eigenforms in \(\mathcal{S}_k(\Gamma_2) \)
are non-generic).

It seems appropriate to point out here that in Conjecture [1.1 one may replace
“for all primes” by “for almost all primes” without increasing the difficulty of the
problem. Let us briefly explain this point. Hecke eigenforms in \(\mathcal{S}_k(\Gamma_2) \) that are not
Saito-Kurokawa lifts (the Saito-Kurokawa lifts can be dealt with separately) lead
to cuspidal representations of \(\text{GSp}_4 \) whose local components at all finite places are

\[\text{For definitions and background on Siegel cusp forms, see [7].} \]
tempered unramified principal series. If two eigenforms have the same eigenvalues at almost all primes, then they lead to representations that are nearly equivalent (i.e., their local components are equivalent at almost all primes). A fairly simple argument using the global functional equation and the temperedness now shows that the two representations must have the same local L-function at all the remaining primes. Since unramified principal series representations are determined by their L-functions, it follows that the two representations are in fact equivalent. So the eigenforms we started off with must have the same eigenvalues at all primes. This argument does not work if Γ_2 is replaced with a congruence subgroup. Indeed, there are many examples of cuspidal representations on GSp_4 that are nearly equivalent but not equivalent, e.g., those provided by the various Saito-Kurokawa lifts [1], the various Yoshida lifts [16], and the CAP representations of Borel type [6, 2].

2. Böcherer’s conjecture

Another deep and famous conjecture for Siegel cusp forms of degree 2 deals with the relation between the central L-values and the Fourier coefficients. Before stating this conjecture, we briefly recall the Fourier expansion for Siegel cusp forms. For any $f \in S_k(\Gamma_2)$, we can write

$$f(Z) = \sum_S a(f, S)e^{2\pi i \operatorname{Tr}(SZ)},$$

where the Fourier coefficients $a(f, S)$ are indexed by matrices S of the form

$$(1) \quad S = \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}, \quad a, b, c \in \mathbb{Z}, \quad a > 0, \quad \operatorname{disc}(S) := b^2 - 4ac < 0.$$

Equivalently, the Fourier coefficients $a(f, S)$ are indexed by all positive, integral, binary quadratic forms. In fact, using the defining relation for Siegel cusp forms, we can see that

$$a(f, ^4ASA) = a(f, S)$$

for all $A \in \text{SL}_2(\mathbb{Z})$, thus showing that $a(f, S)$ only depends on the SL$_2(\mathbb{Z})$-equivalence class of the matrix S, or equivalently, only on the proper equivalence class of the associated binary quadratic form.

Let $d > 0$ be an integer such that $-d$ is a fundamental discriminant2. Put $K = \mathbb{Q}(\sqrt{-d})$ and let Cl_K denote the ideal class group of K. It is a fact going back to Gauss that the SL$_2(\mathbb{Z})$-equivalence classes of binary quadratic forms of discriminant $-d$ are in natural bijective correspondence with the elements of Cl_K. In view of the comments above, it follows that for any $f \in S_k(\Gamma_2)$ and any $c \in \text{Cl}_K$ the notation $a(f, c)$ makes sense. We define

$$(3) \quad R(f, K) = \sum_{c \in \text{Cl}_K} a(f, c).$$

Now, suppose that f is an eigenform for the local Hecke algebras at all places. Then f gives rise to an irreducible cuspidal automorphic representation π_f of $GSp_4(\mathbb{A})$; see [9]. The remarkable conjecture below was first made by Böcherer [1].

2Recall that an integer n is a fundamental discriminant if either n is a squarefree integer congruent to 1 modulo 4 or $n = 4m$ where m is a squarefree integer congruent to 2 or 3 modulo 4.
Thus, \(\theta_1(x) \) is a holomorphic modular form of weight 1 and nebentypus \(\chi_d \) on \(\Gamma_0(d) \); it is a cusp form if and only if \(d = 1 \). The form \(\theta_\Lambda \) generates a dihedral automorphic representation of \(\text{GL}_2(\mathbb{A}) \) which coincides with the automorphic induction of \(\Lambda \). We let \(L(s, \pi_f \times \theta_\Lambda) \) denote the Langlands \(L \)-function attached to the Rankin–Selberg convolution of this dihedral representation with \(\pi_f \). We now state the

Conjecture 2.2 (Generalized Böcherer’s conjecture, weak form). Let \(f \in S_k(\Gamma_2) \) be a non-zero Hecke eigenform and \(\pi_f \) the associated automorphic representation. Let \(K = \mathbb{Q}(\sqrt{-d}) \) with \(-d \) a fundamental discriminant, and \(\Lambda \) be a character of the ideal class group of \(K \). Then \(R(f, K, \Lambda) \neq 0 \) if and only if \(L(1/2, \pi_f \times \theta_\Lambda) \neq 0 \).

Remark 2.3. In the special case \(\Lambda = 1 \), the quantity \(R(F, K, \Lambda) \) is simply \(R(F, K) \) in our earlier notation and the \(L \)-function \(L(s, \pi_f \times \theta_\Lambda) \) factors as a product \(L(s, \pi_f)L(s, \pi_f \times \chi_{-d}) \). Thus, Conjecture 2.2 is compatible with Conjecture 2.1.

Conjecture 2.2 is in the spirit of the global Gross-Prasad conjectures since it asserts that the non-vanishing of a (Bessel) period \(R(F, K, \Lambda) \) is equivalent to the
The proof relies on the following fact which was proved in [15]:

Theorem 1. Conjecture 2.2 implies Conjecture 1.1.

Proof. The proof relies on the following fact which was proved in [15]:

Let $0 \neq f \in S_k(\Gamma_2)$. Then there exists a matrix S of the form given by equation (1) such that $\text{disc}(S)$ is a fundamental discriminant and $a(f, S) \neq 0$.

Now, assume Conjecture 2.2. Suppose f_1 and f_2 are two Hecke eigenforms in $S_k(\Gamma_2)$ such that for all primes p, we have an equality of Hecke eigenvalues $\lambda_p(f_1) = \lambda_p(f_2)$ and $\lambda_{p^2}(f_1) = \lambda_{p^2}(f_2)$. Let $-d < 0$ be a fundamental discriminant such that there exists a matrix S with $\text{disc}(S) = -d$ and $a(f_2, S) \neq 0$. Such a d exists by the fact quoted above. Put $K = \mathbb{Q}(\sqrt{-d})$ and pick a character Λ of Cl_K such that $R(f_2, K, \Lambda) \neq 0$. Now, put $g_1 = f_1 - \frac{R(f_1, K, \Lambda)}{R(f_2, K, \Lambda)} f_2$.

We claim that $g_1 = 0$. Suppose not. Then g_1 and f_2 are two non-zero Hecke eigenforms in $S_k(\Gamma_2)$ such that for all primes p, we have an equality of Hecke eigenvalues $\lambda_p(g_1) = \lambda_p(f_2)$ and $\lambda_{p^2}(g_1) = \lambda_{p^2}(f_2)$. Since the Hecke operators at p and p^2 generate the full Hecke algebra, it follows that $L(s, \pi_{g_1} \times \theta_\Lambda) = L(s, \pi_{f_2} \times \theta_\Lambda)$. However, by construction, we have $R(f_2, K, \Lambda) \neq 0$ and $R(g_1, K, \Lambda) = 0$. Since we are assuming Conjecture 2.2 holds true, this means that $L(1/2, \pi_{g_1} \times \theta_\Lambda) = 0$ and $L(1/2, \pi_{f_2} \times \theta_\Lambda) \neq 0$. This is a contradiction. Thus $g_1 = 0$. Hence f_1 and f_2 are multiples of each other.

$$\square$$

Remark 3.1. The proof shows that Bessel coefficients can serve as a substitute for the missing Whittaker coefficients. Although our theorem was stated only for full level eigenforms on $\text{Sp}_4(\mathbb{Z})$, it should be possible to use the same idea and get similar results for other groups under certain assumptions. The conjectures of Gan, Gross, and Prasad [5] should be relevant here.

References

*Departments of Mathematics, University of Bristol, Bristol, United Kingdom
E-mail address: abhishek.saha@bristol.ac.uk*