
Peer reviewed version

Link to published version (if available): 10.1080/01490451.2011.619640

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Bacterial associations with weathering minerals at the regolith-bedrock interface, Luquillo Experimental Forest, Puerto Rico

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Geomicrobiology Journal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>UGMB-2011-0097</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Original Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>18-Aug-2011</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Bruns, Mary Ann; The Pennsylvania State University, Department of Crop and Soil Sciences Minyard, Morgan; The Pennsylvania State University, Crop and Soil Sciences Liermann, Laura; The Pennsylvania State University, Geosciences Buss, Heather; University of Bristol, School of Earth Sciences Brantley, Susan; The Pennsylvania State University, Geosciences</td>
</tr>
<tr>
<td>Keywords:</td>
<td>subsurface microbiology, molecular ecology, iron oxidation</td>
</tr>
</tbody>
</table>
ABSTRACT

Microbe-mineral associations in regolith overlying granodiorite bedrock (4.6-4.9 m depth) from the Luquillo Experimental Forest, Puerto Rico, were imaged with confocal scanning laser microscopy at a novel scale of 400X magnification. After adding BacLight™ stain, proportionally more surface area of minerals (quartz, biotite, and mixed opaque kaolinite/goethite) emitted fluorescence from cell-impermeant propidium iodide than from cell-permeant SYTO 9, which suggested greater coverage of minerals by extracellular DNA or DNA in non-intact cells than by intact cells. Microscopic observations of predominantly non-intact cell material in deep saprolite were consistent with the abundance of rRNA sequences related to heterotrophic bacteria in clone libraries prepared from community DNA. A few sequences were affiliated with bacteria recognized to produce siderophores, oxidize Fe(II), or fix N₂. Bacterial DNA in deep regolith from two boreholes 1.5 m apart yielded libraries with high diversity and taxa specific for each borehole.
INTRODUCTION

Bedrock weathering in the Rio Icacos watershed of the Luquillo Experimental Forest (LEF) in eastern Puerto Rico accounts for one of the highest documented weathering rates for granitic rock in the world (McDowell and Asbury 1994; White and Blum 1995; Braun et al. 2005). Explanations for the very high weathering rates include enhanced chemical weathering by high annual rainfall (4200 mm average) and high soil temperatures (annual mean of 22 ºC) (USDA NCRS 2002), as well as by reaction-induced fracturing of bedrock (Buss et al. 2008). Increased bacterial densities observed at the interface between bedrock and regolith, however, suggest that microbiological processes also contribute to weathering in the LEF (Buss et al. 2005).

Regolith in the Rio Icacos watershed is derived from bedrock corestones of the Rio Blanco stock, an early Tertiary age intrusion of quartz diorite (Seiders 1971) composed mainly of plagioclase (56%) and quartz (25%) with smaller proportions of biotite (9%), hornblende (6%), K-feldspar (2%), and goethite (2%) (Murphy 1995; White et al. 1998). These bedrock corestones weather “spheroidally” (Fritz and Ragland 1980), so that their outermost portions exhibit characteristic concentric layers, or “rindlets” of partially weathered rock (Turner et al. 2003; Buss et al. 2005; Fletcher et al. 2006; Buss et al. 2008).

Weathering of regolith that develops from these corestones has been studied extensively on Guaba Ridge in the LEF (White et al. 1998; Murphy et al. 1998; Dong et al. 1998; Schulz and White 1999; Turner et al. 2003). The upland regolith consists of a layer of surface soil (0-0.5 m), a transition layer (0.5-1.1 m) and a variably thick (5-8 m) layer of saprolite, defined as a “clay-rich, chemically weathered rock altered in place to retain the structure and volume of the parent rock” (American Geological Institute 1976).
Saprolite below the rooting zone (> 0.6-0.8 m) is inherently low in organic carbon (~0.1%), yielding no more than \(10^{3-4}\) colony-forming units of aerobic heterotrophs per gram (Buss et al., 2005). Major saprolite components are secondary kaolinite (57-63%) and goethite (2-4%), as well as persistent grains of primary quartz (21-24%) and oxidized biotite (16-21%) (Murphy et al. 1998; White et al. 1998; Buss et al., 2008). Whereas most of the saprolite layer would be an unfavorable, low-nutrient environment for microbial proliferation, deep saprolite immediately above bedrock may offer better conditions for microbial survival and possibly growth of lithoautotrophs. Microbes in deepest saprolite would have greatest access to the fluxes of minerals from a thin, interface layer of “saprock” (ca. 7 cm) that lies between the saprolite and corestone rindlets (Buss et al., 2008).

We use the term “saprock” here to indicate the material between saprolite and bedrock rindlets. This layer has also been described as “protosaprolite” and is distinguished by its greater porosity and lower mechanical strength than underlying rindlets, but it is not as fully disaggregated nor as plastic as the saprolite above it (Buss et al. 2010). In this layer, hornblende, plagioclase and K-feldspar are completely converted to kaolinite and goethite, and apatite is completely dissolved (White et al. 1998; Buss et al., 2010). Using the observed weathering rate for complete alteration of hornblende across the saprock layer, the estimated rate of release of Fe(II) at steady-state was calculated to be sufficient to support C assimilation by \(10^{4-5}\) Fe(II)-oxidizing bacteria cells g\(^{-1}\) in saprolite above the saprock (Buss et al., 2005).

In a previous study, the deepest (> 4.6 m) saprolite samples from a 5 m-thick regolith at the Luquillo-Guaba (LG-1) study site exhibited 100-fold higher direct microscopic counts \((10^9\) cells g\(^{-1}\)), culturable aerobic heterotrophs \((10^{5-7}\) cfu g\(^{-1}\)), and extractable microbial
community DNA (10 µg g-1) compared to numbers observed in overlying saprolite (Buss et al., 2005). Microbial densities were not correlated with organic carbon content or total Fe but were correlated with moisture content and HCl-extractable Fe(II).

For the present study, we obtained deep saprolite and saprock samples from the bases of two additional boreholes at the LG-1 site. Our objectives were to gain insights into microbial distribution on the surfaces of non-enriched, native mineral grains using microscopic methods and to analyze microbial community DNA extracted from the samples with 16S rRNA clone libraries. To our knowledge, this is the first molecular analysis of bacterial community composition in deep tropical saprolite. We were specifically interested in detecting Fe(II)-oxidizing bacteria, which could enhance primary mineral dissolution at the bedrock-regolith interface, and in the degree of spatial variability of bacterial community structure.

METHODS

Site Description and Sample Collection.

The 326-ha Rio Icacos watershed in the Luquillo Mountains of eastern Puerto Rico consists of steep rugged terrain dominated by lower montane wet Colorado forest (Brown et al. 1983). Chemical weathering and solute transport in this watershed have been described in many previous reports (e.g. Larsen et al. 1993; White et al. 1998; Stonestrom et al. 1998; Murphy et al. 1998; Schulz and White 1999; Turner et al. 2003; Buss et al. 2008; Buss et al. 2010). For the present study, two boreholes were manually augered through soil and saprolite on Luquillo’s Guaba Ridge at an upland shoulder location (site LG-1), elevation 680 m, latitude 18° 16’ 54.2”N, longitude 65° 47’ 25.3”W. Soil on the Guaba Ridge is an inceptisol belonging to the Picacho-Ciales complex, a very deep, poorly drained soil classified as a fine
loamy, kaolinitic, isothermic Aquic Dystrudepts (USDA NRCS 2002). This soil has a thin A
horizon (< 0.1 m) and a weakly developed, clay-enriched Bw horizon above a 4- to 8-m layer
of saprolite. Beneath the saprolite is a thin (7-cm) layer of friable saprock above another
layer (0.5-2 m) of concentric rindlets at the outer edges of spheroidally weathering corestones
(Buss et al. 2008). Rindlets are curved slabs of bedrock separated by fractures about 2 cm
apart (Fletcher et al., 2006). Pore water pH measurements throughout the regolith profile
have ranged from 4.0 – 5.4 (White et al. 1998).

Two cores, designated LG-1 N(orth) and LG-1 S(outh), were collected 1.5 m apart. The auger bucket was driven into the regolith to bring a core section to the surface at 15-cm
intervals. Soil and saprolite samples (approx. 200 g) were collected from core sections at
selected depths. For aseptic sampling, outer core material was removed and the inner
portions of selected core sections were placed in sterile plastic bags. After mixing,
subsamples for direct microscopic examination were placed in 4% formaldehyde
immediately to preserve shape and structure of resident microbial cells (Murray et al. 1994).
After removal of each core section, the empty bucket was lowered back into the borehole,
and these steps were repeated until manual augering could penetrate no further, indicating
that denser saprock had been reached (4.88 m for LG-1 N core and 4.80 m for LG-1 S core).
To collect saprock samples, a bulk density sampler ring (5.7 cm diameter and 7 cm height)
attached to the bottom of a 6-m pole was lowered to the bottom of each borehole. By
hammering the top of the pole, the sampler ring was pounded down to a depth of 7 cm, after
which it was pulled up to the surface. The sampler ring was carefully separated from the pole
and capped for shipping. Saprock cores were kept intact (neither mixed nor fixed) for
shipment on ice, with the soil and saprolite samples, to the Pennsylvania State University within four days.

Confocal Laser Scanning Microscopy (CLSM)

Preserved sample preparation

Samples of formaldehyde-fixed regolith were obtained from 12 different depths of each core, where zero-depth was defined as the interface between organic soil and mineral soil at the surface (Table 1). Samples were weighed (0.2 -0.4 g) into small petri dishes (6 cm diameter) and mixed with 2 ml sterile 2% molten agarose (45°C) to create an evenly distributed suspension in the dish. Discs (34.9 mm³, 7.50 mm diameter, 0.8 mm height) were cut from solidified agarose and placed onto the coverglass of a Lab-Tek® chamber (Nalgene Nunc, Rochester, NY). The edges of each disk were fixed to the coverglass with an additional 25 µL of molten agarose. Analysis by CLSM occurred within 3 hours of preparation of the disks.

CLSM procedures

Three illumination channels were used to collect images of mineral grains and associated microorganisms with an Olympus FluoView 300 CLSM microscope (Melville, NY). Visible light from the differential interference contrast (DIC) channel provided gray-scale images of the lower surfaces of mineral grains suspended in transparent agarose (Suppl. Fig. 1). To visualize cells, two laser channels provided 488-nm light from a blue argon (Ar) laser and 543-nm light from a green helium-neon (HeNe) laser for excitation of SYTO 9 and propidium iodide, respectively, in the BacLight stain (Molecular Probes Inc, Eugene, OR).

The chambered coverglass holding agarose disks was placed on the microscope stage above the inverted objective for manual focusing on mineral grains nearest the coverglass
using the DIC channel (Suppl. Fig. 1). Prior to staining, agarose disks containing mineral
grains were examined under laser excitation to confirm absence of autofluorescence. Without
moving the coverglass, discs were stained with 10 µL of 1:10 dilution of BacLight reagent in
sterile phosphate-buffered saline. DIC imaging then was used to focus on grains nearest the
coverglass, after which the microscope objective, controlled by FluoView v. 1.6 software
(Melville, NY), moved upward (z-direction) to capture sequential images (optical sections) in
1.35-µm intervals (height of 27 µm). This interval, slightly greater than the average diameter
of a bacterial cell, was used to minimize double counting of cells. For each sample observed,
20 optical sections were combined to create a "z-stack" that provided observation over a total
field-of-view (FOV) of 132,400 µm². At least six sets (z-stacks) of optical sections were
taken for each regolith depth (i.e. total FOV per depth = 6 x 132,400 um²).

Filters were 510 nm long pass and 530 nm short pass (Ar laser) and 565 nm long pass
(HeNe laser). Photomultiplier tube (PMT) and other settings were 756V PMT, 2.2 gain, and
3-4% offset (HeNe); 775V PMT, 1.6X gain, and 4% offset (Ar) and 389V PMT, 1.2X gain,
and 3% offset (DIC). All images were captured using 400X magnification (Uplan FL 40X,
n.a. 0.75, and 10X ocular). This permitted detection of individual cells and collection of data
from larger, more representative fields-of-view (132,400 µm²) than could be collected at
higher magnifications.

Digital image processing

The COMSTAT program, operated in MATLAB, was used to process fluorescent
signals from the composite field-of-view through 20 optical sections (Heydorn et al., 2000).
The Ar and HeNe laser channels, respectively, were used to track fluorescence from cell-
permeant SYTO 9 (when bound to DNA in intact and nonintact cells) and cell-impermeant
propidium iodide (when bound to DNA in nonintact cells or extracellular DNA) (Leuko et al. 2004). Areas occupied by intact and nonintact cells in each composite image were determined by first applying the LOOKTIF tool to the color laser display images and generating black-and-white output files at different threshold values. By comparing output files to the original color display images, the threshold value that best differentiated fluorescent pixels from background pixels was determined. Next, the black-and-white image generated at this threshold value was provided to COMSTAT for calculation of percent area occupied by intact or nonintact cells in the display image (Fig. 1).

The manual selection tool in ImageJ software (National Institute of Health, Bethesda, MD) was applied to the composite image from the DIC channel to quantify areas corresponding to different mineral surfaces. As shown in Fig. 1e, some portions of larger quartz grains were located behind opaque minerals. Only areas of exposed surfaces facing the microscope operator were counted. Selected areas were summed and divided by the FOV area to calculate percentage occupied by biotite; mixed opaque minerals; and transparent quartz. Prior to image analyses, DIC images of known quartz and biotite specimens were compared to minerals in the composite images.

Percent Mineral Surface Area Covered by Cells (%MAC)

For each composite image, we calculated percentage of “mineral cross-sectional area covered by intact cells” (intact %MAC) and percentage of “mineral cross-sectional area covered by nonintact cells” (nonintact %MAC). These percentages were calculated by dividing the area occupied in the image by intact or nonintact cells by the area in the image occupied by total minerals:

\[
\%MAC = \frac{\% \text{Area Occupied by Cells (Intact or NonIntact)}}{\% \text{Area Occupied by Total Minerals}} \times 100 \quad (1)
\]
All COMSTAT and DIC image data were shown to have normal distributions using the statistical software Minitab ($\alpha = 0.05$; State College, PA), except for one outlier image which was removed from the 3.1-m dataset before calculating %MAC at that depth. The Minitab basic statistics function was used to evaluate differences between means of %MAC at adjacent depths (2-sample t-test, $\alpha = 0.05$). Because mineral surface areas per 100,000 μm2 of field of view examined at different depths varied, areas occupied by each mineral type and by intact and nonintact cells were normalized. The linear regression function in Minitab also was used to determine relationships between cells and mineral areas using default settings and $\alpha = 0.05$. Reported values represent mean from each depth in the regolith profile.

Bacterial Community DNA Analysis

Microbial community DNA was extracted from subsamples of the three deepest core sections from each borehole. Three 5-g amounts of each saprolite sample (4.6 and 4.7 m depths) were extracted according to the methods of Zhou et al. (1996) with three successive extractions that were pooled for 16S rRNA clone library construction. Due to the small amount of saprock samples (4.9 m depth), DNA was extracted from duplicate 0.2 - 0.3 g samples using a PowerSoil DNA extraction kit from MoBio (Carlsbad, CA) and pooled for PCR.

Duplicate PCR reactions (50 μl) were prepared using 5 U Taq polymerase (Gene Choice, Frederick, MD), standard buffer, 3.5 mM MgCl$_2$, 0.25 mM dNTPs, 10 pmol of each primer, 0.5 mg reaction$^{-1}$ of bovine serum albumin, and 4 μL of DNA extract per reaction. Temperature cycling consisted of initial denaturation for 5 min at 94°C; 35 cycles of 94 °C-30s/54 °C-30s/ 72 °C-60s; and a final extension of 7 min at 72°C. Universal bacterial primers 27F (5’-AGAGTTTGATCMTGGCTCAG -3’) and 907R (5’–
CCCGTCAATTCMTTTGAGTTT-3') were used to amplify bacterial 16S rRNA genes (Lane 1991). Duplicate reaction mixtures were pooled prior to ligation with a pCR® 4-TOPO vector (Invitrogen, Carlsbad, CA). Plasmids were cloned into TOPO TA chemically competent DH5α-T1 Escherichia coli TOP10 cells (Invitrogen). Sequences were checked for chimeras using Greengenes with Bellepheron vs. 3 (DeSantis et al., 2006b). A total of 269 sequences were assigned to taxa using the Ribosomal Database Project (RDP) classifier (Cole et al., 2009). DNA similarities between regolith sequences and closest relatives are reported in this paper as RDP DNAML identification scores (Suppl. Table 1) or percent similarities from pairwise alignments using the Basic Local Alignment Search Tool (BLAST) in GenBank (Altschul et al., 1990).

Sequences were analyzed using DOTUR and LIBSHUFF programs in mothur (Schloss et al. 2009). Sequences were aligned against a comparison library from Greengenes (DeSantis et al. 2006a; DeSantis et al. 2006b), and distance matrices were calculated using mothur. Distance matrices also were used to estimate library coverage for communities at three depths in each borehole (6 libraries total) as well as to evaluate statistical significance of library differences. To estimate community coverage, sequences were first sorted by DOTUR into operational taxonomic units (OTUs) based on ≥ 97% sequence similarity. We divided the number of OTUs by the Chao 1-estimated number of OTUs, also at ≥ 97% similarity. Chao 1 OTU estimation was chosen over other estimator values because of our relatively small library sizes. When analyzing the libraries for statistical similarities in LIBSHUFF, we used corrected P-values of 0.0085 when comparing the three communities sampled from a single borehole and 0.0017 when comparing all six communities (Schloss et al. 2009).
Genbank accession numbers for 16S rRNA gene sequences are HQ445627 to HQ445898.

RESULTS

Microscopic observations of mineral grains, cells, and biofilms

Quartz and biotite could be readily identified in DIC images by their relatively large grain sizes, as they are the two major primary minerals in Guaba Ridge saprolite (Murphy et al., 1998; White et al., 1998). Quartz grains were distinguishable by their transparency and sharp, angular edges (labeled Q in Fig. 1f), while biotite was observed as larger (>100 µm) opaque, cracked grains with laminar structure and separating edges (labeled B in Fig. 1f).

The third mineral class consisted of mixed opaque grains or aggregates (< 50 µm) that could not be identified as biotite (labeled M in Fig. 1f). Based on previous mineralogical studies, mixed opaque minerals could be either goethite, kaolinite, halloysite, or heavily coated, highly weathered primary minerals (Dong et al. 1998; Murphy et al. 1998; White et al. 1998).

Areas corresponding to the three mineral classes, as outlined in DIC images (Fig. 1f), were used to calculate percentages of field occupied by each mineral class. Total surface areas of grains examined at each depth ranged from 75,877 to 620,255 µm² (Table 1).

Under laser illumination, green fluorescence emitted from SYTO 9 was typically observed as discrete points, 1-3 µm² in area, which appeared to be individual intact cells or multiples of 2-4 cells (Fig. 2). Irregularly shaped patches emitting red fluorescence from the nonintact cell stain propidium iodide (Fig. 2) were larger in area (up to 5000 µm² or more), and generally followed the outlines of the mineral surfaces with which they were associated. These irregular and discontinuous areas of red fluorescence were interpreted to be biofilms consisting of extracellular polysaccharides and other organic material entrapping
extracellular DNA or DNA in nonintact cells. Discrete points of green fluorescence were sparsely distributed in red-fluorescing biofilms. In Fig. 1b and 1d, intact and nonintact cells occupied 0.015% and 1.84%, respectively, of image area, as calculated by COMSTAT (Heydorn et al., 2000).

Cell-mineral associations were evaluated in four depth intervals of the regolith: i) soil (Bw) at 0.15 and 0.31 m; ii) upper saprolite at 1.5-2.0 m; iii) Mn-rich saprolite at 2.4 m, which was previously identified as a “ghost rindlet” that had not transformed entirely to saprolite but retained some saprock character (Buss et al., 2005); iv) and lower saprolite at 3.1-4.7 m (Table 1). Areas viewed for total minerals, intact cells and nonintact cells were greatest in the soil samples, which were more weathered and aggregated than saprolite. In the two depths investigated in the upper saprolite, 1.5 and 2.0 m, the mean %MAC values at each depth for intact cells (3.6 and 1.9 %, respectively) and nonintact cells (17.0 and 4.1 %MAC, respectively) were higher than in lower saprolite (means ranging from 0.04-0.88% and 0.57-5.94% for intact and nonintact cells, respectively). Mineral coverages by intact and nonintact cells in the Mn-rich saprolite or ghost rindlet at 2.4 m depth, were significantly different from those observed in the topmost sample of lower saprolite (3.1 m), with p-values of 0.042 and 0.003, respectively ($\alpha = 0.050$). Mineral coverage by nonintact cells also differed between upper saprolite (2.0 m) and Mn-rich saprolite at 2.4 m (p-value of 0.010), clearly distinguishing the “ghost rindlet” from the upper and lower saprolite sections. Due to high variability of mineral surface coverages in each field of view, the mean %MAC values were not statistically different from each other throughout the lower saprolite (3.1-4.7 m) (Table 1).
Mineral and cell areas were normalized to values per 100,000 μm^2 of field of view to account for differences in total surface areas examined at each depth (Table 1). Normalized areas of intact cells were greatest in soils at 0.15 and 0.31 m (ca. 5,000 μm^2), decreased to 1,300 μm^2 or less in the upper saprolite (1.5-2.4 m), and remained less than 500 μm^2 throughout the lower saprolite (Fig. 3a). In lower saprolite, the normalized area for intact cells was greatest near the saprock (401 μm^2 at 4.6 m). The gross pattern of change in nonintact cell area was similar to that for intact cell area, though nonintact cell areas were always higher in magnitude except at 4.6 m (Fig 3a insert). Respective normalized values for nonintact cell areas in soil, upper saprolite, Mn-rich saprolite, and lower saprolite, respectively, were ca. 12,000 μm^2, 2300-5600 μm^2, 4200 μm^2 and < 1000 μm^2 (Fig. 3a). In lower saprolite, nonintact cell area was highest at 4.4 and 4.7 m, i.e., near the saprock (773 and 751 μm^2, respectively) (Fig. 3a insert).

Normalized areas for each of the three mineral classes (values per 100,000 μm^2 of microscope field) showed that mixed opaque minerals represented the dominant mineral class in the soil and upper saprolite (ranging from 19,000 – 32,000 μm^2.) In the soil, normalized area for biotite was lower (4500 – 5000 μm^2) than it was for quartz (5400 – 5700 μm^2), consistent with weathering of this mineral occurring in surface soil (Murphy et al. 1998). In upper saprolite, biotite area was higher (13,000 – 17,000 μm^2) compared to the biotite area in soil. In the “ghost rindlet” and lower saprolite, biotite area was higher than in the two sections above it (Fig. 3b). In the lower saprolite, biotite area was highest at 4.4 and 4.6 m (56,000 and 43,000 μm^2 respectively), but was lower at 4.7 m near the saprock (12,000 μm^2). Quartz area (μm^2) varied little throughout the regolith profile (Fig. 3b).
Linear regression analyses of cell areas vs. mineral areas measured in individual images were performed for the three mineral classes (Fig 4). When expressed as area per 100,000 µm2 FOV, mixed opaque minerals showed the highest coefficients of determination for both intact and nonintact cells, $R^2 = 60$ and 58%, $P = 0.003$ and 0.004, respectively (Fig. 4a). When areas for the two soil depths were excluded from the analysis, the relationship between intact cells and the mixed opaque mineral class was still observed, with R^2 value of 83% and p-value of <0.001; on the other hand, a significant relationship between mixed opaque minerals and nonintact cells was not found ($R^2 = 34\%$, $P= 0.076$).

A weak negative relationship was observed between normalized biotite and cell areas ($R^2 = 40\%$ and P-value of 0.027 for intact cells and $R^2 = 48$ and P-value of 0.012 for nonintact cells; Fig 4b). However, this relationship was not observed when values from the two soil samples were removed from the dataset ($P = 0.285$ and 0.147 for intact and nonintact cells, respectively). When only the saprolite samples below 3 meters (3.1-4.9 m) were analyzed, linear regression analysis indicated no relationships between intact or nonintact cell areas versus areas for any of the mineral classes. No relationships were observed between normalized quartz and cell areas (Fig. 4c). Overall, results confirmed a positive relationship between microbial cells and the surfaces of mixed opaque minerals.

Bacterial community composition in deep regolith

Cloned 16S rRNA gene sequences from saprolite (4.6 and 4.7 m) and saprock (4.9 m) were highly diverse. A total of 269 sequences from all six libraries could be assigned to 13 divisions (>0.80 rRNA similarity) using Greengenes (DeSantis et al., 2006a and 2006b):

- **Proteobacteria, Acidobacteria, Firmicutes, Actinobacteria, Bacteroidetes, Cyanobacteria, Nitrospirae, Planctomycetes, Thermus/Deinococcus, Verrucomicrobia, Chloroflexi,**
Synergistes, and Aquificales (Fig. 5). Sequences representing six to nine divisions were recovered from each library, with four divisions found in all six libraries (Proteobacteria, Acidobacteria, Firmicutes, and Actinobacteria, Suppl. Table 1). Combined representation of these four divisions accounted for 92-94% and 80-90% of all sequences in libraries from the north and south boreholes, respectively.

Coverage estimates for the three libraries from the north borehole samples were 65, 15, and 53% for 4.6, 4.7, and 4.9 m depths, respectively. Coverage estimates for corresponding sample depths in the south borehole were 48, 36, and 59% (Table 2.) The lowest observed coverage (15%) could have been related to the presence of a large number of sequences having 0.94-0.99 similarities to Stenotrophomonas maltophilia (16 of 33 sequences) in the LG-1N 4.7-m library. The only other library containing similar sequences was from the 4.9-m sample in the north borehole (10 of 61 sequences). Highly similar sequences have been detected in coal-mine drainage sites (Nicomrat et al. 2008) and ferromanganese-rich mineral deposits in caves (Northup et al. 2003). It should be noted that Stenotrophomonas-related sequences have been reported as suspected experimental contaminants, possibly from DNA extraction reagents (Tanner et al., 1998). In our study, it was unlikely that Stenotrophomonas-related sequences were contaminants because they were recovered in only two libraries, each derived from metagenomic DNA extracted by different procedures. In addition, sequences with 0.99 similarity to S. maltophilia were recovered from reverse-transcribed rRNA extracted from deep LG-1N samples (unpublished results).

Cultivation of S. maltophilia from Fe-rich environments in other studies supports the finding that S. maltophilia or its close relatives are actual members of these deep regolith communities (Emerson and Moyer, 1997).
Statistical analyses of the six bacterial clone libraries collected from LG-1 N and LG-1 S (Fig. 5) showed that all but two of the 15 pairwise comparisons of library compositions were statistically different from each other (p-value < 0.0017). For the LG-1 N series, libraries from the deeper 4.7-m saprolite and 4.9-m saprock were similar to each other but different from the 4.6-m saprolite. For the LG-1S series, saprolite libraries (4.6 m and 4.7 m) were similar to each other but distinct from the saprock library (4.9 m). For both boreholes, therefore, the two statistically similar libraries were obtained from adjacent regolith sections.

Clone libraries from the north and south boreholes differed with respect to their most abundant bacterial divisions. In LG-1 N libraries, sequences related to \textit{gamma-Proteobacteria} dominated at all three depths (31%, 61%, and 30% of library sequences at 4.6, 4.7, and 4.9 m, respectively) (Fig. 5). In contrast, LG-1S libraries were dominated by sequences related to \textit{Firmicutes} (33% and 67%, respectively, at 4.6 and 4.9 m) and to \textit{Acidobacteria} (51% at 4.7 m depth). Five of six libraries contained sequences closely related to \textit{Burkholderiales} having RDP similarities ranging from 0.94-0.99. Nearly all sequences with similarities >0.97 were affiliated with bacteria known to have heterotrophic metabolisms, including those with reported iron-acquisition capabilities (Suppl. Table 1). All six libraries contained sequences closely related to \textit{Pseudomonas} spp., cultured representatives of which are known to produce siderophores under Fe-limiting conditions (Cox et al. 1981). Saprock from the north borehole contained two beta-Proteobacteria sequences having >0.99 similarity to \textit{Janthinobacterium} spp., another group of siderophore-producing heterotrophs (Uroz et al., 2009). One other sequence from saprock had 0.97 similarity to \textit{Ralstonia}-related sequences recovered from granite-fracture water (Sahl et al., 2008) and iron-reducing media (Lin et al., 2007). Only one sequence was recovered (from
LG-1N, 4.6 m) which could be ascribed to lithoautotrophic bacteria. This sequence had 0.99 BLAST similarity to *Acidithiobacillus ferrooxidans* (HQ445627), the Fe(II)-oxidizer found frequently in acid mine drainage environments (Johnson and Hallberg 2003). Recovery of this sequence was of particular note because *A. ferrooxidans* is also capable of fixing N\textsubscript{2} and could thus represent a source of assimilable N in deep regolith (Valdes et al., 2009).

Differences between the bacterial communities in north and south boreholes were also reflected in divisions represented exclusively in one borehole. A single sequence related to *Thermus/Deinococcus* (HQ445740 with 0.98 similarity) was found among the LG-1 N libraries (Suppl. Table 1). Other rarer sequences found only in LG-1 S libraries were related to *Planctomyces* (HQ445695) *Verrucomicrobia* (HQ445668), *Chloroflexus* (HQ445691), *Synergistes* (HQ445687, -746, -875), and *Aquificales* (HQ445884) with 0.79-0.83 similarities. Not only were some divisions specific to one borehole, several classes and families within divisions were also exclusively found in one borehole. Among delta *Proteobacteria* representatives, sequences related to *Desulfuromonadales* were recovered from the north borehole, while *Myxococcales*-related sequences were found only in the south borehole.

Low RDP similarities of many sequences reflected a high degree of uncharacterized diversity in deep regolith. Sequences classified as *Clostridia* or unclassified *Firmicutes* had lower similarities (0.75-0.92) than sequences classified as *Bacilli* (0.92-0.99) (Suppl. Table 1). Sixteen of 35 *Firmicutes*-related sequences in saprock from the south borehole were classified as *Thermolithobacteria* with 0.80-0.83 similarities. The only cultured representatives of this newly established class of *Firmicutes* are thermophilic anaerobes isolated from hot springs (Sokolova et al., 2007). Nine other *Firmicutes* related sequences
from the south borehole had 0.96 similarity to GenBank accessions from wind deposited soils (Talera et al., 2008).

Pairwise BLAST analyses of several *Acidobacteria* sequences from the south borehole revealed these to have high rRNA similarities to cultured representatives such as *Acidobacterium capsulatum* (95%) and three others with recently sequenced genomes, *Solibacter* (94%), *Terriglobus* spp. and *Candidatus Koribacter* (92%), respectively (Ward et al. 2009). However, the majority of Acidobacteria-related sequences were unclassified with RDP similarities <0.90.

DISCUSSION

In a first attempt of its kind, we developed a procedure to track microbe-mineral associations in regolith using CLSM imaging, BacLight nucleic acid staining, and software tools. Previous mineralogical studies of Guaba Ridge saprolite established the presence of only two major primary minerals, quartz and biotite (Murphy et al. 1998; White et al. 1998). Because quartz and biotite in DIC images could be distinguished by light transmission and large grain sizes, we were able to estimate the relative proportions of these mineral surfaces with depth, designating all other mineral surfaces as “unidentified opaque.” Surface area coverages (%MAC) by intact and nonintact cells were then calculated for each mineral class.

As expected, we observe higher %MACs in surface soils due to the presence of living roots, organic matter, and other plant-derived nutrients. In upper saprolite, we expected to observe lower %MAC values for intact and nonintact cells than in surface soils, since a hundredfold lower microbial densities were observed previously in samples from corresponding depths. At the intermediate depth of 2.4 m, where the darker, Mn-rich ghost rindlet was found, the %MAC value for nonintact cells was higher relative to values in the
more shallow saprolite (Table 1). Buss et al. (2005) recorded a similar increase in cell
number at 2.2 m, where weight percentages of biotite, quartz, kaolinite, and Fe(II) and
Mn(II) oxides were also higher compared to surrounding saprolite (Schulz and White 1999).
The ghost rindlet layer thus appears to be a richer nutrient source that could support higher
numbers of microorganisms at this depth.

In CLSM images of 4.7-m saprolite (deepest saprolite collected prior to saprock
transition), biotite was the dominant mineral observed, and nonintact cell coverage increased
to 5.9% MAC (Table 1). We interpreted this increase as a loss of cell viability as the
availability of mineral-derived nutrients declined upon weathering. Although biofilm bacteria
dependent on nutrient acquisition from minerals would be less likely to maintain viability as
weathering progresses, other organisms may be able to sustain their activities by obtaining
electron donors from necromass. Frequent observations of single intact cells in the midst of
nucleic-acid-rich biofilms in our CLSM images (Fig. 2) support this interpretation.

Despite the predominance in our clone libraries of rRNA sequences affiliated with
heterotrophic bacteria, little organic carbon is available to support heterotrophic activity in
deep regolith. Organic carbon contents measured previously in Guaba Ridge regolith from
4.6 and 4.9 m depths were 0.19 and 0.09 wt %, respectively (Buss et al. 2005). One
explanation for the presence of highly diverse heterotrophic bacterial rRNA sequences in
deep regolith is the accumulation and persistence of nonviable or inactive heterotrophs
following downward translocation from more organic-rich surface soils. If this explanation is
correct, dead cells could serve as a nutrient source enabling a low level of metabolic activity
by better-adapted organisms having one or more selective advantages. Significant differences
in clone library compositions were observed between regolith samples collected from
boreholes separated by 1.5 m. Such differences could reflect spatial variability in precipitation-driven translocation of cells from surface soils. Variability in the kinds of cells that reach deep regolith from the surface could therefore influence the successional trajectories and eventual compositions of bacterial communities developing from species introduced earlier.

We have proposed that an important electron donor in this environment is Fe(II) derived from initial biotite weathering in rindlets and from hornblende weathering in saprock. In deep regolith, Fe(II)-oxidizing lithoautotrophs would therefore have the selective advantage of being able to use Fe(II) for energy and reducing power from primary minerals. Evidence for biological Fe(II) oxidation in Rio Icacos saprock includes measurements of lighter Fe isotope values, $\delta^{56}\text{Fe} = -0.40\%\text{o}$, which are consistent with biological activity (Buss et al., 2008; Buss et al., 2010). In addition, hornblende dissolution rates have been calculated to be 6×10^{-13} mol hornblende m$^{-2}$ s$^{-1}$, and this would provide enough Fe(II) as a potential electron donor for a detectable, steady-state population of Fe(II)-oxidizers (Buss et al. 2008). Mixotrophs would have an additional advantage of being able to supplement inorganic electron donors with reduced carbon from necromass.

Acidity generated by Fe(II) oxidation also would lead to enhanced mineral dissolution, which would increase fluxes of Fe(II) and other nutrients from weathering minerals. The macronutrient potassium is released from biotite and feldspar, while phosphorus is released from apatite. The supply of nitrogen, probably the most limiting macronutrient in deep regolith, could be derived in part by bacteria capable of N$_2$ fixation, although the high energy demands of this process would require an adequate supply of electron donors. Gravimetric moisture contents of deep saprolite on Guaba Ridge, observed
between 28-34% (Buss et al. 2005), indicate that water would not be a factor limiting bacterial activity and nutrient acquisition.

In our proposed model for Rio Icacos regolith weathering, abiotic reactions still account for all initial weathering alterations in bedrock. In unfractured bedrock below the rindlet zone, abiotic Fe(II) oxidation in biotite was observed to occur and was attributed to O$_2$ diffusion into the low porosity bedrock (Fletcher et al., 2006; Buss et al. 2008). Oxidation of structural Fe(II) alters the layer silicate charge of biotite and affects the strength of interlayer bonding of K$^+$ cations. Biotite alteration in unfractured bedrock is accompanied by the formation of larger cracks that create rindlets, as well as smaller micro-cracks, which are found throughout the rindlet zone and saprock layer. Biotite oxidation was found to be complete in outermost rindlets (Buss et al. 2008). Such micro-cracks undoubtedly promote increased porosity and weathering of other primary minerals including hornblende, plagioclase, and apatite to release the nutrients Mg$^{2+}$, K$^+$, Ca$^{2+}$ and PO$_4^{3-}$. These nutrients could support biological oxidation of aqueous or exchangeable Fe(II) from hornblende, which weathers completely within the even more porous saprock layer.

As hornblende, feldspar, and apatite dissolve at the bedrock-saprolite interface, many cells immobilized in biofilms on biotite surfaces would eventually die as nutrient availability declined. Dead biofilms and secondary mineral coatings on biotite could explain the slowed weathering and persistence of primary biotite grains throughout the entire saprolite layer (Murphy et al. 1998). Detection of DNA sequences associated with Fe(II)-oxidizing and siderophore-producing bacteria is consistent with the proposed importance of Fe(II) as an electron donor in deep regolith. Enhanced mineral dissolution resulting from activity of heterotrophic bacteria such as *Bacillus* spp. and *S. maltophilia* could increase electron donors.
Fe(II) oxidizers and other nutrients for community members. Subsequent development of
diverse and spatially distinct communities could be due to chance translocations of
microorganisms from surface soils, adaptive cooperation between lithoautotrophs and
heterotrophs, and reutilization of dead biomass to maintain microbial viability.

Despite the low-nutrient environments provided by deep regolith in comparison to
surface soils, biogeochemical processes in deep regolith can generate positive feedbacks that
promote weathering. Since the DNA used to construct clone libraries in the present study
could have been derived from moribund bacteria, construction of clones or metagenomic
libraries from RNA, rather than DNA, would be more informative in identifying actively
metabolizing populations. We are just beginning to understand the relationships between
subsurface microorganisms and their low-nutrient environments. Future studies employing in
situ and RNA-based analyses of active metabolisms and the nutrient sources supporting them
will enhance our understanding of the mechanisms by which microorganisms contribute to
bedrock weathering.
Acknowledgments

We thank J. Williams for field support; N. Zembower, E. Kunze, and S. Magargee from the Huck Institute’s Cytometry lab for assistance with the CLSM; and D. Grove at the Genomics Core Facility. Research was funded by DOE grant DE-FG02-05ER15675, with some logistical support contributed by the NSF-supported Luquillo Critical Zone Observatory (EAR 0722476). M. L. Minyard acknowledges fellowship support from the Penn State Biogeochemical Research Initiative for Education (BRIE, NSF-IGERT grant DGE-9972759) and the DoD Science Mathematics and Research for Transformation (SMART) Program.

REFERENCES

1
3 Thesis, Penn State University, University Park, PA.
4 Murphy SF, Brantley SL, Blum AE, White AF, Dong H. 1998. Chemical weathering in a tropical
5 watershed, Luquillo Mountains, Puerto Rico: II. Rate and mechanism of biotite weathering.
7 Murray RGE, Doetsch RN, Robinow CF. 1994. Determinative and cytological light
8 microscopy, In: Gerhardt P, editors. Methods for General and Molecular
9 Bacteriology, Washington, DC: American Society for Microbiology.
11 constructed wetland system treating acid coal mine drainage. Soil Biology and
13 Northup DE, Barns SM, Yu LE, Spilde MN, Schelble RT, Dano KE, Crossey LJ, Connolly CA,
15 ferromanganese deposits in Lechuguilla and Spider Caves. Environmental Microbiology 5:
16 1071-1086.
17 Sahl, J.W., R. Schmidt, E.D. Swanner, K.W. Mandernack, A.S. Templeton, T.L. Kieft, R.L. Smith,
19 diversity in deep-granitic-fracture water in Colorado. Applied and Environmental
20 Microbiology 74:143-152.
21 Schloss PD, Westcott SL, Ryabin T, Hall Jr, Hartmann M, Hollister EB, Lesniewski RA, Oakley
22 BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF.
23 2009. Introducing mothur: Open-source, platform-independent, community-supported
24
26

Collimonas. Soil Biology Biochemistry 41:2178-2186.

FIGURE LEGENDS

Figure 1. Example of a 2-D display image from LG-1N saprolite (4.7-m depth) generated from a 132,400 µm² field-of-view at 400x (scale bars are 50 µm): a and c) fluorescence color display images generated with Ar and HeNe lasers, respectively, and used as input for manual threshold determinations in COMSTAT. The points of green fluorescence account for a very small percentage of area and are visible at the upper and lower right portions of the image 1a; b and d) COMSTAT-processed images showing white areas corresponding to fluorescent pixels from intact and nonintact cells in the previous two images after selecting optimized threshold values; e) DIC display image of mineral surfaces supporting cells; and f) input for ImageJ analysis showing manually selected areas for each of three mineral classes: quartz (Q); biotite (B), and mixed opaque minerals (M).

Figure 2. CLSM images of nonintact (red) and intact (green) microbial cells from 4.7 m depth (scale bars are 50 µm). (a) Three-channel display image combining views from DIC and both laser channels (Ar laser for SYTO 9 visualization of intact cells and HeNe laser for PI visualization of nonintact cells). (b) View showing association of intact and nonintact cells with fractured and opaque biotite (labeled B) and mixed opaque minerals (labeled as M). Few microbes were observed on the transparent quartz grains (labeled Q).

Figure 3. (a) Plot showing cell areas, normalized per 100,000 µm² of field-of-view (FOV), for intact (open squares) and nonintact (closed triangles) cells, with regolith depth on y-axis from 0 to 5 m; (Insert) Expanded view of the lower portion of plot (a) showing normalized cell areas between 3 and 5 m depth on y-axis. (b) Plot showing areas of each mineral class
calculated with ImageJ and normalized per 100,000 µm² of FOV, with regolith depth on y-axis from 0 to 5 m: biotite (gray squares); mixed opaque minerals (closed diamonds); and quartz (open circles).

Figure 4. (a) Linear regression plots of normalized CLSM data for intact and nonintact cell areas (µm² normalized per 100,000 µm² of FOV) vs. mixed opaque mineral areas (µm² per 100,000 µm² of FOV) reveals a positive relationship between mixed minerals and cell area. (b) Linear regression plot of normalized CLSM data for intact and nonintact cell areas (µm² normalized per 100,000 µm² of FOV) vs. biotite mineral areas (µm² per 100,000 µm² of FOV) reveals a weak negative relationship between biotite and cell area. (c) Plot of normalized CLSM data for intact and nonintact cell areas (µm² normalized per 100,000 µm² of FOV) vs. quartz mineral areas (µm² per 100,000 µm² of FOV). A relationship was not observed between quartz and cell area.

Figure 5. Bar charts showing proportional representation of bacterial divisions, as determined using classification tools in Greengenes, in six 16S rRNA clone libraries generated from DNA extracts. of LG-1 North (left) and LG-1 South (right). Bar charts for libraries from LG-1 North (left) and LG-1 South (right) are shown for saprolite (4.6- and 4.7 m) and saprock (4.9 m). The classes of Proteobacteria are represented with the bacterial divisions. Divisions with a low number of representatives are designated as “other”.

URL: http://mc.manuscriptcentral.com/ugmb Email: pl2@cornell.edu
Table 1. Confocal laser-scanning microscopy (CLSM) data collected from LG-1 N and LG-1 S regolith boreholes

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Regolith layer</th>
<th>Description of regolith section used in text</th>
<th>Total area of mineral surface (µm²) examined at each depth</th>
<th>Total area of intact cells (µm²) examined at each depth</th>
<th>Total area of nonintact cells (µm²) examined at each depth</th>
<th>Mean (± s.e) percentage of Mineral Area Covered (MAC) by intact cells per field of view</th>
<th>Mean (± s.e.) percentage of Mineral Area Covered (MAC) by nonintact cells per field of view</th>
<th>Statistical analysis (p-values) for %MAC of intact cells</th>
<th>Statistical analysis (p-values) for %MAC of nonintact cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>Bw Soil</td>
<td>333,286</td>
<td>54,984</td>
<td>125,017</td>
<td></td>
<td>16.8 ± 4.48</td>
<td>38.6 ± 8.36</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.31</td>
<td>Bw Soil</td>
<td>620,225</td>
<td>55,040</td>
<td>137,439</td>
<td></td>
<td>9.4 ± 1.35</td>
<td>22.7 ± 5.57</td>
<td>0.149</td>
<td>0.141</td>
</tr>
<tr>
<td>1.5</td>
<td>C Upper Saprolite</td>
<td>407,513</td>
<td>13,525</td>
<td>59,610</td>
<td></td>
<td>3.6 ± 1.28</td>
<td>17.0 ± 6.49</td>
<td>0.006*</td>
<td>0.515</td>
</tr>
<tr>
<td>2.0</td>
<td>C Upper Saprolite</td>
<td>371,131</td>
<td>9,403</td>
<td>18,701</td>
<td></td>
<td>1.93 ± 0.82</td>
<td>4.10 ± 1.22</td>
<td>0.296</td>
<td>0.091</td>
</tr>
<tr>
<td>2.4</td>
<td>C Ghost Rindlet</td>
<td>427,704</td>
<td>6,525</td>
<td>50,460</td>
<td></td>
<td>1.42 ± 0.58</td>
<td>14.0 ± 2.84</td>
<td>0.624</td>
<td>0.010*</td>
</tr>
<tr>
<td>3.1</td>
<td>C Lower Saprolite</td>
<td>368,662</td>
<td>107</td>
<td>4,206</td>
<td>0.037 ± 0.011</td>
<td>0.09 ± 0.023</td>
<td>1.19 ± 0.29</td>
<td>0.337</td>
<td>0.951</td>
</tr>
<tr>
<td>3.7</td>
<td>C Lower Saprolite</td>
<td>92,906</td>
<td>375</td>
<td>824</td>
<td>0.09 ± 0.023</td>
<td>0.09 ± 0.023</td>
<td>1.19 ± 0.29</td>
<td>0.337</td>
<td>0.951</td>
</tr>
<tr>
<td>4.0</td>
<td>C Lower Saprolite</td>
<td>75,877</td>
<td>80</td>
<td>829</td>
<td>0.09 ± 0.023</td>
<td>0.09 ± 0.023</td>
<td>1.19 ± 0.29</td>
<td>0.337</td>
<td>0.951</td>
</tr>
<tr>
<td>4.3</td>
<td>C Lower Saprolite</td>
<td>78,546</td>
<td>125</td>
<td>505</td>
<td>0.2 ± 0.132</td>
<td>0.74 ± 0.268</td>
<td>0.441 ± 0.27</td>
<td>0.441</td>
<td>0.276</td>
</tr>
<tr>
<td>4.4</td>
<td>C Lower Saprolite</td>
<td>78,311</td>
<td>323</td>
<td>983</td>
<td>0.496 ± 0.454</td>
<td>1.50 ± 0.90</td>
<td>0.559 ± 0.454</td>
<td>0.559</td>
<td>0.454</td>
</tr>
<tr>
<td>4.6</td>
<td>C Lower Saprolite</td>
<td>91,489</td>
<td>680</td>
<td>501</td>
<td>0.88 ± 0.74</td>
<td>0.57 ± 0.17</td>
<td>0.664 ± 0.35</td>
<td>0.664</td>
<td>0.357</td>
</tr>
<tr>
<td>4.7</td>
<td>C Lower Saprolite</td>
<td>162,929</td>
<td>463</td>
<td>8,960</td>
<td>0.239 ± 0.092</td>
<td>5.94 ± 2.41</td>
<td>0.415 ± 0.05</td>
<td>0.415</td>
<td>0.057</td>
</tr>
</tbody>
</table>

£ Total area of mineral surfaces (µm²) examined equals the sum of mineral surface areas in all fields of view collected at a given depth.

† Total area of cells (intact and nonintact) equals the sum of all green- or red-fluorescing areas, respectively, in all fields of view collected at a given depth.

‡ Mean %MAC is the mean mineral surface area covered by cells (Equation 1) averaged from all images collected at the corresponding depth ± the standard error.

§ p-values were determined using 2-sample t tests in Minitab software (State College, PA) (α = 0.05) to evaluate differences between %MAC values from CLSM data at a given depth and from the depth immediately above it. The p-values labeled with * indicate significant differences.
Table 2. 16S rRNA clone library data from deep saprolite and saprock collected from LG-1 N and LG-1 S boreholes

<table>
<thead>
<tr>
<th>Depth (m)/core</th>
<th>LG-1 North</th>
<th></th>
<th></th>
<th></th>
<th>LG-1 South</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OTU</td>
<td>Chao 1</td>
<td>% Coverage</td>
<td>OTU</td>
<td>Chao 1</td>
<td>% Coverage</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>21</td>
<td>32.1</td>
<td>65</td>
<td>32</td>
<td>66.5</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>16</td>
<td>107</td>
<td>15</td>
<td>29</td>
<td>79.6</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>33</td>
<td>61.9</td>
<td>53</td>
<td>22</td>
<td>37.6</td>
<td>59</td>
<td></td>
</tr>
</tbody>
</table>

*Percent coverage is an estimate value calculated from OTU/Chao 1
Figure 1.
Figure 2.
Figure 3.

![Graph a: Cell area (µm²) per 100,000 µm² of FOV](image)

![Graph b: Mineral area (µm²) per 100,000 µm² of FOV](image)

Legend:
- □ Intact
- ▲ Nonintact

Depth (m)
- 0
- 1
- 2
- 3
- 4
- 5

Mineral types:
- □ Biotite
- ■ Mixed
- ○ Quartz

Soil layers:
- Upper Saproite
- Ghost Rindlet
- Lower Saproite
- Saprock

URL: http://mc.manuscriptcentral.com/ugmb Email: pll2@cornell.edu
Figure 4.
Figure 5.
Supplemental Figure 1. Cartoon depiction of soil/saprolite sample in a dual-chambered coverslip placed over the inverted objective of the confocal laser-scanning microscope.

Chamber with coverslip on the bottom. An agarose suspension of saprolite grains covers the coverslip surface.

Inverted microscope objective with computer-controlled movement in vertical (z) direction.