
Peer reviewed version

Link to published version (if available):
10.1073/pnas.1515937112

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
Molecular signatures of plastic phenotypes in two eusocial insect species with simple societies

Solenn Patalano1, Anna V. Vlasova2,3, Chris Wyatt2,3,4, Philip A. Ewels1,5, Francisco Camara2,3, Pedro G. Ferreira2,6,7, Claire Asher6,9,10, Tomasz P. Jurkowski11, Anne Segonds-Pichon1, Martin Bachman12,13, Irene González2,3, André E. Minoche2,3, Felix Krueger1, Ernesto Lowy Gallego2,3, Martína Marcet-Houven2,3, Jose Luis Rodríguez-Ales2,3, Fabio S. Nascimento14, Shankar Balasubramanian12,13,15, Toni Gabaldon2,3,16, James E. Tarver4, Simon Andrews1, Heinz Himmelbauer2,17,18, William O.H. Hughes8,10, Roderic Guigo3,2, Wolf Reik1,19,20 and Seirian Sumner4,9

1 The Babraham Institute, CB22 3AT, Cambridge, United Kingdom
2 Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain
3 Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, Barcelona, Spain
4 School of Biological Sciences, Bristol Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
5 Science for Life Laboratory, Stockholm University, Box 1031 SE-171 21, Solna, Sweden
6 Instituto de Investigación e Inovação em Saúde, Universidade do Porto, Porto, Portugal
7 IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
8 School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
9 Institute of Zoology, Zoological Society of London, Regent’s Park, London, NW1 4RY, United Kingdom
10 Institute of Integrative and Comparative Biology, School of Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
11 University of Stuttgart, Institute of Biochemistry, Pfaffenwaldring 55, 70569 Stuttgart, Germany
12 Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW United Kingdom
13 Cancer Research UK Cambridge Institute, University of Cambridge, CB2 ORE, Cambridge, United Kingdom
14 Departamento de Biologia, FFCLRP - Universidade de São Paulo Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto - SP, Brazil
15 Addenbrooke’s Hospital, University of Cambridge, Hill Road, CB2 OSP, Cambridge, United Kingdom
16 Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
Keywords
social evolution; phenotypic plasticity; genome sequencing; transcriptomes; DNA methylation

Significance statement
In eusocial insect societies, such as ants, some bees and wasps, phenotypes are highly plastic, generating alternative phenotypes (queens and workers) from the same genome. The greatest plasticity is found in simple insect societies, in which individuals can switch between phenotypes as adults. The genomic, transcriptional, and epigenetic underpinnings of such plasticity are largely unknown. In contrast to the complex societies of the honeybee, we find that simple insect societies lack distinct transcriptional differentiation between phenotypes and coherently patterned DNA methylomes. Alternative phenotypes are instead largely defined by subtle transcriptional network organization. These traits may facilitate genomic plasticity. These insights and resources will stimulate new approaches and hypotheses which will help to unravel the genomic processes that create phenotypic plasticity.
Abstract

Phenotypic plasticity is important in adaptation, and shapes the evolution of organisms. Yet, we understand little about what aspects of the genome are important in facilitating plasticity. Eusocial insect societies produce plastic phenotypes from the same genome, as reproductives (queens) and non-reproductives (workers). The greatest plasticity is found in the simple eusocial insect societies, in which individuals retain the ability to switch between reproductive and non-reproductive phenotypes as adults. We lack comprehensive data on the molecular basis of plastic phenotypes. Here we sequenced genomes, microRNAs, and multiple transcriptomes and methylomes from individual brains in a wasp (*Polistes canadensis*) and an ant (*Dinoponera quadriceps*) which live in simple eusocial societies. In both species, we found few differences between phenotypes at the transcriptional level, with little functional specialization, and no evidence that phenotype-specific gene expression is driven by DNA methylation or microRNAs. Instead, phenotypic differentiation was defined more subtly by non-random transcriptional network organization, with roles in these networks for both conserved and taxon-restricted genes. The general lack of highly methylated regions or methylome patterning in both species may be an important mechanism for achieving plasticity among phenotypes during adulthood. These findings define new hypotheses on the genomic processes that facilitate plasticity and suggest that the molecular hallmarks of social behavior are likely to differ with the level of social complexity.
Introduction

Phenotypic plasticity allows organisms to maintain fitness in a changing environment. Plasticity influences organismal ecological resilience, adaptability, evolutionary innovations and speciation (1, 2). However, we understand little about the molecular signatures (the genes involved and differential regulation thereof) of such plasticity. Determining the molecular basis of phenotypic plasticity is fundamental to our understanding of the building blocks of life, and has the potential to uncover insights into selection for adaptive function and phenotypic innovation (3–5).

The profound action of evolution in the generation of biological diversity can be discerned from the genome (6). However, genome sequence alone is not sufficient to explain diverse phenotypic variation as such analyses infer associations based on gene evolution and gene sharing rather than directly identifying differentially expressed genes in the phenotypes of interest (7). Here, in addition to genome and microRNA sequencing, we use deep transcriptome and methylome sequencing of single brains from alternative phenotypes to determine the differential molecular processes associated with highly plastic phenotypes in two species of eusocial insects (8).

Hymenopteran eusocial insects exhibit enormous interspecific variation in phenotypic plasticity, in the form of reproductive (queen) and non-reproductive (worker) phenotypes (9), across multiple independent origins (10). Our two study species (the dinosaur ant Dinoponera quadriceps and the paper wasp Polistes canadensis) exhibit very simple societies, where individuals retain the ability to switch phenotype (11, 12). This contrasts with the adult honeybee Apis mellifera and most ants which exhibit low levels of phenotypic plasticity and which have been the focus of most previous molecular analyses (13). Our two study species share similar levels of plasticity among individuals, with a single reproductive egg-layer (‘gamergate’ in D. quadriceps and ‘queen’ in P. canadensis) which is morphologically identical to the non-reproductives; if the reproductive dies, she is quickly replaced by one of the non-reproductives; both species share many ecological traits, but evolved social phenotypes independently (Dataset 1) (14, 15). As such, we present two independent studies on the molecular basis of highly plastic phenotypes in these simple societies (Fig. 1a & b).

Our aims were three-fold. First, we sequenced the genomes of P. canadensis and D. quadriceps to provide genomic baseline data for eusocial insect species with simple societies, including the first aculeate wasp genome sequence. Second, we sequenced and analysed individual brain transcriptomes to identify differential transcription patterns associated with phenotypes. Third, we sequenced global microRNAs and individual-level
phenotype-specific brain methylomes to determine the extent to which these putative
downstream regulators associate with phenotypic differentiation and genomic organisation. These
analyses highlight fundamental traits of the molecular basis of phenotypic differentiation and
plasticity of similar phenotypes, apparent in both species. As such, these data provide the
first genome sequence for an aculeate wasp, a framework and hypotheses for revealing the
molecular signatures of caste evolution, and more generally help define scenarios where
evolution might employ conserved or contrasting molecular processes in phenotypic
evolution.

Results and Discussion

Typical insect genome composition and organization

A single haploid male for each species was sequenced on the Illumina platform
achieving 110x coverage. The de novo assembled *P. canadensis* and *D. quadriceps*
genomes were 211Mb and 268Mb in size ([SI, SII1&2]). These genome sequences are almost
complete, with 97-99% of the conserved Cluster of Orthologous proteins (COGs) mapped in
the two genomes; 79-86% of proteins were annotated ([Fig. S1a-d, SII.3-5]). The genome
compositions were similar to the genome sequences of other social insects, with *D.
quadriceps* sharing more of its predicted protein content with other ants (Formicidae), whilst
P. canadensis shows more equitable levels of protein sharing with ants (Formicidae) and
bees (Apidae) ([Fig. 1c, S1e; Dataset 1; SII.6]). This is likely to reflect the absence of any
other aculeate wasp genome sequence in the public domain. Finally, the genome of *P.
canadensis* contains more transposable elements (452,247, 12% of the genome) than *D.
quadriceps* (217,417, 6% of the genome), most of which are simple or low complexity
repeats ([Fig. 1d; SII.7]). Transposable elements were recently identified as potentially
important in the evolution of social complexity in bees (6).

Low levels of transcriptional differentiation between phenotypes

We obtained over 100Gbp of brain transcriptome sequence data from 23 individual
adult female brains (4-7 biological replicates each of reproductives and non-reproductives
per species, generating on average 3.6Mbp (20.29±0.67 fold coverage) and 4.9Mbp
(17.4±1.36 fold coverage) per individual for the wasp and ant respectively ([SIII.1&2; Dataset
2]). In both species, we found fewer than 1% of genes differentially expressed (DEGs) with
little evidence of functional specialization between phenotypes (5). Using the union of DEGs
from EdgeR (parametric approach (16)) and NOISeq (non-parametric approach (17)) ([Table
1; Fig. 2; Datasets 2; SIII.3]), we found 67 (0.4%) DEGs in *P. canadensis*, and 147 (0.8%)
DEGs in *D. quadriceps*. In both species, the non-parametric approach identified significantly
more upregulated genes in reproductives relative to non-reproductives ($X^2 = 31, p = 2.2e-08$,
Fig. S2a). In $P. canadensis$ gene expression in non-reproductives was found to be more
stochastic (noisy) than in reproductives despite similar variance of expression amongst the
biological replicates (Fig. S2b). Recent research suggests that evolution can shape noise in
gene expression, and that such noise can be adaptive and heritable (18–20). If noise in
transcription is an indicator of phenotypic plasticity (21–23), our results would suggest that
transcription in the non-reproductive phenotype is more responsive to changes in the biotic
and social environment than the reproductive phenotype. Despite the small number of
DEGs, significant functional enrichment of DEGs was detected in the ant reproductives, with
29 Gene Ontology (GO) terms significantly enriched for functions including metabolic and
ribosomal processes, regulation of expression and extracellular component (FDR<0.5, SIII.4;
Dataset 2). There was little sign of functional enrichment in the wasp (5) (although prior to
FDR correction, oxido-reductase activity and lipid-transport were over represented in
reproductive). These data suggest there is little phenotypic specialization in the brain tissue
of either species.

No distinct methylation patterning across the genome or between phenotypes
We sequenced the methylomes from three biological replicates each of individual
adult brains from reproductive and non-reproductive phenotypes in $P. canadensis$ and $D. quadriiceps$ using whole-genome bisulfite sequencing (20GB (>10 fold coverage) per brain)
(SIV.1; Dataset 3).

We compared methylation patterns with the honeybee (24), to provide a reference
point as it is the only close relative to our study species with comparable data on brain
methylation available (SIV.2). Global levels of methylation in the CG context were similar in
both species, and similar to the honeybee (Table 1). $P. canadensis$ exhibited greater
methylation in the non-CG context but significantly fewer highly methylated regions (HMR)
than $D. quadriiceps$ (Table 1; SIV.3, Fig. S3a-b). However in comparison to the honeybee,
both species show relatively little gene-body specific methylation targeting (Table 1; Fig 3a,
S3c, SIV.4) together with a striking lack of consistently fully methylated cytosines (Fig 3b). In
both $P. canadensis$ and $D. quadriiceps$ DNA methylation is dispersed sparsely across genes
(Fig. 3c) particularly in $P. canadensis$ whose genome lacks a $DNMT3$ gene, an enzyme
involved in de novo methylation (Fig. S4a, SIV.5) (25, 26). In $P. canadensis$ we also found a
prevalence of asymmetric (one strand only) CG methylation together with a variant of the
$DNMT1$ gene - involved in the maintenance of DNA methylation - in its genome (Fig. S4b-d,
SIV.5). As observed in $A. mellifera$ brains (27), both study species possess and express a
tET hydroxylase gene and base excision repair genes involved in demethylation, and have
detectable hydroxymethylation in brain tissue (Fig.S4f, S5, SIV.6). These general features
together provide an epigenetic landscape that may facilitate plasticity of genome function.

Despite the general paucity of methylation patterning we found significant conservation of methylated orthologues (Fig 3d, SIV.7, Dataset 3) and a positive correlation between gene expression and CG methylated genes (Fig. S6, SIV.2), as seen before in other insect species (28–33). Notably however, DEGs tended to be hypomethylated in both species (Fig. 3e) and unlike brain methylomes of adult honeybees (24, 34, 35), we found no evidence that phenotypes were associated with differentially methylated genes in our two species (t-test \(p > 0.05 \), SIV.8). Analyses of alternative splicing revealed only 28 phenotype-specific isoforms in *D. quadriceps* and none in *P. canadensis* (SIV.9, Dataset 3). This is likely due to the global tendency of these species to express all isoforms simultaneously (Fig. 3f). Similar to DEGs, alternatively spliced genes (ASGs) were also hypomethylated compared to non-alternatively spliced ones (Fig. 3e). This may limit the role of DNA methylation in regulating phenotype associated gene expression or alternative splicing in our species, and contrasts with what has been described in the honeybee (26, 35–39).

No evidence that microRNAs regulate phenotypic differentiation

Species-specific microRNA (miRNA) libraries were constructed from pools of individuals to include each phenotype to determine whether large numbers of miRNAs are shared between hymenopterans to the exclusion of the other insects, and identify potential cis-regulatory elements of DEGs. From our miRNA libraries, we identified 159 microRNA families (73 in *Polistes* and 86 in *Dinoponera*) including 15 previously undescribed families (Fig S7; Dataset 4; SV). We identified four families that are unique to hymenopterans, and a further nine families that were shared by apocritans to the exclusion of *Nasonia* and other insects. We found that microRNAs (40) were not preferentially targeting phenotype-specific DEGs, as although some DEGs appeared to be highly targeted others were not (Dataset 4). Further work is needed to investigate miRNA expression levels in large numbers of individual queens and workers to rule out a role for miRNAs in caste differentiation.

A role for conserved ‘toolkit’ genes and taxon-restricted genes in regulatory networks

Despite the low numbers of DEGs, we found evidence that DEGs were non-randomly organized at the network level in both species. Weighted gene correlation network analyses identifies groups of genes that co-vary significantly in expression as ‘modules’ (41). These analyses identified 31 and 41 gene co-expression networks for the ant and wasp respectively (SIII.5; Dataset 5). DEGs were clustered non-randomly across networks in both species (Fig. 4a). Only three (10%) and two (5%) network modules showed significant over-representation of DEGs in the ant and wasp respectively and only one network module in the ant showed evidence of functional enrichment for ribosomal terms (SIII.5). Phenotype-
specific transcription in both species, therefore, is governed by subtle but coordinated co-expression networks.

There is a debate over the relative roles for core sets of conserved genes (42–48), and taxon-restricted genes (5, 44, 47, 49, 50) in the evolution of convergent phenotypes (7, 44, 46). We found evidence that both types of gene classes play peripheral roles in the molecular networks associated with phenotypic differentiation in our study species. In each species, we identified both classes of genes among DEGs, determined whether their functions were conserved, and their putative importance in the gene networks associated with phenotypic differentiation. There were significant levels of overlap in the identity of DEGs between the two species (reciprocal BLASTs of DEGs; n=11 genes; p< 0.003 relative to chance for both species; SIII.3; Dataset 2), suggesting they are homologs. Some of these genes were the same as those that had been previously identified as conserved ‘toolkit’ genes for alternative phenotypes in eusocial insects (e.g. cytochrome P450, vitellogenin, hexamerin-2 and kruppel homolog 1 (42–48)), but others were not (e.g. fibrillin-like gene, glutaminase, esterase and myrosinase enzymes, and a gene coding for a lysozyme). Gene identity may be conserved, but not the direction of expression (5, 7): 4 out of 11 genes were worker-biased in the ant, whilst all 11 were queen-biased in the wasp (Dataset 2). Finally, conserved DEGs were not generally highly connected in the co-expression networks of either species (Fig. 4c-f). This contrasts with eusocial insect species with phenotypes that are determined irreversibly during development, where conserved genes can play central roles in gene networks (44).

Taxon restricted genes (those having no significant homologs in available genomic databases) were detected in DEGs sets in both species (Ant: 10%, n=16; Wasp: 7.5%, n=5) (Table 1; Fig 4c-f; S10), and at similar levels to taxon-restricted genes across the whole genome (Ant (11.6% TRGs): X^2 = 0.11, p = 0.74; Wasp (9.1% TRGs): X^2 = 0.52, p = 0.47; Dataset 5). Taxon-restricted DEGs are likely to be new genes (short relative to annotated/known genes (Fig. S8) (49)) of unknown/novel functions (‘guilt-by-association’ network analysis (41), as their nearest neighbours were also taxon-restricted (unknown function) (mean = 2.3 out of 10 most connected genes had BLAST hits; Fig. S11, Dataset 5). Finally, taxon-restricted DEGs had similar low levels of connectivity to conserved genes (above) in the networks of both species (Fig.4c-f; GLM. ant: binomial errors p=0.89; wasp: quasibinomial errors p= 0.96), suggesting that conserved and taxon-restricted (novel) genes are similarly important in phenotypic differentiation in these two species.

These data support the emerging hypothesis that conserved genes, new genes and/or new regulatory networks are important in the evolution of phenotypic diversity (5, 44, 47–51). Our analyses add to this by identifying roles for both conserved and taxon-restricted genes in highly plastic phenotypes.
Summary and Conclusions

We sequenced the genomes, microRNAs, multiple brain transcriptomes and methylomes from two eusocial insect species whose life cycles depend on high phenotypic plasticity throughout life. This includes the first aculeate wasp genome sequence. Both species displayed three key molecular signatures which may be molecular hallmarks for highly plastic phenotypes in simple eusocial insects. These are: 1) Little molecular differentiation between phenotypes in transcription, but subtle non-random differentiation at the transcriptional network level; 2) No evidence of a role for DNA methylation or microRNAs in regulating phenotypic differentiation, and an overall lack of distinct methylome patterning together with evidence of methylation turnover; 3) A similar role for both conserved ‘toolkit’ genes and novel taxonomically restricted genes in phenotypic differentiation. These characteristics may allow plasticity in the regulation of the genome, and thus facilitate plasticity at the phenotypic level (52). The sequencing of more species with different levels of plasticity and multiple phenotypes will be required to confirm this hypothesis (6). However, the available data suggest that these hallmarks are contrasting with those of eusocial insects with low plasticity - like the honeybee and most ants - where a large proportion of genes, functionality and network differentiation are associated with phenotypic differentiation (44, 53–58), and where phenotypes appear to be regulated by DNA methylation (24, 25, 30, 34, 35, 37, 59–62). Comparisons of species with contrasting evolutionary histories, as in our study species, will be especially valuable in revealing the molecular signatures at the origin of social evolution (e.g. in *Polistes*) and in reversions from complex to simple behaviours (e.g. in *Dinoponera*). Methylome data from the brains of other ant (or wasp) species are not currently available. However, whole body analyses of two species of ants revealed less defined methylome patterning and fewer differentially methylated genes between reproductive and non-reproductive phenotypes in *Harpegnathos* (high phenotypic plasticity) compared with *Camponotus* (lower phenotypic plasticity, 30), in support of our hypothesis. These insights, and the generation of the deep, multi-faceted genomic resources for two model organisms with simple societies, help plug a fundamental gap in our understanding of the molecular basis of phenotypic plasticity and serve to generate novel and important hypotheses on eusocial evolution. A particular focus for future work would be on whether the intriguing lack of DNA methylation and a key member of the enzymatic machinery (DNMT3) as regulators of alternative phenotypes is of general importance in permitting genomes to be highly responsive, as we seen at the phenotypic level in social species with high phenotypic plasticity.
Methods and Supplementary Information

Word document with detailed methodology and supplementary information on sample collection (SECTION (S) I), genome sequencing (SII), RNA-sequencing (SIII), BS-sequencing (SIV) and microRNA sequencing (SV). A database for every section is also provided.

Acknowledgements

We thank J.O. Dantas, A. Andrade, N Dantas, R. Zaurin, E. Bell, R. Southon, W.T. Wcislo, J. Morales and staff at the Galeta field station at the Smithsonian Tropical Research Institute Panama and the Universidade Federal de Sergipe for help and logistical support in fieldwork; D. Datta at CRG, K. Tabbada at BI and N. Smerdon at The Wellcome Trust Sanger Institute for assistance with sequencing; T. Alioto of the CNAG in Barcelona for bioinformatics assistance; N.J.B. Isaac for statistical advice; Groups that provided us with unpublished data (Dataset 3); Members of the Reik and Sumner labs for their useful comments during the preparation of the manuscript. This work was funded by NERC: NE/G000638/1, NBAF581, NE/K011316/1 (SS) and NE/G012121/1 (WOHH, SS), RCUK (SS) (SB), Leverhulme Trust (WOHH), BMBF FKZ 0315962 B & CRG core funding (HH), Spanish ministry of Economy and Competitiveness BIO2012-37161 (TG), Spanish MINECO BIO2011-26205 (RG), ISCIII PT13/0001/0021 (RG), Instituto Nacional de Bioinformatica and AGAUR (RG), Wellcome Trust 095645/Z/11/Z (WR), BBSRC BB/K010867/1 (WR), Stuttgart Universität (TPJ), Fapesp 2010/10027-5 (FSN). This work was conducted under collecting and export permits SE/A-20-12, 10BR004553/DF and 11BR006471/DF. SB is a founder and shareholder of Cambridge Epigenetix Limited. WR is a consultant and shareholder of Cambridge Epigenetix Limited. Genomic analyses were performed on the whole genome assemblies of *P. canadensis* and *D. quadriiceps*, deposited at DDBJ/EMBL/GenBank under the accession SAMN02869711 and SAMN02869781, respectively. Raw data from all BS-seq and RNA-seq libraries were deposited in GEO under the accession number GSE59525.

References

16

522
523
524
525
526
527
528
529
530
531
532
533
534
Figure legends

Fig. 1: Genome sequencing and organisation. a) *P. canadensis* and b) *D. quadriceps* share similar ecological, social and behavioural traits (see Dataset1); c) *P. canadensis* shares more similarity in predicted proteins with bees (Apidae) than ants (Formicidae) as expected given the lack of other published aculeate wasp genome sequences; *D. quadriceps* shares greatest similarity of predicted protein sequences with sequenced ant genomes (Formicidae). These data are derived from computational protein analyses (see SII.7); d) Distribution of different classes of repetitive elements and transposons across *P. canadensis* and *D. quadriceps* genomes.

Fig. 2: Low levels of transcriptional differentiation between phenotypes. a-b) Counts per million plots of log fold mean gene expression differences between phenotypes, showing the numbers and log fold differences of differentially expressed genes upregulated in reproductives (positive) and non-reproductives (negative). The union and individual results of two methods for detecting DEGs (NOIseq and EdgeR) are presented.

Fig. 3: Absence of distinct DNA methylation patterning. a) Average CG methylation level in brain tissue along gene bodies and 20kb of adjacent sequence for *P. canadensis* (green), *D. quadriceps* (blue) and *A. mellifera* (yellow) TSS: Transcription Start Site; b) Proportion of methylated cytosine within HMRs. Hartigan’s Dip Test for unimodality D= 0.0184 in *P. canadensis*, D= 0.0257 in *D. quadriceps*, D= 0.0849 in *A. mellifera*. p<0.0001 in all 3 species; c) Screen shot from Seqmonk software showing the distribution of CG methylation in an orthologous gene in each of the three species; d) Venn diagram of methylated orthologs: 74.5% (321/431) of the methylated genes in *P. canadensis* (green) overlap with *D. quadriceps* (blue); e) Methylation distribution and summary box plots of the differentially expressed genes (DEGs) and alternatively-spliced genes (ASG) and non-alternatively spliced genes (Non-ASG), tested with Welch Two Sample t-tests; f) Splicing entropy of annotated transcript isoforms. Shannon entropy grows with the number of annotated isoforms and with their equifrequency (Entropy is 0 when only one isoform is expressed and high when all isoforms are expressed equally).

Fig. 4: Coordinated transcriptional network organization. a) DEGs are non-randomly distributed across modules (groups of genes with similar levels of expression). 14 DEGs out of 41 in *P. canadensis* modules (bionomial GLM $X^2[13]=162$, p<0.0001), 25 DEGs out of 31 in *D. quadriceps* modules (bionomial GLM $X^2[24]=288$, p<0.00001). Colors correspond to
the different modules. (*) indicates the modules that correlate significantly with phenotype.

(b-f) Network graphs show the connectivity of annotated and taxon-restricted genes in the modules that correlate significantly with phenotype. There were two modules in *P. canadensis*; ((c) “yellow” module $p=2.4\times10^{-23}$; (e) “red” module $p=14.1\times10^{-23}$) and three in *D. quadriceps* ((b) “lightyellow” module $p=9\times10^{-19}$, (d) magenta module $p=2.7\times10^{-42}$; (f) darkturquoise module $p=8.6\times10^{-4}$). DEGs fold enrichment in module: “yellow” (9x), “red” (3.6x), “light-yellow” (21.5x), “magenta” (5.4x) and “dark-turquoise” (7.7x). Nodes represent individual genes (with their XLOC gene name given). Edges indicate high co-expression between genes; edges with a correlation below specific thresholds are removed to aid visualization (41) (Thresholds: $c = 0.27 - 1$; $d = 0.31 - 1$; $e = 0.15 - 1$; $f = 0.24 - 1$; $g = 0.12 - 1$). Connectivity (number of edges per node above the threshold) is indicated by node size. Annotated DEGs that are hubs (hubs defined as highly-connected gene with more than 5 connections, $c > 5$) are in red, and taxon-restricted DEG that are hubs ($c > 5$) are in blue. “Toolkit” genes and taxon-restricted gene names are highlighted. Three genes that are DEGs in both species were found to be hubs in some networks: *myrosinase* ($c=16$) in *P. canadensis*, *Vitellogenin* ($c=14$) and *fibrillin* ($c=8$) in *D. quadriceps*.