
Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.5194/bg-12-6869-2015

Link to publication record in Explore Bristol Research
PDF-document

© Author(s) 2015. CC Attribution 3.0 License.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
pH up-regulation as a potential mechanism for the cold-water coral *Lophelia pertusa* to sustain growth in aragonite undersaturated conditions

M. Wall\(^1,2\), F. Ragazzola\(^3,a\), L. C. Foster\(^3,b\), A. Form\(^1\), and D. N. Schmidt\(^3\)

\(^1\)GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
\(^2\)Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
\(^3\)School of Earth Sciences, University of Bristol, Bristol, UK
\(^a\)now at: Institute of Marine Sciences, University of Portsmouth, Portsmouth, UK
\(^b\)now at: Marine conservation society, Unit 3, Hereford and Worcester, UK

Correspondence to: M. Wall (mwall@geomar.de)

Received: 24 March 2015 – Published in Biogeosciences Discuss.: 5 May 2015
Revised: 2 November 2015 – Accepted: 22 November 2015 – Published: 1 December 2015

Abstract. Cold-water corals are important habitat formers in deep-water ecosystems and at high latitudes. Ocean acidification and the resulting change in aragonite saturation are expected to affect these habitats and impact coral growth. Counter to expectations, the deep water coral *Lophelia pertusa* has been found to be able to sustain growth even in undersaturated conditions. However, it is important to know whether such undersaturation modifies the skeleton and thus its ecosystem functioning. Here we used Synchrotron X-Ray Tomography and Raman spectroscopy to examine changes in skeleton morphology and fibre orientation. We combined the morphological assessment with boron isotope analysis to determine if changes in growth are related to changes in control of calcification pH. We compared the isotopic composition and structure formed in their natural environment to material grown in culture at low pH conditions. Skeletal morphology is highly variable but shows no distinctive differences between natural and low pH conditions. Raman investigations found no difference in macromorphological skeletal arrangement of early mineralization zones and secondary thickening between the treatments. The \(\delta^{11}\)B analyses show that *L. pertusa* up-regulates the internal calcifying fluid pH (pH\(_{cf}\)) during calcification compared to ambient seawater pH and maintains a similar elevated pH\(_{cf}\) at increased pCO\(_2\) conditions. We suggest that as long as the energy is available to sustain the up-regulation, i.e. individuals are well fed, there is no detrimental effect to the skeletal morphology.

1 Introduction

The ocean is absorbing CO\(_2\) from anthropogenic emissions resulting in a drop in carbonate saturation and ocean pH (Bates et al., 2012). Cold waters take up and store more CO\(_2\) and thus the high latitudes will be amongst the first to experience undersaturated conditions (Orr et al., 2005). The response of marine calcifiers to ocean acidification has been shown to be taxon-specific (e.g. Ries et al., 2009; Pörtner et al., 2014); consequently, understanding the response of important key marine habitat builders is imperative to estimate potential impacts on their future ecosystem service. A large number of studies have concentrated on the physiological aspects of changes in carbonate chemistry (see Pörtner et al., 2014), much less is known about the impact this has on the skeleton grown by these organisms. While some species have been shown to continue to grow even under low pH conditions, a weakening of the ultra-structure can impair ecosystem functionality, i.e. its ability to withstand predators and wave action (Chan et al., 2012; Ragazzola et al., 2012; Melbourne et al., 2015).

Cold-water corals are important habitat builders that offer a range of microhabitats sustaining high biodiversity and provide nursery grounds for various species of fish (Fosså et al., 2002; Henry and Roberts, 2007; Roberts et al., 2008). The maintenance of their structural integrity is essential not just for the species itself but also for a wide range of species which depend on this habitat. *Lophelia pertusa* is the most...
common species of cold-water corals and has a cosmopolitan distribution with a wide temperature (4–12 °C) and salinity range (35–37 psu) suggesting a relatively high tolerance to environmental drivers. The species is typically found in regions with strong water currents and high productivity (Genin et al., 1986; Mięnis et al., 2007). The modern distribution of cold-water corals appears to be constrained by the aragonite saturation horizon (the depth below which the waters become undersaturated with respect to aragonite), with 88.5% of all cold-water coral records found above the aragonite saturation horizon (Davies and Guinotte, 2011; Guinotte and Fabry, 2008). Importantly for their future distribution, the aragonite saturation horizon has shoaled by 80–400 m in the North Atlantic since the industrial revolution (Feely et al., 2004) and model projections suggest a shoaling of up to 2000 m by the end of this century resulting in vast areas of their current habitat being undersaturation with regards to aragonite (Orr et al., 2005).

Despite the strong link between the distribution of cold-water corals and the aragonite saturation horizon, Lophelia pertusa can calcify in undersaturated conditions (Form and Riebesell, 2012; Hennige et al., 2014; Maier et al., 2009, 2012), likely facilitated by its ability to increase the internal calcifying fluid pH at the site of calcification (pH_{crit}), termed “up-regulation”. Most indications for up-regulation come from indirect determinations, e.g. measuring the boron isotopic composition (δ^{11}B) of bulk skeleton samples of corals (Anagnostou et al., 2012; Holcomb et al., 2014; McCulloch et al., 2012; Trotter et al., 2011). Measurement of the pH_{crit} at the site of calcifications in several corals confirmed an ability of the organism to influence the internal pH_{crit} with a range of physiological processes (Al-Horani, 2003; Ries, 2011; Venn et al., 2013). The skeletal δ^{11}B was observed to decrease with lower saturation state and pH of seawater (in total scale: pH_{crit}), suggesting a relative lowering of the internal pH_{crit} in response to external pH decrease. At low seawater pH_{crit}, internal pH_{crit} is still significantly higher than seawater pH_{crit} (up-regulation intensity, where ΔpH = pH_{crit}−pH_{crit}). Anagnostou et al., 2012; McCulloch et al., 2012; Trotter et al., 2011), but does not reach internal pH_{crit} levels observed under control conditions (Holcomb et al., 2014; Trotter et al., 2011). This up-regulation ability has several implications: firstly, the potential to moderate the impact of projected future saturation state depends on the strength and efficiency of this mechanism (less efficient up-regulating species may be more adversely affected). Secondly, such differences in efficiencies will affect the reliability of δ^{11}B as pH proxy when applied to paleo-climate reconstruction. Thirdly, the establishment of a pH gradient between external seawater and internal site of calcification requires energy reallocation (Al-Horani et al., 2003; Chalker and Taylor, 1975) and altered energetic demands may affect skeletal structure and strength.

In order to understand the interaction of biominalization response, we analysed L. pertusa skeletons grown under natural control (Sula Reef pCO$_2$ = 405 µatm) and elevated CO$_2$ conditions (CRSIII pCO$_2$ = 982 µatm). We uniquely combined Raman spectroscopy, Secondary Ionisation Mass Spectrometry (SIMS) and Synchrotron X-Ray Tomographic Microscopy (SXRTM) to examine whether ocean acidification causes any change in skeletal morphology of L. pertusa, such as thickness and growth patterns, or in the biominalization processes. SIMS δ^{11}B transects are compared between the high pCO$_2$ (CRSIII) treatment and the natural conditions (Sula Reef). The δ^{11}B are converted to pH_{crit} to examine potential physiological adjustments in coral biominalization under anticipated future ocean conditions of lower pH_{crit}.

2 Material and methods

2.1 Specimens

The Lophelia pertusa specimens are grown in an experimental set-up at GEOMAR, Germany (see Form and Riebesell, 2012 for full details about the experimental set-up). In brief, the live branches of L. pertusa were collected with minimal invasion using the manned submersible JAGO at the central part of the Sula Reef complex (64°06′N, 8°05′E) off the Norwegian coast in 2008. The samples were transferred to Kiel and after a 3-month acclimatization period they were stained using Alizarin Red S (Standard Fluka: Sigma-Aldrich, Steinheim, Germany, with a concentration of 5 mg L$^{-1}$ for an incubation period of 8 days to mark the start of the experiment). The corals were kept at a constant temperature (7.5 °C) and salinity (34.5 psu) similar to the conditions at the Sula Reef. After staining, the corals were transferred to the treatment tanks and the pCO$_2$ was over 2 weeks gradually adjusted to the treatment conditions which are summarized in Table 1. The specimens were cultured for 6 months in all treatments. SIMS δ^{11}B transects and Raman are compared between the high pCO$_2$ (CRSIII) treatment and the natural conditions (Sula Reef), while for SXRTM and wall thickness measurements individuals from all treatments were used (CRSI pCO$_2$ = 605, CRSII pCO$_2$ = 778 and CRSIII pCO$_2$ = 982 µatm).

Cold-water corals show isotopic (including δ^{11}B) and elemental heterogeneities within the early mineralizing skeleton (including EMZ like structure in the theca wall, e.g. Adkins et al., 2003; Blamart et al., 2007). To overcome this heterogeneity, studies using cold-water corals to trace seawater pH_{crit} limit the sampling to the outer thecal wall and integrate large skeletal areas (e.g. McCulloch et al., 2012; Anagnostou et al., 2012). Main growth occurs at the polyp tip, where the theca wall is very thin and predominately formed by primary skeleton. This area is normally avoided in boron studies as it is calcified under a different mechanism than the secondary theca thickening.

Cold-water corals grow slowly which makes it impossible for us to follow this approach. It would also limit our analysis.
to a part of the skeleton and not allow the more holistic look at the growth we would like to achieve. To evaluate the δ11B change with changing seawater conditions and to be able to link this directly to structural material analysis, a high-spatial resolution technique was applied to material that was grown during the culturing period. To separate the growth of the skeleton during natural and treatment conditions, we traced the Alizarin staining line. In the theca wall where growth is slower Alizarin was incorporated in traces and we used Raman spectroscopy to determine the start of the experiments.

For Raman and SIMS analyses, specimens cultured in the high treatment (982 ± 146 µatm) were compared to branches and/or skeletal regions grown naturally in the field. The specimens were cut transversal (at different heights along the corallite) and longitudinal. From the high pCO2 treatment (CRSIII) one polyp was cut above and below the Alizarin stain (Fig. 1b) and another polyp was cut transversally through the thecal wall. The sample preparations allow a comparison of skeleton grown naturally in situ to pre-study conditions and during the culturing time prior to the staining as well as the treatment conditions after staining.

2.2 Raman mapping

Raman mapping was done using a WITec alpha 300 R (WITec GmbH, Germany) Confocal Raman Microscope equipped with an ultra-high throughput spectrometer (UHTS 300, WITec, Germany) and an EMCCD camera (grating of 600 grooves mm−1, blazed at 500 nm and centred at 2400 cm−1). Laser excitation wavelength of 488 nm was used. Raman maps were derived using a Nikon 20× (numeric aperture (NA) = 0.4) objective for large area scans and a Nikon 100× (NA = 0.9) for small high-resolution area scans. The spectra during mapping were recorded with an integration time of 35 ms and a step size of 1 µm (large area scans) and 10 ms and 0.5 µm for small area scans. The symmetric stretch of the carbonate (1085 cm−1) provides information on the crystal orientations and was used to map the skeletal growth patterns and arrangement. Fluorescence intensity
Figure 1. Lophelia pertusa colony (a) cut in transversal plane of an old branch and (b) Lophelia colony cut in longitudinal plane with two branches (old and a young branch). The young side branch shows the Alizarin stain. (c, d) Raman maps of aragonite fibre orientation (left map) and fluorescence (right map) within the primary skeleton with early mineralization zone (EMZ; c) and within the secondary thickening (d). The arrows in (c, d) mark skeletal organic matrix bands. (e) Raman maps of aragonite fibre orientation clearly differentiating primary skeleton and secondary thickening of the corallite and early mineralization zone (EMZ).

beam. For the f4 the primary beam energy was 15 keV and a beam current between 10 and 40 nA to produce positive secondary ions of 10B$^+$ and 11B$^+$ and for the 1270 a primary beam energy of 12.2 keV and secondary ion energy of 10 keV resulting in a net primary impact energy of 22 keV. The secondary ions were analysed with an energy window of 52 eV, a 150 µm image field using 450 µm contrast and 1800 µm field apertures. Surface contamination was minimized using a 30 s pre-sputter, Köhler illumination with a field aperture limiting ions to the central area of the sputter pit. The isotope ratio was measured for 200 cycles for the f4 and 60 cycles for the 1270 per spot analysis, each cycle consisting of 5 and 3 s integrations of 10B$^+$ and 11B$^+$ respectively. The beam diameter at the end of the analysis was ~ 25 by 40 µm. For details see Kasemann et al. (2009). Analyses followed line-transects and single spots were spaced $\sim 30–50$ µm apart (depending on the sampling location). A minimum of 10 spot analyses of the internal standard M93 coral bulk standard (Kasemann et al., 2009, 24.8 ± 0.4 ‰ (2SD)) was run each day of analyses on both instruments, with an average of 3.7 ± 0.4 ‰ (1SE) and used to normalize sample 11B/10B values.

We analysed three colonies from Sula reef to assess the variability within the population. We tested how representative our cross sections are by analysing two sections from the same corallite. We also tested reproducibility of our results by comparing two corallites from the same coral colony and then compared growth prior to staining with material grown in culture (for schematic representation see Supplement Fig. S1).

2.4 Synchrotron analyses and wall thickness changes

Synchrotron-based X-ray Tomographic Microscopy were performed at the TOMCAT beamline at the Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland (Stamppanoni et al., 2006). One specimen from each of the CO$_2$ levels was scanned (CRSI-CRSIII: 604 ± 105, 778 ± 112 and 982 ± 146 µatm). For each tomographic scan, 377 projections over 180 degrees were acquired at energy of 28 keV with UPLAPO 2× objective (field view of 7.5 × 7.5 mm2; pixel size 3.7 × 3.7 mm2). The exposure time was 250 ms. Further processing was done using Avizo to produce 3-D isosurface model and measure sample thickness above and below Alizarin stain lime (Fig. 2b) by cross-referencing to the sample. In addition, longitudinal cuts of Lophelia pertusa polyps ($n = 5–7$, per treatment) grown at the distal ends of the colonies were analysed with a microscope to measure wall thickness below and above the staining line. The thickness ratio of below and above staining line was calculated and compared between treatments. Polyp diameter is not cor-
related to linear extension of a polyp (Fig. S2) nor the location (Form A., personal communication, 2015).

3 Results

The main growing edge outlined by the Alizarin staining lines marks the border to the experimentally precipitated distal skeleton (Fig. 2). In microscopic images, the staining line is only visible at the main growing edge (Fig. 2b), whereas in Raman fluorescence maps the outer skeletal surface before the start of the experiment can be traced over the entire colony (Figs. 2, 3). The Raman maps clearly display the orientation of the skeletal fibres and the location of the early mineralization zone (EMZ: Cuif and Dauphin, 2005, or rapid accretion front, RAF: Stolarski, 2003) and were used to compare skeletal formation before and during experimental conditions (Fig. 2c, d). At the macromorphological level, i.e. the arrangement of the main skeleton entities (EMZ and fibres), no notable difference between the natural and high pCO$_2$ sample can be detected (Figs. 3c, d, 5, 6b).

Skeletal tomography reveals a large degree of morphological variability within the *L. pertusa* skeleton. Both the thickness of the outer wall and septa vary strongly as do the shape and length of the septa (Fig. 7). In addition, the vertical extension of newly grown material (after staining) was not even (Fig. 7). To enable a direct comparison between the natural material and that grown at high CO$_2$, sections were taken directly above and below the Alizarin stain (Fig. 7b). These sections show that there is no change in structure for three different pCO$_2$ treatments (Fig. 7c–h) which was confirmed by measurements on longitudinal polyp sections (Fig. S3).

Overall thickness is slightly higher below the staining line than above (thickness ratio below/above of 1.10 ± 0.07) and range from 0.82 (±0.04), 1.14 (±0.09) to 1.32 (±0.16) for the CRSII, CRSI and CRSII, respectively (see Fig. S3).

All the samples and transects analysed for boron isotopes are summarized in Table 2. Repeated cross sections of the same corallites are reproducible (same colony and same polyp δ11B mean ± SE: 26.41 ‰ ± 0.83 vs. 26.08 ‰ ± 0.61 and 27.62 ‰ ± 1.09 vs. 27.55 ‰ ± 0.57) as were transects comparing two coral polyps from the same coral colony (27.96 ‰ ± 0.48 vs. 27.62 ‰ ± 1.09). Hence, we observed consistent values within the population grown in their natural environment within error.

All transects show heterogeneity in δ11B varying from ~19.8–32.2 ‰, in particular when old branches with secondary thickening were analysed (Figs. 4, 6, S4). The variability of δ11B in *L. pertusa* spans approx. 14 ‰ and reveals lower values within the primary skeleton around the EMZ 22.48 ± 1.58 ‰ (mean ± SD, see Supplement Table S1) and
Figure 3. (a) *Lophelia pertusa* cut in longitudinal plane displays the location of Raman maps and microscopic image (50×). (b) Raman map of the staining line (b1) and the growth interruptions (black arrows) shown in the microscopic image (b2). (c) Raman maps of the location of the staining line (c1) and the growth interruption seen in aragonite orientation map (c2).

Table 2. Summary of skeletal boron isotopic composition (δ¹¹B; mean, standard deviation (SD) and standard error (SE)) for different transects on transversal sections of different *Lophelia pertusa* polyps (from 3 different colonies) and the corresponding pH (mean, min and max). Repeated parallel transects were performed on a few polyps. The transect cross different skeletal regions (see Figs. 4–6 and Supplement) here indicated as natural in situ grown skeleton (Nat) and/or skeleton grown during laboratory culturing conditions (CRSIII).

<table>
<thead>
<tr>
<th>Colony</th>
<th>ind. polyp</th>
<th>Transect</th>
<th>skeletal region</th>
<th>Δ¹¹B transect</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>1</td>
<td>Nat</td>
<td>26.41 ± 4.09</td>
<td>8.80</td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>2</td>
<td>Nat</td>
<td>26.08 ± 3.38</td>
<td>8.79</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>3</td>
<td>Nat</td>
<td>27.96 ± 2.56</td>
<td>8.92</td>
</tr>
<tr>
<td>II</td>
<td>3</td>
<td>4</td>
<td>Nat</td>
<td>27.62 ± 5.10</td>
<td>8.86</td>
</tr>
<tr>
<td>II</td>
<td>3</td>
<td>5</td>
<td>Nat</td>
<td>27.55 ± 5.55</td>
<td>8.89</td>
</tr>
<tr>
<td>III</td>
<td>4</td>
<td>6</td>
<td>CRSIII</td>
<td>24.81 ± 1.40</td>
<td>8.76</td>
</tr>
<tr>
<td>III</td>
<td>4</td>
<td>7</td>
<td>CRSIII</td>
<td>24.74 ± 1.57</td>
<td>8.75</td>
</tr>
<tr>
<td>III</td>
<td>4</td>
<td>8</td>
<td>Nat & CRSIII</td>
<td>23.70 ± 2.02</td>
<td>8.65</td>
</tr>
<tr>
<td>III</td>
<td>5</td>
<td>9</td>
<td>Nat & CRSIII</td>
<td>25.44 ± 2.75</td>
<td>8.75</td>
</tr>
</tbody>
</table>

an increase towards the outer skeletal rims (Figs. 4, 6, S4, S5). The secondary thickening is characterized by a higher δ¹¹B of 26.97 ± 4.73‰ compared to the primary material and slightly reduced values at opaque nucleation sites (Figs. 6, S4).

Material that was deposited along the same skeletal region has the same δ¹¹B (shown by repeated transects on several polyps; Figs. 4, 5). Transects on different polyps with similar diameter of the same colony show the same δ¹¹B (transect 3,4, Table 2). The secondary thickening has the same δ¹¹B independent of whether it was precipitated during natural or the high pCO₂ condition (26.97 ± 4.73 and 27.8 ± 1.94 ‰, respectively; Fig. 3c) corresponding to a pH_of of 8.94 ± 0.15 or 8.95 ± 0.13, respectively. The sample grown only under high
Figure 4. Side branch of *Lophelia pertusa* cut in transversal plane and prepared for Raman mapping and SIMS analysis. (a) Microscopic image contains the location of the Raman map and the SIMS transects. (b) Raman map of the intensity distribution of the main aragonite peak (symmetric stretch, 1085 cm\(^{-1}\)) reveals the early mineralization zone (EMZ), the primary skeleton and the area of secondary thickening. Asterisks mark EMZ in the primary skeleton and skeletal areas within the secondary thickening zone of potentially reduced Boron isotopic value (cf. opaque growth bands in Blamart et al., 2007 or 1°, 2° nucleation zone in Cohen et al., 2006). (c) \(\delta^{11}B\) measured from inside to the outer coral skeletal rims (transect #1,2).

\(pCO_2\) has slightly higher average \(\delta^{11}B\) (24.52 ± 1.21‰) within the primary skeleton (Fig. 6) compared to primary skeleton precipitated under natural conditions. During the formation of the primary skeleton the calculated internal calcifying fluid pH\(_{cf}\) is lower than during secondary thickening (8.58 ± 0.11 vs. 9.01 ± 0.15). The primary skeleton formed during high \(pCO_2\) conditions reveals a stronger internal pH up-regulation (8.74 ± 0.08) but still lower values than what was measured within the secondary thickening during high \(CO_2\) conditions (8.95 ± 0.13).

4 Discussion

Lophelia pertusa has been shown to grow in undersaturated conditions. The amount of aragonite deposited under higher \(CO_2\) was at least equivalent to that deposited under natural conditions in agreement with findings in other studies showing sustained calcification using different analytical approaches (Form and Riebesell, 2012; Hennige et al., 2014; Maier et al., 2012). As *L. pertusa* grows by both vertical extension and by thickening, measurements by buoyant weight though do not provide information on whether the morphology is affected, i.e. does the skeleton thicken or thin during low saturation or remain unchanged?

Tomographic analyses showed that the morphology of *Lophelia* skeletons is highly variable and does not change under high \(CO_2\) even in undersaturated waters. We observed no change in the internal structure, in contrast other calcifying organisms, which show wall deformation in tube worms or coralline algae (Chan et al., 2012; Ragazzola et al., 2012). Arrangement and size of the primary skeleton, the template of size and shape of the corallite, do not change between treatments. The succession of growth bands is maintained and layers are formed even at undersaturated conditions. This finding corroborates a strong biological control on coral biomineralization. The only exception was less distinct organic layers, which might represent an impact on biomineralization in response to ocean acidification. The wider implications of a changed skeletal organic matrix need to be investigated further to understand its full implications.

A strong biological control on the biomineralization should also be expressed in its chemical composition, especially the boron isotope compositions (McCulloch et al., 2012; Hönsch et al., 2004). As deep-water corals grown in relatively stable environmental conditions, the high-resolution spatial isotopic and elemental heterogeneities suggest a biotic control that changes during growth. The isotopic heterogeneity is associated with specific skeletal regions (Blamart et al., 2007) and is also observed in other
isotopes, e.g. $\delta^{18}\text{O}$ (e.g. Rollion-Bard et al., 2010) and elemental ratios, e.g. Mg/Ca (e.g. Cohen et al., 2006; Krief et al., 2010). The Early Mineralization Zone (EMZ) is characterized with relatively low $\delta^{11}\text{B}$ compared to adjacent fibrous aragonite with a higher $\delta^{11}\text{B}$ and increases towards the outer wall. The EMZ is also known to have systematically lighter C and O isotopic composition by $\sim 4-5$ and $\sim 8-10\%$, respectively, compared to the fibrous aragonite part (Juillet-Leclerc et al., 2009; Rollion-Bard et al., 2010). Differences in C and O isotopes are suggested to be related to a faster growth of the EMZ suggesting that different skeletal regions are grown under different control or potentially even precipitation mechanisms. While the degree of heterogeneity with respect to boron isotopes in our samples is roughly equivalent to that of Blamart et al. (2007), the absolute values are offset by $\sim 10-14\%$. In their study the $\delta^{11}\text{B}$ translates to a maximum pH$_{cf}$ of approximately 10.2, while our data suggest values around 8.8 to 8.9 and agree with the bulk measurements of L. pertusa (McCulloch et al., 2012) and direct measurements of pH of calcifying fluids in symbiotic Scleractinian corals (Al-Horani et al., 2003) which determined values of 9.28 at light (additionally elevated by symbiont activity) and 8.13 at dark with seawater values of 8.2.

The use of $\delta^{11}\text{B}$ as pH$_T$ proxy is based on exclusive borate incorporation. Rollion-Bard et al. (2011), by re-analysing samples from Blamart et al. (2007), suggested that both borate and boric acid are incorporated in the skeleton of Lophelia pertusa. In their study they observed NMR differences in skeletal boron coordination, which was used as indicator for boric acid incorporation. Considering the fraction of
boric acid incorporation, they obtained pH_{cf} values similar to values obtained in other (McCulloch et al., 2012) and this study. In addition, they suggested that the EMZ incorporated a higher proportion of boric acid. In our data, we did not test whether boric acid incorporation plays a role. Our $\delta^{11} \text{B}$ to pH calculations though do not need any changes in incorporation to yield values which are comparable to bulk measurements (McCulloch et al., 2012). Applying their model to our data using $\delta^{11} \text{B}$ signature of the EMZ, the same individual would incorporate very different proportions of boric acid which is not likely given the broad range of literature on boron in corals in general. Therefore, we question this variable boric acid incorporation hypothesis.

Our interpretations are based on the internal pH_{cf} regulation calcification model (McCulloch et al., 2012) which assumes that the pH_{cf} is offset from seawater pH$_T$. McCulloch et al. (2012) reported a decrease in $\delta^{11} \text{B}$ with decreasing pH$_T$ in several cold-water coral species including *L. pertusa*. They suggested that biological pH_{cf} up-regulation determines the calcification response as described also for tropical corals (Holcomb et al., 2014). In contrast, we find similar growth rates between $p\text{CO}_2$ treatments (Form and Riebesell, 2012) and similar $\delta^{11} \text{B}$ values (within a 0.3 pH unit error) which questions a decreasing internal pH_{cf} (Anagnostou et al., 2012; McCulloch et al., 2012).

If our interpretation of maintenance of internal pH_{cf} within the secondary skeleton is correct it suggests that pH regulation can be decoupled from external seawater pH$_T$ and is a mechanism to explain the cold-water coral resilience. There are a number of parameters underreported in most acidification studies which might explain the difference in our findings. For example it has been suggested for a range of organisms that given a sufficient food supply, calcification can be maintained despite low saturation state (cf. opaque growth bands in Blamart et al., 2007 or 1$^\circ$, 2$^\circ$ nucleation zone in Cohen et al., 2006). Red asterisk marks the location of the staining line and hence, the border between growth under natural/control condition and laboratory treatment. (c) $\delta^{11} \text{B}$ measured in growth direction from inside to the outer coral skeletal rim (transect #9).

Figure 6. Old branch of *Lophelia pertusa* cut in transversal plane and prepared for Raman mapping and SIMS analysis. (a) Microscopic image of transversal cut through an old branch displaying the location of the Raman map and SIMS transect. (b) Raman map of the intensity distribution of the main aragonite peak (symmetric stretch, 1085 cm$^{-1}$) reveals the early mineralization zone (EMZ), the primary skeleton and the area of secondary thickening. Asterisks mark EMZ in the primary skeleton and skeletal areas within the secondary thickening zone of potentially reduced Boron isotopic value (cf. opaque growth bands in Blamart et al., 2007 or 1$^\circ$, 2$^\circ$ nucleation zone in Cohen et al., 2006). Red asterisk marks the location of the staining line and hence, the border between growth under natural/control condition and laboratory treatment. (c) $\delta^{11} \text{B}$ measured in growth direction from inside to the outer coral skeletal rim (transect #9).
In conclusion, the lack of sensitivity of *L. pertusa* to changes in pCO_2 in growth, mineralogy and boron isotopes corroborates their strong biological control over biomineralization that is not easily disturbed under elevated pCO_2 conditions. Our results raise a number of questions: (1) can energy be reallocated to up-regulate the internal pH$_2$ to a suitable level which would complicate the applicability of *Lophelia skeleton* $\delta^{11}B$ record as a paleo-pH proxy given the small ranges of pH difference studies often aim to resolve and (2) the role of OM production and quality need to be considered to improve our understanding of cold-water coral biomineralization and their response to acidification.

The Supplement related to this article is available online at doi:10.5194/bg-12-6869-2015-supplement.

Author contributions. A. Form provided the specimens from the culturing experiment. M. Wall, L. C. Foster, F. Ragazzola and D. N. Schmidt collected the data. M. Wall, L. C. Foster, D. N. Schmidt, F. Ragazzola and A. Form analysed the data. M. Wall, L. C. Foster, F. Ragazzola wrote the paper, and all authors (M. Wall, L. C. Foster, F. Ragazzola, D. N. Schmidt and A. Form) contributed to the final text and figures.

Acknowledgements. This study is a contribution to the BIOACID joint project, funded by the German Ministry of Research and Technology and EPOCA. The tomographic analyses were performed on the TOMCAT beamline at the Swiss Light Source (SLS), Paul Scherrer Institut, Villigen, Switzerland (SLS grant Agreement Number no. 20110822). The staff at EMMAC are thanked for their assistance with analyses, supported by a small research grant from the Royal Society. We are grateful to Federica Marone at the Swiss Light Source whose outstanding efforts have made these experiments possible. MW has received funding from the FP7-PEOPLE-2007-1-1-ITN Marie Curie Action: CalMarO (Calcification by Marine Organisms, Grant number: 215157) and BIOACID II (Grant number: FKZ 03F0655A). L. C. Foster acknowledges support from the Holmes Fellowship and NERC grant NE/F017383/1. F. Ragazzola is supported by Leverhulme Research Grant and DNS via a URF from the Royal Society.

The article processing charges for this open-access publication were covered by a Research Centre of the Helmholtz Association.

Edited by: W. Kiessling

References

M. Wall et al.: pH up-regulation as a potential mechanism for the cold-water coral Lophelia pertusa

Dickson, A. G.: Standard potential of the reaction: AgCl(s) + 1/2H₂(g) = Ag(s) + HCl(aq) and the standard acidity constant of the ion HSO₄⁻ in synthetic seawater from 273/15 to 318.15, J. Chem. Thermodyn., 22, 113–127, 1990.

