Rapid spatial equilibration of a particle in a box

Artur S. L. Malabarba,¹ Noah Linden,² and Anthony J. Short¹

¹H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
²School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, United Kingdom

(Received 29 June 2015; revised manuscript received 28 September 2015; published 16 December 2015)

We study the equilibration behavior of a quantum particle in a one-dimensional box, with respect to a coarse-grained position measurement (whether it lies in a certain spatial window or not). We show that equilibration in this context indeed takes place and does so very rapidly, in a time comparable to the time for the initial wave packet to reach the edges of the box. We also show that, for this situation, the equilibration behavior is relatively insensitive to the precise choice of position measurements or initial condition.

DOI: 10.1103/PhysRevE.92.062128 PACS number(s): 05.30.–d, 03.65.Yz, 05.70.Ln, 03.65.Aa

I. INTRODUCTION

Quantum systems are time-reversible and, in their time evolution, have recurrences arbitrarily close to their initial state. This is in stark contrast with the irreversibility found in thermodynamic processes and with the concept of evolution toward equilibrium, which is impossible in a periodic system. Lately, however, it has been found that even a closed quantum system can appear to equilibrate [1–19].

Under the weak assumption of a Hamiltonian with non-degenerate energy gaps, for a system with high-dimension, Linden et al. [1,2] proved that the partial state of any small subsystem (no matter how you partition the Hilbert space) stays very close to a static state for the vast majority of its time evolution. In parallel, Reimann [3,4] showed that, for the same set of Hamiltonians, the expectation values of any “reasonable” quantum observable on a closed system also stays predominantly close to a static value, even though the state itself does not.

Building on this, Short [5] showed that these results apply even if one considers the specific possible outcomes of the measurement, instead of just the expectation value, by describing it as a positive operator-valued measure (POVM). Thus, the time-evolving state of a closed system is physically nearly indistinguishable from a static state, even under careful experimental scrutiny, for the majority of time.

Since then, more effort has been devoted to studying the dynamics of the equilibration process [6–18]. Results by Short and Farrelly [6] place an upper bound on a state’s distinguishability, which tightens with time. Masanes et al. [7] derive the equilibration time scale for spin systems averaged over a set of Hamiltonians. Hutter and Wehner [8] find a clear criterion for when systems lose their initial information due to interaction with an environment. And Malabarba et al. [9] and Goldstein et al. [10] show that closed systems equilibrate surprisingly fast for typical measurements (measurements based on random projectors on the Hilbert space).

Here, we aim to gain further physical insight on the precise dynamics involved in equilibration. Showing how physical time scales—as we observe in thermodynamic systems—emerge from the underlying quantum dynamics has proven a challenge. In fact, it has been shown that even for general nanoscale systems you can find measurements where this time scale ranges from nanoseconds to the age of the universe [9,10]. Therefore, it is clear that to solve this problem one must consider scenarios where both the Hamiltonian and the measurement are physically meaningful.

For this reason, we consider the equilibration of a simple quantum system composed of a particle in a one-dimensional box, as perceived by coarse-grained position measurement (whether it lies in a certain spatial window or not). Under these conditions, we study the equilibration profile and derive the time scales by solving the time evolution.

A special characteristic of the particle in a box is that the recurrence time (for any initial condition) is at most the ground-state period. This allows us to explore the entire time evolution numerically, which would be unfeasible for systems with very large recurrence times. These results are then compared to those cited above and it is shown that the equilibration time scale of physical measurements is fast, albeit slower than generic typical measurements.

II. DEFINITIONS

The specific system studied is the quantum particle inside a one-dimensional box of size $L > 0$, defined by the free-particle Schrödinger equation

$$H = \frac{p^2}{2m},$$

(1)

where p is the momentum operator, and the boundary conditions restrict the state to the domain $x \in [-\frac{L}{2}, \frac{L}{2}]$ in position space,

$$\langle x | \Psi \rangle \big|_{x = -\frac{L}{4}} = \langle x | \Psi \rangle \big|_{x = \frac{L}{4}} = 0.$$

(2)

We consider here a class of projective measurements M_w, with $w \in [0, L]$. Each measurement $M_w = \{A_w, B_w\}$ is a set of two projectors in position space, each corresponding to a different outcome, defined by

$$A_w = \int_{-\frac{w}{2}}^{\frac{w}{2}} |x| \langle x | dx, \quad B_w = 1 - A_w.$$

(3)

They represent whether or not the particle is inside a region of width w centered on the origin.

Given a system of dimension d, it can appear to equilibrate with respect to a particular measurement because all the information contained in the system’s degrees of freedom (up to d complex numbers) is reduced to the probabilities of
each measurement outcome (one real number for each possible outcome). Under this amount of ignorance, even orthogonal states may be indistinguishable and the system may appear to be stationary. Choosing a two-outcome measurement ensures we are taking full leverage of this and taking an approach that is as simple as possible to understanding equilibration.

Our prime object of study is the distinguishability between two states according to a measurement M,

$$D_M(\rho_1, \rho_2) = \frac{1}{2} \sum_{A \in M} |\text{Tr}[A(\rho_1 - \rho_2)]|,$$

(4)

which, for M_w reduces to

$$D_{M_w}(\rho_1, \rho_2) = |\text{Tr}[A_w(\rho_1 - \rho_2)]|.$$

(5)

This quantity is significant because it determines the probability of successfully determining whether the system was originally in state ρ_1 or ρ_2 after performing the measurement M [5]. This probability is $p = \frac{1}{2} + \frac{1}{2}D_M(\rho_1, \rho_2)$, assuming one has full knowledge of the two states being compared.

The verification that equilibration has happened (at some time t) is done by comparing the instantaneous state of a system $\rho(t)$ with its time-average state $\omega = \langle \rho(t) \rangle_{t \in (0, \infty)}$, also called the equilibrium state, where

$$\langle f(t) \rangle_{t \in (0, \infty)} = \lim_{T \to \infty} \frac{1}{T} \int_0^T f(t) dt.$$

(6)

Equilibration is achieved once $D_M(\omega, \rho(t))$ becomes small ($\ll 1$) and stays small for the majority of the time evolution.

Another quantity that plays an important role in the equilibration process is the effective dimension [5,6,9]. Roughly, it represents the number of energy eigenstates $|n\rangle$, which the system occupies with significant probability and, for a pure state $|\Psi\rangle\langle\Psi|$, it can be written as

$$d_{\text{eff}} = \left[\sum_{n=1}^{\infty} |\langle\Psi|n\rangle|^4 \right]^{-1}.$$

(7)

Throughout this paper, whenever we mention the high-dimensional limit we are referring to $d_{\text{eff}} \gg 1$.

Our results, presented in the next section, consist of mathematical statements regarding important characteristics of the equilibration process of the particle in a box system with respect to the simple dichotomic measurement described in Eq. (3). We are effectively asking the question: "If all I know is which interval the particle is in, does it look like it equilibrates? How fast does that happen?"

III. RESULTS

First, we consider the initial condition with an approximately Gaussian distribution,

$$|\langle x | \Psi_{\text{G}}(0) \rangle | = N \left(e^{-\frac{x^2}{\sigma^2}} - e^{-\frac{\pi^2}{\sigma^2}} \right)$$

$$\approx \left(\frac{1}{2\pi\sigma^2} \right)^{\frac{1}{4}} \exp \left(-\frac{\pi^2}{\sigma^2} \right)^{\frac{1}{2}}$$

$$\rho_{\text{G}} = |\Psi_{\text{G}}\rangle\langle\Psi_{\text{G}}|,$$

(8)

where the arbitrary constant σ defines the initial width of the wave packet in position space, N is the normalization constant, and the approximate relation is due to neglecting the second exponential on the first line. This is a smooth function concentrated mostly inside the support of a single outcome of $M(\rho_w)$, as long as $\sigma < \omega$. For this system, the eigenstates, the energy levels, and the energy amplitudes are

$$\langle x | n \rangle = \sqrt{\frac{2}{L}} \sin \left(n\pi \left(\frac{x}{L} + \frac{1}{2} \right) \right), \quad x \in \left[-\frac{L}{2}, \frac{L}{2} \right]$$

(9)

$$E_n = \frac{\hbar^2 n^2 \pi^2}{2mL^2}$$

(10)

$$\langle \Psi_{\text{G}} | n \rangle \approx \left(\frac{2\pi \sigma^2}{L^2} \right)^{\frac{1}{4}} e^{-\frac{\pi^2}{\sigma^2}} 2 \sin \left(\frac{n\pi}{2} \right).$$

(11)

Before describing the distinguishability we state our first result about this system. The effective dimension of ρ_{G}, as defined in Eq. (7), can be written as

$$d_{\text{eff}}^{-1} \approx \sum_{n=1}^{\infty} 2 \left(\frac{4\pi \sigma}{L} \right)^2 e^{-\frac{2\pi^2 n^2}{\sigma^2}} \sin^4 \left(\frac{n\pi}{2} \right)$$

$$= \left(\frac{4\pi \sigma}{L} \right)^2 \sum_{n=-\infty}^{\infty} e^{-\frac{2\pi^2 n^2}{\sigma^2}} \sin^4 \left(\frac{n\pi}{2} \right)$$

$$= \left(\frac{4\pi \sigma}{L} \right)^2 \left[\int_{-\infty}^{\infty} e^{-\frac{2\pi^2 n^2}{\sigma^2}} \right] dj + O(\frac{\sigma}{L})$$

$$= \left(\frac{4\pi \sigma}{L} \right)^2 \left[1 + O(\frac{\sigma^2}{L^2}) \right].$$

(12)

where in the third line we have used the fact that only the odd-n terms contribute to the sum. Furthermore, since the error involved in the approximation of Eq. (8) is exponentially small in L/σ, for σ/L small enough we may incorporate this into $O(\frac{\sigma}{L})$. Thus, the effective dimension of ρ_{G} is

$$d_{\text{eff}} = \frac{L}{4\pi \sigma} + O(\frac{\sigma}{L}).$$

(13)

This means that $d_{\text{eff}} \gg 1$ corresponds to $\sigma \ll L$.

A. The distinguishability

The equilibrium state [1,5,6] is calculated as the average over all time of the propagated initial state. This is equal to the initial state decohered in the energy basis, which, for $\rho(0) = \rho_{\text{G}}$ reduces to

$$\omega_{\text{G}} \approx \sqrt{\frac{\pi}{8\sigma}} \sum_{n=1}^{\infty} |n\rangle \langle n| \exp \left(-\frac{\pi^2 n^2}{\sigma^2} \right) \sin^2 \left(\frac{n\pi}{2} \right).$$

(14)

where, again, the error is exponentially small in $\frac{L}{\sigma}$, as per Eq. (8). Naively, one might expect this to have a uniform distribution in position space, but Fig. 1 shows that there remains a narrow “spike” at the origin even in the high-dimensional limit. This arises because ω_{G} only contains energy levels of odd n, all of which have maximal probability at the origin.
Finally, armed with a time-evolving state $\rho_G(t)$ and its time-averaged state ω_G, we can investigate the equilibration process. For the system and measurement in question, the time evolution of
$$D_M(\omega_G, \rho_G(t)) = |\text{Tr} [A_w(\rho_G(t) - \omega_G)]|$$
(15)
is displayed in Fig. 2 for $w = L/2$. The effect of equilibration can be seen clearly for high dimension, as the system (i) starts sharply out of equilibrium, (ii) quickly drops to a small fraction of the initial distance, and (iii) oscillates within that distance for the predominant majority of the evolution. It is also remarkable that equilibration happens with such ease, where only extremely simple systems ($d_{\text{eff}} < 50$) are well distinguishable from their equilibrium states.

One common pattern in the literature [1,5,6,9] is to analyze how the infinite-time average of the distinguishability scales with the effective dimension of the initial state. For our conditions, Fig. 3 illustrates that it scales inverse-polynomially, at roughly $1/d_{\text{eff}}^{1/2}$, which probably underestimates the scaling.

B. The time scale

From the evolution of $D_M(\omega_G, \rho_G(t))$ it is easy to see exactly when the high-dimensional system equilibrates, given that after the initial decay it displays only a few short-lived fluctuations away from equilibrium. The dots of Fig. 4 (the same data as the $d_{\text{eff}} \approx 53$ line of Fig. 2 for a shorter time interval) display the equilibration profile quite clearly. Thus, for this system, the equilibration time scale can be defined as the characteristic width of the first peak.

This leads us to our most important result of this section. As detailed in Appendix A, in the limit $d_{\text{eff}} \gg 1$ and $t \ll \tau_G d_{\text{eff}}$, Eq. (5) reduces to
$$D_M(\omega_G, \rho_G(t)) = 2\pi \exp^2 \left(-\frac{t^2}{\tau_G^2} \right) + O \left(\exp^2 \left(-\frac{t^2}{\tau_G^2} \right) \frac{\sigma}{L} \right),$$
(16)

FIG. 2. (Color online) Distinguishability, as defined in Eq. (5), between the time evolution of ρ_G (Eq. (8)) and its equilibrium state ω_G as a function of time, for three different d_{eff} and $w = L/2$. From top to bottom at $t = 0$, the curves correspond to $d_{\text{eff}} \approx 53$, 5.3 and 3.5, respectively. T_G is the ground state period, see Eq. (18).

FIG. 3. (Color online) Log-scale plot of the time average of the distinguishability for the Gaussian initial condition, $D_M(\omega_G, \rho_G(t), \omega_G)$, as per Eqs. (5), (8), and (14), for several values of d_{eff}. The line shows the best linear fit over the logarithmic data.

Jensen’s inequality, $\langle \sqrt{D^2} \rangle < \sqrt{\langle D^2 \rangle}$, which probably underestimates the scaling.

FIG. 4. (Color online) Numerical computation of $D_M(\omega, \rho(t))$ compared to the leading order (upper line, Eq. (16)) and next-to-leading order (bottom line) approximations, for $d_{\text{eff}} \approx 53$. The expression for the next-to-leading order, as well as the full expansion, is found in Eq. (A12) of Appendix A. The dotted red line is a zoom of the plot in Fig. 2. The constant region up to $t/T_G \approx 3 \times 10^{-4}$ happens because the wave function has not yet spread beyond the edges of the measurement window.
where

$$\tau_G = \frac{mL\sigma}{\hbar \pi}$$ (17)

is the characteristic time scale for equilibration in this system. The significance of this expression is clear from Fig. 4, which compares the same numerical results presented in Fig. 2 (for the high dimension case) with the expression above, in the short time limit where equilibration occurs. For \(t \approx 0 \) you need higher-order terms to get a precise estimate. However, for \(t \approx \tau_G \), the lowest-order approximation becomes the dominant contribution, and it is all one needs to describe the distinguishability in the vicinity of the equilibration time scale.

One way of writing Eq. (17) adimensionally is to compare it to the period of the ground state \(T_g \),

$$\frac{\tau_G}{T_g} = \frac{1}{16\sqrt{\pi}d_{\text{eff}}},$$ (18)

where \(T_g = \frac{2\pi}{\omega} = \frac{4\hbar L}{m\omega} \).

It is also interesting to compare this with recent results [9], which show that the equilibration time scales for typical measurements (random projectors on the Hilbert space) scale with \(\hbar /SD_E \), where \(SD_E \) is the standard deviation in energy of the state. In Appendix B, we show that this corresponds to

$$\frac{\tau_{\text{typical}}}{T_g} = \frac{1}{16d_{\text{eff}}^2},$$ (19)

for our system. This proves that, while our system presents fast equilibration for projective position measurements, it is not nearly as fast as the time scales predicted for random projective measurements. This corroborates the notion that quantum equilibration for measurements of physical significance (like the ones studied here) is much slower than for typical measurements.

It is important to clarify what we mean by physical or typical measurements. Physical measurements are those that are experimentally practical, either exactly or approximately. For instance, the position projectors studied here represent measuring a particle’s position in the laboratory with a precision that is about half the size of the box. Other examples would be observables in the momentum basis. On the other hand, for any given system the overwhelming majority of measurements (sets of projectors) are not physically reasonable. They are projectors onto some complex combination of states in different bases that we have no experimental access to, and are thus impossible to measure. These impractical measurements constitute almost all elements in the space of all measurements, and so they are referred to as “typical.”

The reason why our physical measurement leads to slower equilibration is that the support of one of the projectors is a continuous position interval inside the box. Thus, the wave packet of the particle has to physically move beyond the edges of this interval (the window) before it can spread between the two projectors and equilibration can happen. Meanwhile, the typical measurement is a random combination of basis states, and as soon as the wave-function starts evolving it is already starting to overlap with the second projector and therefore starting to equilibrate.

IV. GENERALITY

A. Three-dimensional scenario

To make these results more physical, we now consider the equilibration profile of a particle in a three-dimensional (3D) box. This is particularly relevant, for instance, for quantum dots.

The most direct extension to consider is a pure initial state which is a Gaussian in each dimension, and a measurement which projects onto a cube at the center of the box with sides of width \(L/2 \). That is,

$$\rho_{3D} = \rho^x \otimes \rho^y \otimes \rho^z,$$

$$\rho^x = \rho^y = \rho^z = \rho_G,$$

\(A_{3D} = A^x \otimes A^y \otimes A^z \),

\(A^x = A^y = A^z = A^z \).

Then, writing \(\omega_{3D} = \langle \rho_{3D}(t) \rangle_{\tau \in (0,\infty)} \), the distinguishability becomes

$$D_{M_{\text{loc}}}(\omega_{3D}, \rho_{3D}(t)) = |\text{Tr}[A_{3D}(\rho_{3D} - \omega_{3D})]|$$

$$= |\text{Tr}[A_{\xi} \rho_G(t)] - \text{Tr}[A_{\xi} \rho_G(t)]^{-1}|_{\tau \in (0,\infty)}|. \quad (21) $$

Since we know from Eq. (16) that \(\text{Tr}[A_{\xi} \rho_G(t)] \) decays with \(\exp(-t^2/2\tau_G^2) \), it is clear that its cubed value can only decay faster by at most a factor of \(1/\sqrt{3} \). Indeed, this is precisely the behavior we see in Fig. 5, whose curves show a very similar time-dependence to the ones in Fig. 2, with peaks and troughs at the same places, only with different amplitudes.

B. Different measurements

All the plots in the previous section take \(w \) to be \(L/2 \). However, numerical tests were performed with various different widths and neither the overall behavior of \(D_{M_{\text{loc}}}(\omega, \rho) \) nor the equilibration time scale varied significantly. As seen in Fig. 6, the amplitude of \(D_{M_{\text{loc}}} \) only shows significant change when \(w \) is very close to \(0 \) or \(L \)—in which case it falls to 0 as the measurement conveys no information. This is

\[
D_{M_{\text{loc}}}(\omega, \rho_G(t))
\]

FIG. 5. (Color online) Distinguishability, as defined in Eq. (21), between the time evolution of \(\rho_{3D} \) [Eq. (20)] and its equilibrium state \(\omega_{3D} \) as a function of time, for three different \(d_{\text{eff}} \) and \(w = \frac{L}{2} \). From top to bottom at \(t = 0 \), the curves correspond to \(d_{\text{eff}} \approx 53, 5.3, \) and 3.5, respectively.
Here, we have exposed the equilibration dynamics of a wave-packet constrained inside a box when inspected by coarse-grained position measurements (onto a spatial window). We have derived an equation for the distinguishability in the vicinity of the equilibration time scale, which also results in an equation for the time scale itself. This, in turn, is used to show that it scales with $1/d_{\text{eff}}$, in contrast with the much faster time of $1/d_{\text{eff}}^2$, which is known for typical measurements in this system.

Note that an estimate of the average time for the particle to reach the edges of the box is given by

$$
n_{\text{box}} = \frac{L}{2d_{\text{eff}}^2},
$$

where $d_{\text{eff}}^2 = 2\pi/\sigma$, and

$$
n = \frac{L}{2d_{\text{eff}}},
$$

Hence, perhaps surprisingly, the time scale for equilibration is comparable to the time scale to reach the walls for the first time. In particular, this means that equilibration is fast in a natural sense, and the particle does not need to “bounce back and forth” many times in the box in order to equilibrate well.

It is remarkable that, despite being a simple and well-studied textbook system, there are still questions to be asked about the particle in a box and still lessons to be learned. In particular, our results show that this simple physical system can display equilibration behavior over a physically realistic time scale, which reinforces recent developments concerning equilibration of abstract systems.

ACKNOWLEDGMENTS

A.S.L.M. acknowledges support from the CNPq. A.J.S. acknowledges support from the Royal Society and FQXi via the SVCF.

APPENDIX A: EQUILIBRATION TIME SCALE

In this Appendix we use the following abbreviations, $\phi = 2\pi \sigma/L$, $v_{nj} = (E_n - E_j)/\hbar$, $\nu = E_1/\hbar$, and $\rho_{n,j} = \langle n | \rho_G | j \rangle$.

Claim 1: According to the set of outcomes $M = \{A_w, B_w\}$, with $w = \frac{L}{2}$, the time-dependent distance between the state in Eq. (8) and its equilibrium state [Eq. (14)] is

$$
D_M(\omega_G, \rho_G(t)) \approx \frac{2}{\pi} \sqrt{\frac{1}{\nu^2 + \pi^2}} \sum_{n=1}^{\infty} \cos(4\nu t \nu) e^{-\nu^2 t^2} B_{\nu
}
$$

where $B_{\nu} = [\cos(l\pi - \cos k\pi)] \sum_{n=1}^{\infty} \nu |\sin(k\pi/2) - \sin(l\pi/2)|$. Where the approximate relation is exponentially precise in $1/\phi$, as per Eq. (9).

Proof. First, as defined in Eq. (5),

$$
D_M(\omega_G, \rho_G(t)) = \left| \text{Tr}[A_\phi \rho_G(t) - \omega_G] \right|
$$

$$
= \left| \sum_{n \neq j} \rho_{n,j} e^{i\nu_{nj}t} \langle n | A_\phi | j \rangle \right|
$$

$$
= 2 \left| \sum_{n=2}^{\infty} \sum_{j=1}^{n-1} \rho_{n,j} \cos(\nu_{nj}t) \langle n | A_\phi | j \rangle \right|. \tag{A2}
$$
Furthermore, it is straightforward to see that

\[\langle \hat{\rho}_{n,j}^\dagger \rangle = \frac{1}{L} \int -\frac{\pi}{2} \frac{\pi}{2} \sin \left(\frac{n \pi}{2} \right) \sin \left(\frac{j \pi}{2} \right) dx \]

\[= \frac{2}{L} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin (n \pi x/L) \sin (j \pi x/L) dx \]

\[= \frac{2}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin (n \alpha) \sin (j \alpha) d\alpha \]

\[= \frac{1}{\pi} \left[\sin (n-j) - \sin (n+j) \right] \]

\[= -\frac{(1)^{n-j} + 1}{\pi (n-j)} \sin \left(\frac{n-j}{4} \right) \]

\[+ \frac{(1)^{n+j} + 1}{\pi (n+j)} \sin \left(\frac{n+j}{4} \right). \] (A4)

Finally, we state the identity

\[\sum_{n=2}^{\infty} \sum_{j=1}^{n-1} f(n,j) = \sum_{k=2}^{\infty} f(k+l,k-l) \]

\[+ \sum_{k=1}^{\infty} f(k+l+1,k-l), \] (A5)

and note that

\[\sin \left(\frac{(k+l)\pi}{2} \right) \sin \left(\frac{(k-l)\pi}{2} \right) = 0, \quad \forall k,l \in \mathbb{Z}, \] (A6)

and

\[(k+l|A_2^\dagger |k-l) = \frac{1}{\pi} \left[\sin(\pi k/2) / k - \sin(\pi l/2) / l \right]. \] (A7)

Combining all of these identities with Eq. (A2), yields

\[D_M(\omega_G, \rho_G(t)) \approx \frac{4}{\pi \sqrt{2\pi}} \frac{\phi}{\pi} \sum_{k=2}^{\infty} \sum_{l=1}^{k-1} \cos (4k\pi v t) e^{-\frac{(k^2+l^2)\pi^2}{L^2}} B_{kl}. \] (A8)

which can be easily reduced to Eq. (A1) by noting that the summand is symmetric with respect to \(k \) and \(l \), and that \(B_{k0} = 0 \).

Next, note that the double sum in Eq. (A1) can be divided into two expressions, respectively proportional to \(\sin(\pi/2) \) and to \(\sin(\pi/2) \). Furthermore, \(\sin(\pi/2) \) is nonzero only when \(l \) is odd, which means \(\cos(\pi/2) - \cos(k\pi) = -(1 + \cos(k\pi)) \), which, in turn, means that the only nonzero terms of this expression are those with odd \(l \) and even \(k \). Then, the part of the double sum in Eq. (A8), which is proportional to \(\sin(l/2) \), looks like

\[-2 \sum_{k=2}^{\infty} \sum_{l=1}^{k-1} \cos (4k\pi v t) e^{-\frac{(k^2+l^2)\pi^2}{L^2}} \left[\frac{\sin(l/2)}{l} \right]. \] (A9)

Applying the same logic to the expression proportional to \(\sin(k/2) \) yields

\[-2 \sum_{k=1}^{\infty} \sum_{l=1}^{k-1} \cos (4k\pi v t) e^{-\frac{(k^2+l^2)\pi^2}{L^2}} \left[\frac{\sin(k/2)}{k} \right]. \] (A10)

which is identical to Eq. (A9) up to a swap of dummy indices. Thus, by writing the odd index in each expression as \(2p + 1 \) and the even index as \(2p \), we have

\[D_M(\omega_G, \rho_G) \approx \frac{8}{\pi \sqrt{2\pi}} \frac{\phi}{\pi} \sum_{p=1}^{\infty} \cos (2p+1) \nu t \left(-1 \right)^p \frac{(-1)^p}{2p+1} \times e^{-\frac{(2p+1)^2 \pi^2}{L^2}}. \] (A11)

We can further abbreviate this by defining \(R_p = \frac{(-1)^p}{2p+1} e^{-\frac{(2p+1)^2 \pi^2}{L^2}} \),

\[D_M(\omega_G, \rho_G) \approx \frac{8}{\pi \sqrt{2\pi}} \frac{\phi}{\pi} \sum_{p=1}^{\infty} \cos (2p+1) \nu t R_p e^{-2\nu^2 \phi^2}. \]

This, combined with the small time assumption, allows us to approximate the sum over \(o \) by an integral

\[\frac{4\phi}{\sqrt{2\pi}} \sum_{o=1}^{\infty} \cos (2(2p+1)\nu o t) R_p e^{-2\nu^2 \phi^2} = e^{-\frac{4\phi^2}{\pi\nu^2}} + O(\phi), \]

where \(\tau_G \) is defined in Eq. (17). This directly leads to

\[D_M(\omega_G, \rho_G(t)) = \frac{2}{\pi} \sum_{p=0}^{\infty} R_p e^{-\frac{4\phi^2}{\pi\nu^2}} + O(\phi). \] (A12)

which then produces Eq. (16). In particular, note that \(|R_i| = |R_0|^3/3 \), which is why the \(p = 0 \) term is sufficient for a very good estimate of the equilibration time. On the other hand, at \(t = 0 \) this is very close to an alternating harmonic series, which is why it converges slowly and needs many terms to describe the constant region from Fig. 4.

APPENDIX B: ENERGY STANDARD DEVIATION

In this Appendix, we calculate the energy standard deviation (named here \(\nu_E \)) for the Gaussian initial state. Taking
where \(\phi = \frac{2 \pi p}{L} \), we have, for any \(p \in \mathbb{N} \),
\[
\text{Tr}[H^p \rho_G] = \sum_{n=1}^{\infty} \langle n | \rho_G | n \rangle E_n^p
\approx E_i \frac{4 \sigma \sqrt{2 \pi}}{L} \sum_{n=1}^{\infty} n^2 e^{-\frac{n^2 \pi^2}{4}} \sin^2 \left(\frac{n \pi}{2} \right)
= E_i \frac{2 \phi}{\sqrt{2 \pi}} \sum_{n=-\infty}^{\infty} n^2 e^{-\frac{n^2 \pi^2}{4}} \sin^2 \left(\frac{n \pi}{2} \right)
= \left(\frac{2E_i}{\phi^2} \right)^p S_p(\sqrt{2\phi}),
\]
(B1)

where
\[
S_p(\gamma) = \frac{1}{\sqrt{\pi}} \sum_{j=-\infty}^{\infty} \gamma^{2p+1} (j + 1/2)^2 e^{-j^2/4} \cdot \text{B2}
\]

Given that
\[
S_p(\gamma) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} dx \ x^{2p} e^{-x^2} + O(\gamma^2),
\]
(B3)

one has that, for small \(\gamma \),
\[
S_1(\gamma) = \frac{1}{2} + O(\gamma^2)
S_2(\gamma) = \frac{1}{4} + O(\gamma^2).
\]
(B4)

And finally,
\[
v_E^2 = \text{Tr}[H^2 \rho] - (\text{Tr}(H \rho))^2
= \frac{4E_i}{\phi^4} \left[\frac{3}{4} - \frac{1}{2^2} \right] + O(\phi^2)
= 4 \left(\frac{\pi^2 \hbar^2}{2mL^2} \right)^2 \left(\frac{L}{2\pi \sigma} \right)^4 \frac{1}{2} + O(\phi^2)
= \frac{1}{2} \frac{\hbar^2}{m^2 \sigma} + O(\phi^2)
\]
\]
\[
v_E = \frac{\hbar^2}{4\sqrt{2m\sigma^2}} + O \left(\frac{\sigma}{L} \right)^2.
\]
(B5)

Dividing \(\hbar/v_E \) by \(T_x = \frac{4mL^2}{\hbar^2} \) then yields Eq. (19).

APPENDIX C: UNIFORM DISTRIBUTION

The second initial condition considered was the constant distribution over \(N \) energy eigenstates, with
\[
| \Psi_U \rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} | i \rangle, \quad \rho_U = | \Psi_U \rangle \langle \Psi_U |, \quad (C1)
\]

for some \(N \in \mathbb{N} \). This initial condition was chosen because it allows for the exact evaluation of the most relevant part of the sum which defines the distinguishability. It is trivial to verify that \(d_{\text{eff}} = N \). Figure 7 displays the same for its corresponding equilibrium state \(\omega_U = \frac{1}{N} \sum_{n=1}^{N} | n \rangle \langle n | \).

Since the initial state is clearly concentrated on the left side of the box, we use a slightly different measurement \(M = \{ \Pi_L, \Pi_R \} \), which checks on which side of the box the particle is,
\[
\Pi_L = \int_{-L/2}^{0} | x \rangle \langle x | dx, \quad \Pi_R = 1 - \Pi_L. \quad (C2)
\]

Again, we wish to study the time evolution of the distinguishability according to this measurement; it is now given by
the sum

\[D_M(\omega_U, \rho_U) = \left| \sum_{n \neq j=1}^N e^{(n^2-j^2)\nu t}/N \langle n | \Pi_L | j \rangle \right|, \quad (C3) \]

with \(\nu = \frac{\pi \hbar}{2mL} \). This function is displayed on both curves of Fig. 9, and on the blue dashed curve of Fig. 10. The equilibration behavior is, again, clearly visible in the high-dimensional limit, and we see (from Fig. 10) that the first zero of the \(D_M \) function is a good approximation for the equilibration time scale.

Following similar calculations as those from Appendix A one finds that, for short times \(t \ll T_g \), Eq. (C3) can be well approximated by the function

\[g(t) = \left| \frac{\sin(2N\nu t)}{\sin(\nu t)} - \cos(\nu t) \right|. \quad \text{(C4)} \]

Figure 10 shows how these two functions compare to each other. To estimate the first zero of \(D_M(t) \), we calculate the first zero of \(g(t) \), which is exactly at \(2\sin(2N\nu t) = \sin(2\nu t) \). For large \(N \), this is approximately

\[\sin(2N\nu t) \approx \nu t \]

\[t \approx \frac{2\pi}{4N\nu} = \frac{T_g}{4N}, \quad \text{(C5)} \]

which yields the time scale

\[\frac{T_U}{T_g} \approx \frac{1}{4N} = \frac{1}{4d_{\text{eff}}}, \quad \text{(C6)} \]

in good accordance with the time scale results for the Gaussian.

For completeness, Fig. 11 shows that the infinite-time average of the distinguishability in this scenario scales with \(d_{\text{eff}}^{-0.77} \), which is very similar to the Gaussian’s \(d_{\text{eff}}^{-0.79} \), although the multiplicative constant is larger.