
Peer reviewed version

Link to published version (if available):
10.1002/2015GL065959

Link to publication record in Explore Bristol Research

PDF-document

An edited version of this paper was published by AGU. Copyright 2015 American Geophysical Union.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
Slow Cenozoic uplift of the western Andean Cordillera indicated by cosmogenic 3He in alluvial boulders from the Pacific Planation Surface.

Laura A. Evenstar
School of Earth Science, University of Bristol, Wills Memorial Building, Queens Road, Bristol, BS8 1RJ, UK (l.evenstar@bristol.ac.uk)

Finlay M. Stuart
Isotope Geoscience Unit, Scottish Universities Environmental Research Centre, East Kilbride, G75 0QF, UK

Adrian J. Hartley,
Dept. of Geology and Petroleum Geology, University of Aberdeen, Aberdeen, AB24 3UE, UK

Brain Tattitch
School of Earth Science, University of Bristol, Wills Memorial Building, Queens Road, Bristol, BS8 1RJ, UK

Key Points;
- Production rates of in situ cosmogenic isotopes are used for paleoelevation.
- Uplift of the Andes by mantle delamination in the Late Miocene is ruled out.
- The Precordillera attained a substantial part of its elevation by 14 Ma.

Running title; Slow Cenozoic uplift of the Andes
Abstract

To determine the mechanisms responsible for mountain belt growth it is important to accurately establish the timing of surface uplift. Here we exploit the altitude control on the production rate of in situ cosmogenic nuclides to test the hypothesis that the Andes were uplifted in the late Miocene. High concentrations of in situ cosmogenic 3He (3He$_{\text{cos}}$) have previously been measured in alluvial boulders on the western flank of the Central Andes, northern Chile (Evenstar et al. 2009). These are consistent with deposition soon after formation of the surface (13-14 Ma). We have modelled the accumulation of cosmogenic 3He in several different surface uplift scenarios and compared them to the measured concentrations. The measured 3He$_{\text{cos}}$ concentrations are too high to be produced by late Miocene uplift and imply that the western flank of the Andean Cordillera attained a substantial part of its current elevation prior to 14 million years ago.

Number of words: 149

Keywords: Andean Uplift; Cosmogenic Isotopes; Paleoelevation; Longitudinal Valley, Chile

1. Introduction

The elevation history of mountain belts such as the Himalayas, North American Rockies, Andes and Alps have been used to explain continental tectonic processes, orogenic erosion and changes to the global climate (e.g. Clift, 2010). However there is typically a significant uncertainty associated with the timing and magnitude of surface uplift that has led to a wide range of mechanisms to account for orogenic uplift.
The lack of unequivocal constraints on the mean elevation history of the Central Andes has lead to competing theories to account for the generation of the mountain belt. These hypotheses have been simplified into two general scenarios by Barnes and Ehler (2009): (i) Late Miocene uplift, where surface uplift of ~2.5 km occurred between 11 and 6 Ma (Farias et al. 2005; Garzino et al. 2006; Ghosh et al. 2006; Molnar and Garzino 2007; Garzino et al. 2008; Hoke and Garzino 2008) due to large-scale mantle delamination, and (ii) Early Miocene (or earlier) uplift, where gradual surface uplift initiated in the Late Eocene is associated with crustal shortening and thickening in response to oblique subduction of the Nazca plate (e.g. Victor et al. 2004; Barke and Lamb 2006; Hartley et al. 2007; Barnes and Ehlers 2009).

The evidence for Late Miocene uplift is based on a number of studies that have utilised climate-sensitive altitude relationships, such as oxygen isotopes (Garzino et al. 2006), clumped C-O isotopes (Ghosh et al. 2006; Quade et al. 2007) and fluvial incision rate (Schildgen et al. 2007; Hoke et al. 2007; Thouret et al. 2007). The isotope-based techniques assume that the present-day relationship between meteoritic water, surface temperatures and elevation can be used to reconstruct past elevations suggest the majority of uplift occurred after 10 Ma. However there are a number of uncertainties associated with this technique (Hartley et al. 2007, Ehler and Poulsen 2009; Jeffery et al. 2013). Recent modelling of climate change associated with Andean uplift shows that this overestimates uplift rates, as precipitation levels, surface temperature and wind direction have varied during uplift (Ehler and Poulsen 2009). It also predicts an increase in precipitation along the Western Cordillera that would account for the rapid fluvial incision, rather than resulting from surface uplift (Jeffery et al. 2013). A recent re-assessment suggests that the existing data cannot distinguish between Late Miocene or Early Miocene (or earlier) uplift histories leading to an array of competing theories to account for the generation of the mountain belt (Barnes and Ehler 2009). Without independent constraints on the timing and rate of surface
uplift it is difficult to determine which tectonic processes are responsible for the formation of the Andean mountain belt.

The production rate of *in situ* cosmogenic nuclides at the Earth surface is strongly altitude dependent and where slowly eroding surfaces are preserved they have the potential to be used to decipher the surface uplift history of mountain ranges that is independent of climate (e.g. Riihimaki and Libarkin 2007). The cosmogenic noble gas isotopes, 3He and 21Ne, are stable, and are used to quantify rates of long-term landscape development (e.g. Margerison et al. 2005). The Atacama Desert is a natural laboratory for testing uplift histories using *in situ* cosmogenic nuclides. The extremely low erosion rates result in exceptionally high concentrations of cosmogenic noble gas isotopes in depositional features (Dunai et al. 2005; Nishiizumi et al. 2005; Kober et al. 2006; Evenstar et al. 2009) and precisely dated volcanic rocks allow constraints to be put on the absolute age of surfaces (Victor et al. 2004; Muñoz and Sepúlveda 1992).

Here we use the concentration of cosmogenic 3He in alluvial boulders from a slowly eroding Miocene-Pliocene-aged surface from the western flank of the Central Andes to test the hypothesis that the Andes mountain belt formed largely in the Late Miocene. Unlike other approaches, this technique is not reliant on complex climate sensitive-altitude relationships and may have potential for application in other mountain belts.

2. Geological background

The western side of the Central Andes can be divided into five different morphotectonic provinces. From west to east these are the Coastal Cordillera, Longitudinal Valley, Precordillera, Western Cordillera and Altiplano. The Coastal Cordillera forms a coastal escarpment rising up from sea-
level to an average elevation of 1000 m. The Longitudinal Valley is a forearc basin filled by Eocene to Miocene sediments derived from the east (Hartley et al. 2000, Pinto et al. 2007). Sedimentation ceased diachronously from middle Miocene to middle Pliocene times, and a relict flat lying Pacific Planation Surface (PPS) developed (Evenstar et al. 2009). The PPS is 30 to 60 km wide with an average elevation of 1000 m. It slopes at 1.5-3° to the west from the Precordillera. The Precordillera ranges in elevation from 1000 to 4000 m, and largely comprises the remnants of a Late Cretaceous to Oligocene magmatic arc blanketed by Early Miocene ignimbrite sheets (Wörner et al. 2002). To the east, the Western Cordillera is a 50 to 100 km wide modern magmatic arc. The Altiplano is a 200 km wide, internally-drained basin at an average elevation of 3.8 km that lies east of the modern arc. The Coastal Cordillera, Longitudinal Valley and part of the Precordillera form an area of extreme aridity due to combination of factors (Hartley 2003). The high aridity leads to some of the lowest erosion rates in the world, and thus to some of the highest concentrations of in situ cosmogenic nuclides (Dunai et al. 2005; Kober et al. 2007; Evenstar et al. 2009).

Two general models have been proposed to account for uplift within the Longitudinal Valley and Precordillera on the Western margin of the Andes supporting the end-member scenarios for Andean uplift. Farias et al. (2005) and Hoke et al. (2007) presented evidence for significant uplift in the last 10 million years. Both proposed that the PPS formed at ~10 Ma and suggested that significant incision into the paleosurface was initiated at 10 Ma due to regional tilting, isolating it from the Precordillera. In contrast, Victor et al. (2004) favoured Early Miocene (or earlier) surface uplift generated by movement along a series of reverse faults.

These two surface uplift histories will produce significantly different cosmogenic nuclide concentrations in a non-eroding surface. Late Miocene uplift predicts that for a substantial part of
the Miocene the paleosurface was at low elevation receiving lower cosmic ray flux for longer than if the main pulse of uplift had occurred in the Early Miocene. By comparing the predicted concentration of 3He with that measured in alluvial boulders that have been deposited on the paleosurface we can test the timing and rate of uplift of the region.

3. *In situ* cosmogenic 3He in boulders from the Pacific Planation Surface

Cosmogenic 3He concentrations are used from data published by Evenstar et al. (2009) on measured pyroxene and amphibole separated from twenty-two alluvial boulders of Miocene andesite that sit on the PPS in the Quebrada Aroma area, northern Chile (Figure 1). The boulders were selected on the basis of the absence of evidence of erosion and weathering. Five of the boulders (23/26, 21/26, 22/26, 03/02 and 05/02) from two sites (D and G) have extremely high 3He concentrations for their elevation (Table 1) that are broadly consistent with deposition at the time of, or soon after, formation of the paleosurface (Evenstar et al. 2009). The PPS in Quebrada Aroma is developed on 300 m of alluvial gravels that originate from the Precordillera that overlie the 16.27 ± 0.16 Ma Nama ignimbrite (Member 4 of the Altos de Pica formation) (Pinto et al. 2004; Victor et al. 2004; Farias et al. 2005, Pinto et al. 2007). Temporal constraints from dated volcanic rocks and magneto-polarity chronologies from the Camiña Valley, 25 km to the north of the Aroma Quebrada, show that 300 m of alluvium takes 3 to 5 million years to accumulate (Pinto et al. 2004; von Rotz et al. 2005). Using a conservative lower limit of 3 million years for alluvium accumulation, the boulders overlying these sediments cannot have been exposed for more than 13.4 million years.

4. Uplift history models
The measured cosmogenic 3He in the five boulders are compared with concentrations produced in four different surface uplift models for the western flank of the Central Andes (Figure 2).

Cosmogenic 3He concentrations are calculated incrementally until present day. Starting elevations vary depending on models (see below) and finish at the current elevation for each site (site G = 1,900 m, site D = 1,690 m).

The following uplift histories have been modelled:

No uplift (NU): This model assumes that there is no change in elevation from 13.4 Ma until present day.

Early Miocene uplift (EMU): Uplift rates and times are constructed based on the uplift rates from the adjacent Pica region (Figure 1A) suggested by Victor et al. (2004) with the majority of the uplift occurring prior to 13.4 Ma. The paleoelevation model for both sites show similar surface uplift rates and times of movement as faults within the Pica region (Victor et al. 2004).

Linear Uplift (LU): This model assumes a linear rate of uplift from sea level at 27 Ma to present day altitudes.

Late Miocene uplift (LMU): This model is based on rapid uplift during the late Miocene. The timing of elevation change was based on soil carbonate precipitation temperature, oxygen isotopes, fossil-leaf physiognomy and paleosurface reconstruction presented in Hoke et al. (2007) and Garzione et al. (2008). Uplift rates were based on a conservative 800 m of uplift within the Longitudinal Valley in the Late Miocene (Hoke et al. 2007). Background uplift rate of 0.04 mm/yr of the Coastal Cordillera (Dunai et al. 2005) and minor movement along local faults based on Fárias et al. (2005) were assumed to have operated from 13.4 Ma to the present day.

For each uplift history the three main in situ cosmogenic nuclide scaling models were used (Lal 1991, Dunai 2000, Lifton et al. 2014). Palaeomagnetic data from northern Chile indicate that there
has been no latitudinal translation of strata since the late Palaeozoic (Jesinkey et al. 1987; Hartley et al. 1988; Somoza & Tomlinson 2002), so it is not necessary to calculate changes in production rate with latitude. Variation in the geomagnetic field strength through time can affect the long-term production rates of cosmogenic nuclides especially at low latitudes. Fluctuations on time scales longer than 100 kyr or so tend to be averaged out.

We have used the weighted mean of the cosmogenic 3He production rate in olivine compiled by Goehring et al. (2010), and incorporated more recent measurements (Foeken et al. 2012; Blard et al. 2013). The sea level high latitude 3He production rates used for the three scaling factors are 119.3 ± 3.0 atoms/g for Lal (1991), 121.2 ± 3.2 atoms/g for Dunai (2000) and 114.6 ± 3.0 atoms/g for Lifton et al. (2014). These were scaled for the composition of the analysed minerals using the element production rates of Masarik (2002). The contribution of 3He produced by cosmogenic thermal neutrons (CTN) on 6Li cannot be ignored (Dunai et al. 2007). Lithium in andesites is relatively low (<20 ppm) and due to mineral-melt partitioning coefficients it resides predominately in the matrix, with pyroxenes displaying concentrations usually below 2 ppm. However amphiboles typically have higher Li contents and CTN-derived cosmogenic 3He can contribute up to 40% of total (Amidon et al. 2012). Li was measured in the 3 amphibole samples using LAICPMS techniques (see Supporting information). It ranges from 23 - 49 ppm and accounts for 6-12% of that produced by spallation (see Supporting information).

5. Results

The cosmogenic 3He produced by spallation at each site, for each surface uplift scenario and scaling factors (Table 2), are plotted in Figure 3. It is important to stress that these modelled values are upper limits on the amount of cosmogenic He that has been produced as it assumes a
maximum possible surface exposure age and does not take into account the effect of erosion, burial
or exhumation of the boulders during their residence on the surface. The spallation-produced
cosmogenic 3He concentrations of each mineral sample are plotted as dashed lines on Figure 3.
Correction for CTN-cosmogenic He has been made using measured Li in amphibole (Table S3)
and an upper limit of 5% for the pyroxenes which equates to 20 ppm Li (Dunai et al. 2007,
Amidon et al. 2012).

The rapid Late Miocene uplift history predicts the lowest cosmogenic 3He concentrations (2.1 to
2.8 x 10^9 atoms/g) as the surfaces have spent the shortest time at high elevation. Cosmogenic 3He
concentrations are predicted to be highest in samples that remained at the current elevation
throughout their history (3.2 to 4.2 x 10^9 atoms/g). Uplift in the Early Miocene gives
concentrations in the range 2.6 to 3.4 x 10^9 atoms/g, while linear uplift produces cosmogenic 3He
concentrations of 2.4 to 3.1 x 10^9 atoms/g. The scaling factors of Dunai (2000) systematically
yield the lowest cosmogenic 3He concentrations, while those of Lal (1991) produce the highest.
The Late Miocene uplift model generates maximum 3He concentrations that are lower than
measured in all samples using all scaling factors (Figure 3). The samples contain 0.2 – 1.3 x 10^9
atoms 3He/g more 3He than Late Miocene Uplift predicts depending on scaling scheme.
All samples except 23/26 have 3He concentrations that are predicted by a no uplift history or Early
Miocene uplift. The cosmogenic 3He concentration predicted by Linear uplift using Lal (1991)
scaling factors is higher than measured in the samples, except for sample 23/26. The 3He$_{cos}$
concentration measured in boulder 23/26 overlaps that predicted for no uplift of the surface using
the Lal (1991) or Lifton et al. (2014) scaling factors.
6. Discussion

6.1 Ruling out Late Miocene uplift

The principal aim of this work is to test whether or not the high concentrations of 3He$_{cos}$ previously measured in alluvial boulders from Querada Aroma (Evenstar et al. 2009) can be accounted for by surface uplift in the Late Miocene. The simple comparison with predicted 3He$_{cos}$ concentrations clearly appears to exclude Late Miocene uplift (Figure 3).

The boulders on the desert pavement may have undergone small degrees of erosion, suffered exhumation and/or partial burial. All of these processes would decrease the cosmogenic He production rate and therefore yield lower concentrations compared to that produced by complete exposure. The effect of erosion is documented in the supporting information (Figure S3). Using a low erosion rate of 1 cm/Myr shows how even a minor amount of erosion would greatly decrease the modelled concentrations. When comparing these modelled concentrations to measured 3He$_{cos}$ in the alluvial boulders only assuming that no uplift had occurred over the last 13.4 Ma would be consistent with the data. As such erosional processes would lend support to an even earlier uplift model.

Pre-exposure of all the boulders prior to deposition on the PPS is the only process that could have increased the concentration of cosmogenic He. There are a number of reasons why a significant contribution of inheritance cannot account for the excess helium within the samples assuming Late Miocene Uplift.
Firstly, the similarity of the 3He concentration in 4 of the 5 samples, relative to elevation, is not
2005, Blisniuk et al. 2012, Van der Wateren and Dunai, 2001). It would require that each boulder
has had a similar pre-exposure history and that each was deposited with the pre-exposed surface at
the top of the boulder.

Secondly, the boulders on the PPS are located on the flat lying paleosurface, which is 60 km wide
and slopes at an angle of 1.5° (Figure 1). The nearest significant large scarp for boulders to
originate is over 20 km to the east. The boulders could only have moved in a large fluvial event
originating within the Precordillera. Late Miocene uplift requires the isolation of the PPS at 10 Ma
due to increased incision between the PPS and Precordillera. Therefore the boulders on the PPS
could only obtain significant pre-exposure from higher elevations prior to 10 Ma. At this time the
elevation of the Precordillera and Western Cordillera were significantly lower than currently; the
highest elevation is predicted to be ~3500 m (Garzoine et al. 2008). This makes accounting for the
excess He within the samples highly unlikely. For instance, the excess 3He$_{cos}$ in boulder 23/26
relative to that predicted by Late Miocene uplift at 13.2 Ma ($> 1 \times 10^9$ atoms/g) is equivalent to
~13 million years exposure at sea level, or 3 million years exposure at the current altitude of
Quebrada Aroma. The excess He requires pre-exposure for a minimum of ~1.5 million years at the
highest possible elevation within the paleo-Andes prior to 13.4 Ma, assuming no surface erosion.
The current erosion rate in the Western Cordillera is between 100 and 1000 cm/Myr at similar
elevations (Kober et al. 2007). Such high erosion rates are not conducive to preservation of
enough cosmogenic He to account for the apparent excess.

In summary, it is unlikely that the PPS boulders have experienced significant pre-exposure thus the
measured cosmogenic He reflects the surface uplift history. The Late Miocene uplift model cannot
produce enough cosmogenic 3He to account for the concentrations measured in the alluvial boulders from the PPS. The data do not constrain a single unique uplift history, but the data appear to require that the majority of the uplift occurred prior to the Late Miocene.

6.2 Implications for Andean uplift

Determining accurately the time of the onset of surface uplift throughout the Central Andes is essential for understanding the geodynamic mechanisms of plateau development at convergent continental margins, and will help inform orogenic erosion, sedimentation, local and regional climate and rainfall patterns (Barnes and Ehlers 2009). The results presented here suggest that the PPS obtained a substantial proportion of its elevation prior to 13.4 Ma. This is consistent with either an early phase of uplift in the Early Miocene with relatively minor uplift after or relatively slow constant surface uplift rates for the western flank of the Andean Cordillera from 30 Ma or earlier.

This is independent of climate sensitive-altitude relationships, and stands in marked contrast to previous studies that utilised oxygen isotopes (Garzione et al. 2006), clumped C-O isotopes (Ghosh et al. 2006; Quade et al. 2007) and fluvial incision rate (Schildgen et al. 2007; Hoke et al. 2007; Thouret et al. 2007) that suggest the majority of uplift occurred after 10 Ma. The results presented here fit the structural, surface incision, deformation/exhumation history and timing of sedimentary deposition that indicate progressive surface uplift associated with crustal shortening from the Late Eocene or earlier (Victor et al. 2004, McQuarrie et al. 2005, Hoke and Lamb 2007, Ehler and Poulsen 2009). This is in contrast to the sudden, rapid uplift in the Late Miocene that is associated with delamination of an overthickened orogenic crustal root (e.g. Garzione et al. 2008). These observations suggest that large mountain chains can be created within ocean-continent
subduction zone settings by progressive shortening and thickening of continental crust and without
the need for large-scale mantle delamination.

Acknowledgements

This material is based upon work supported by NERC grant (NER/S/A/2003/11945) and BHP
Billiton. Data used in this study are provided from Evenstar et al. (2009) and from modelling
detailed in the auxiliary material. We are grateful to Philip G. Roxby, Steve Sparks and Shasta
Marrero for help with preparation of the manuscript.

References

Barke, R., and S. Lamb (2006), Late Cenozoic uplift of the Eastern Cordillera, Bolivian Andes,

(2013), Cosmogenic 3He production rate in the high tropical Andes (3800 m, 20°S): Implications
for the local last glacial maximum, Earth Planet. Sci. Lett., 377–378, 260-275, doi:

Multiphase development of the Atacama Planation Surface recorded by cosmogenic 3He exposure ages: Implications for uplift and Cenozoic climate change in western South America, Geology, 37(7), 658-658, doi:10.1130/G25437A.1.

Farias, M., R. Charrier, D. Comte, J. Martinod, and G. Hérail (2005), Late Cenozoic deformation and uplift of the western flank of the Altiplano: Evidence from the depositional, tectonic, and geomorphologic evolution and shallow seismic activity (northern Chile at 19°30'S), Tectonics, 24(4), TC4001, doi:10.1029/2004TC001667.

Jesinkey, C., R. D. Forsythe, C. Mpodozis, and J. Davidson (1987), Concordant late Paleozoic paleomagnetizations from the Atacama Desert: implications for tectonic models of the Chilean

Montgomery, D. R., G. Balco, and S. D. Willett (2001), Climate, tectonics, and the morphology of

Pinto, L., Hérail, G., Fontan, F. & De Parseval, P. (2007), Neogene erosion and uplift of the western edge of the Andean plateau as determined by detrital heavy mineral analysis, Sed. Geol., 195, 217-237,
doi:10.1016/j.sedgeo.2006.08.001.

Figures

Figure 1: A) Location of study area in the Atacama Desert (DEM based on GTOPO30). The Pacific planation surface is located within the dashed line. Boxes show the location of the Aroma Quebrada and Pica region area studied by Victor et al. (2004). B) Landsat image of the Aroma Quebrada with location of samples. Soga Flexure, Aroma Flexure, Calacala Flexure were mapped by Farias et al. (2005). Faults A – E are identified from landsat images. C) Photographs of the Pacific planation surface with rounded alluvial/fluvial boulders, D) Sample 03/02 and E) sample 05/02.

Figure 2: The paleoelevation histories since 14 Ma for site G (elevation 1900 m) and D (elevation 1690m) used in this study. No uplift (NU), orange; Early Miocene uplift (EMU), green; Linear
uplift (LU), blue; Late Miocene uplift (LMU), red.
Figure 3: Concentration of cosmogenic 3He calculated for different uplift histories for two sites in Quebrada Aroma, northern Chile. Three scaling factor algorithms were considered; circle, Lal (1991), circle, Dunai (2000), square, and Lifton et al. (2014), triangle. Symbols represent the 3He concentrations (atoms/g) for the four uplift scenarios (colours as per Figure 2). The horizontal dashed lines represent the He concentration of each sample.

Table 1. Concentration of 3He in alluvial boulders from the Quebrada Aroma region after Evenstar et al. (2009) reduced to account for 3He contribution from neutron capture on Li.
<table>
<thead>
<tr>
<th>Site</th>
<th>Altitude</th>
<th>Sample</th>
<th>$^3\text{He} \times 10^9$ atoms/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>1900</td>
<td>21/26</td>
<td>3.03 ± 0.095</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22/26</td>
<td>3.04 ± 0.096</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23/26</td>
<td>3.87 ± 0.030</td>
</tr>
<tr>
<td>D</td>
<td>1690</td>
<td>03/02</td>
<td>2.54 ± 0.049</td>
</tr>
<tr>
<td></td>
<td></td>
<td>05/02</td>
<td>2.64 ± 0.036</td>
</tr>
</tbody>
</table>
Table 2. Modelled maximum 3He concentrations* produced in boulders from Quebrada Aroma, northern Chile.

<table>
<thead>
<tr>
<th>Site</th>
<th>No uplift</th>
<th>Early Miocene uplift</th>
<th>Linear uplift</th>
<th>Late Miocene uplift</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>4.15 ± 0.11</td>
<td>3.76 ± 0.13</td>
<td>3.95 ± 0.12</td>
<td>3.43 ± 0.10</td>
</tr>
<tr>
<td>D</td>
<td>3.48 ± 0.08</td>
<td>3.16 ± 0.12</td>
<td>3.32 ± 0.10</td>
<td>2.94 ± 0.08</td>
</tr>
</tbody>
</table>

* All values are 10^9 atoms/g