
Peer reviewed version

Link to published version (if available):
10.1073/pnas.1512064112

Link to publication record in Explore Bristol Research
PDF-document
Biological Sciences: Neuroscience

Disruption of hippocampal-prefrontal cortex activity by dopamine D2R-dependent LTD of NMDAR-transmission

Abbreviated Title: NMDARs control hippocampal-PFC synaptic transmission

Paul J Banks, Amelia C Burroughs, Gareth RI Barker, Jon T Brown, E Clea Warburton, and Zafar I Bashir*

University of Bristol, School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK, aUniversity of Exeter Medical School, Hatherly Building, Streatham Campus, UK

*corresponding author: z.i.bashir@bristol.ac.uk

Keywords: medial prefrontal cortex; long-term depression; NMDA receptor hypofunction; D2R; schizophrenia
Abstract

Functional connectivity between the hippocampus and prefrontal cortex (PFC) is essential for associative recognition memory and working memory. Disruption of hippocampal-PFC synchrony occurs in schizophrenia, which is characterised by hypofunction of NMDAR-mediated transmission. We demonstrate that activity of dopamine D2Rs leads selectively to long-term depression (LTD) of hippocampal-PFC NMDAR-mediated synaptic transmission. We show that dopamine-dependent LTD of NMDAR-mediated transmission profoundly disrupts normal synaptic transmission between hippocampus and PFC. These results show how dopaminergic activation induces long-term hypofunction of NMDARs which can contribute to disordered functional connectivity, a characteristic that is a hallmark of psychiatric disorders such as schizophrenia.

Significance:

Synaptic transmission between the hippocampus and prefrontal cortex is required for many executive cognitive functions. It is believed that disruption of this communication contributes to symptoms observed in psychiatric disorders including schizophrenia. Hyperdopaminergic tone and hypofunction of NMDA receptor-mediated glutamate transmission are distinctive elements of schizophrenia. Here we demonstrate that activation of low affinity D2-like dopamine receptors leads to a lasting depression of NMDA receptors at the hippocampal-prefrontal projection of juvenile rats, leading to a marked disruption of synaptic transmission. These data demonstrate a link between dopamine and hypofunction of NMDA receptor mediated transmission with potential implications for psychiatric disease.
The hippocampus to medial prefrontal cortex (PFC) projection is important for executive function, working- and long-term memory (1, 2). Glutamatergic neurons of the ventral hippocampal CA1 region project directly to layers II-VI of ipsilateral PFC and this connection synchronises PFC and hippocampal activity during particular behavioural conditions (3-5). Disruption of hippocampal-PFC synchrony is associated with cognitive deficits that occur in disorders such as schizophrenia (6). Hippocampal-PFC uncoupling can be achieved by NMDAR antagonism (7) and NMDAR hypofunction is a recognised feature of schizophrenia (8). However it is unclear firstly how changes in NMDAR function at this synapse may arise and secondly how NMDAR hypofunction affects hippocampal-PFC synaptic transmission.

Canonically NMDARs are considered to contribute little to single synaptic events but the slow kinetics of NMDARs contribute to maintaining depolarisation, leading to the generation of bursts of action potentials (9-13). Furthermore NMDARs coordinate spike timing relative to the phase of field potential oscillations (14, 15). NMDAR transmission itself undergoes synaptic plasticity (16, 17) and this can have a profound impact on sustained depolarisation, burst firing, synaptic integration, and metaplasticity (9, 11, 18, 19). In PFC, NMDARs are oppositely regulated by dopamine receptors; D1-like receptors potentiate and D2-like receptors depress NMDAR currents (20). Interestingly, NMDAR hypofunction (8, 21) and dopamine D2 receptor activity (22) are potentially converging mechanisms contributing to schizophrenia (23).

We now examine the contribution of NMDARs to transmission at the hippocampal-PFC synapse. We show that NMDAR activity provides sustained depolarisation that can trigger action potentials during bursts of hippocampal input to PFC. We next demonstrate that dopamine D2 receptor-dependent LTD of NMDAR transmission profoundly attenuates summation of synaptic transmission and neuronal firing at the hippocampal-PFC input. These findings allow for a mechanistic understanding of how alterations in dopamine and NMDAR function can lead to the disruption of hippocampal-PFC functional connectivity, that characterises certain psychiatric disorders.
Results

Role of NMDARs in hippocampal-PFC synaptic transmission

In this study we focus on the contribution of NMDARs to synaptic transmission at the hippocampal-PFC synaptic input. Experiments were conducted in slices of rat prefrontal cortex in which hippocampal to PFC fibres are preserved (see (24, 25); Fig. S1). Layer V pyramidal neurons were current clamped at -70 mV and single stimuli applied to the hippocampal fibre tract (evoked EPSP mean amplitude 3.2 ± 0.9 mV, n = 10). The application of the NMDAR antagonist AP5 did not affect peak EPSP amplitude (108 ± 16 %; Fig. 1A, p = 0.6) but significantly reduced the 90 to 10 % decay time of single EPSPs (from 67 ± 11 ms to 34 ± 4 ms, reduction to 56 ± 6 % of control; Fig. 1A, p = 0.003) demonstrating NMDAR contribution to the duration of depolarisation during a single EPSP. To examine the contribution of NMDAR activation to the summation of bursts of synaptic events we delivered trains of 10 stimuli at different frequencies to the hippocampal afferents and measured the area under the summed EPSPs. AP5 significantly attenuated the synaptic response to 20 Hz (36 ± 6 % of control; Fig. 1B-C; p=0.008, paired t-test) but not to 50 Hz (55 ± 11 % of control; Fig. 1B-C, p = 0.14) or 100 Hz stimulation (87 ± 23 %, Fig. 1B-C, p = 0.2; n = 10).

As an alternative measure of summation of synaptic transmission we determined the effect of AP5 on the amplitude of each EPSP during the bursts. This analysis was only performed on those cells that did not fire action potentials during the stimulation (n = 7/10). At 20 Hz stimulation, but not at 50 Hz or 100 Hz, there was an overall decrease in temporal summation of EPSPs in the presence of AP5, compared to control conditions.

In some cells (3/10) burst stimulation of hippocampal afferents produced sufficient depolarisation to elicit action potential firing. The presence of AP5 reduced the number of action potentials per stimulus train (Fig. S4A).
Thus, NMDAR-mediated transmission makes a significant frequency-dependent contribution to the synaptic activity of PFC neurons during hippocampal burst firing. Additionally, NMDAR-mediated transmission makes a significant contribution to PFC neuronal spiking in response to hippocampal bursts.

LTD of NMDAR mediated synaptic transmission:
Given the above demonstrated importance of NMDAR-mediated transmission to synaptic transmission during hippocampal burst activity, we examined how LTD of NMDAR-mediated transmission would affect hippocampal-PFC transmission. To firstly determine that plasticity of NMDAR transmission can occur at the hippocampal-PFC synapse, NMDAR-mediated EPSCs (EPSC\textsubscript{NMDA}) were isolated by voltage-clamping cells at -40 mV and blocking AMPAR- and GABA\textsubscript{A}R-mediated synaptic transmission with 5 \(\mu\text{M}\) NBQX and 50 \(\mu\text{M}\) picrotoxin, respectively.

Theta-frequency stimulation (TFS; 300 stimuli, 5 Hz, test intensity) resulted in lasting LTD of EPSC\textsubscript{NMDA} (to 58.5 ± 5.3 % of baseline; Fig. 2A), which was not associated with a significant change in EPSC decay (baseline weighted tau = 164 ± 21 ms, post-TFS Tw = 204 ± 39 ms, paired t-test \(t_{(9)} = -0.95, p = 0.4\)), indicating that LTD was unlikely to be associated with a switch in NMDAR subunits.

Importantly, TFS had no effect on EPSC\textsubscript{AMPA} (95.6 ± 6.4 %; Fig. 2B). A two-way ANOVA (factors: receptor, stimulation) revealed a statistically significant interaction (\(F_{(1,36)} = 15.9, p < 0.001\)), indicating that TFS induces LTD specifically of NMDA receptor mediated transmission. Furthermore, the paired pulse ratio of EPSC\textsubscript{NMDA} was not altered by TFS (baseline = 1.61 ± 0.1, post-TFS = 1.85 ± 0.18, \(n = 6\), paired t-test \(t_{(5)} = -1.4, p = 0.22\)). This also suggests it is unlikely that LTD of EPSC\textsubscript{NMDA} is due to a decrease in transmitter release.

We next examined which transmitters/receptors are responsible for LTD of EPSC\textsubscript{NMDA}. Bath application of D2-like dopamine receptor antagonist sulpiride (10 \(\mu\text{M}\)) completely blocked the induction of LTD of EPSC\textsubscript{NMDA} (Fig. 2C, F) but had no effect on basal transmission or maintenance of LTD (Fig. S2A,B). In contrast D1R-like antagonist SCH23390 (10 \(\mu\text{M}\)) did not block LTD (Fig. 2C, F). Furthermore, the
D1R-like agonist SKF81297 (0.5 μM) had no effect on EPSC\textsubscript{NMDA} (Fig. S3A), suggesting a differential role for D1 and D2Rs in regulation of NMDA receptors. Furthermore, bath application of the D2R agonist quinpirole (10 μM) also depressed EPSC\textsubscript{NMDA} (55.4 ± 2.8 % of baseline, Fig. 2D). Delivery of TFS after quinpirole LTD had no significant effect on EPSC\textsubscript{NMDA} amplitude (60.6 ± 3.9 %; Fig 2D), suggesting that quinpirole and TFS-LTD share common mechanisms. Together, these results suggest that dopamine D2 receptors are critical for activity-dependent LTD of EPSC\textsubscript{NMDA}.

To examine whether LTD of EPSC\textsubscript{NMDA} relied on NMDAR activation, neurons were voltage clamped at -100 mV during TFS, at which holding potential no EPSC\textsubscript{NMDA} was observed (Fig. S2C inset). Under these conditions the induction of LTD still occurred (Figs. 2E, TFS at -100 mV; S2C). As a control, we show that hyperpolarisation to -100 mV in the absence of TFS had no lasting effect on synaptic transmission (Figs. 2E, -100 mV control; S2C). Finally, delivering TFS in the presence of 50 μM AP5 did not prevent induction of LTD (Fig. 2E, AP5 + TBS; Fig. S2D). Together these results suggest that LTD of EPSC\textsubscript{NMDA} does not require NMDAR activation.

We further investigated involvement of other G-protein coupled receptors in induction of NMDAR-LTD. Neither of the muscarinic receptor antagonists atropine (1µM, Figs. 2F, S3B) nor scopolamine (10 µM, Fig. 2F, S3C) prevented the induction of activity-dependent LTD. In addition, the broad spectrum mGluR antagonist LY341495 (100 µM) did not prevent the induction of LTD (Fig. 2F, S3D).

D2-like dopamine receptors are coupled to inhibition of the adenylyl cyclase-cAMP-protein kinase A (PKA) pathway (20, 22, 26). Consistent with a key role of D2-like receptors in the generation of NMDAR-LTD, inhibition of PKA by bath application of H89 (10 μM) or KT5720 (200 nM) resulted in a slowly-developing LTD of EPSC\textsubscript{NMDA} (Fig. 3A). Furthermore, prior activation of D2-like receptors with quinpirole markedly reduced subsequent depression by H89 (Fig. 3B), implying that D2 activation induces LTD via inhibition of PKA activity. Consistent with the lack of effect of the D1-like agonist SKF81297 upon EPSC\textsubscript{NMDA}, the PKA agonist forskolin (10 μM) did not produce lasting effects on basal EPSC\textsubscript{NMDA} amplitude (Fig. 3C). Application of
forskolin resulted in de-depression of EPSC\textsubscript{NMDA} when applied after prior TFS (Fig. S3E), implicating PKA inhibition in activity dependent LTD of EPSC\textsubscript{NMDA}. Previous studies have indicated that activation of GSK\textbeta{} can result in depression of NMDAR transmission (27). However we found that LTD of EPSC\textsubscript{NMDA} was unaffected by either of the GSK\textbeta{} inhibitors TDZD-8 or SB216763 (Fig. S3F). In addition, inclusion of BAPTA in the patch pipette did not prevent the induction of LTD (10 mM; Fig. 3D). Thus, brief 5Hz stimulation results in LTD of EPSC\textsubscript{NMDA} that relies on dopamine D2 receptor activation and inhibition of cAMP/PKA.

Disruption of hippocampal-PFC transmission by LTD of NMDARs:

We next examined the effects of TFS-induced LTD of NMDARs on single EPSPs and temporal summation of EPSPs at 20, 50 and 100 Hz at the hippocampal-PFC synapse 30-40 minutes after TFS. No change in peak amplitude of single EPSPs was detected following TFS (Fig. 4A). However, the decay time of single EPSPs, was significantly decreased following TFS (Fig. 4A). The effects of TFS on peak amplitude and EPSP decay are consistent with the effects of AP5 on single EPSPs (Fig. 1A). Therefore, these data suggest that, as with the voltage-clamp experiments, TFS induces robust LTD of NMDAR-mediated transmission also under the current clamp conditions of the present experiments. In addition, these data also show that TFS is without effect on AMPAR-mediated transmission, consistent with the experiments showing that TFS delivered under voltage-clamp conditions results in LTD of EPSC\textsubscript{NMDA} but not EPSC\textsubscript{AMPA}. (Fig. 2A,B)

We then investigated the effects of NMDAR-LTD on summation of EPSPs (Fig. 4B-C). Summation of synaptic transmission during 20 Hz stimulation was significantly reduced following TFS (area under curve: $51.4 \pm 4.6 \%$ Fig. 4B-C). Peak-by-peak analysis of EPSP trains evoked at 20 Hz also showed that amplitudes of responses 2-10 were reduced following TFS (Fig 4C). Furthermore, TFS altered the short-term plasticity of the 20 Hz train (response x TFS interaction $p = 0.042$).

TFS significantly reduced synaptic summation at 50 Hz as measured by the area under the curve ($67 \pm 19 \%$, Fig. 4B), however no significant effect was observed when analysing peak amplitudes of burst responses (Fig. 4C). Summation of 100 Hz synaptic stimuli was not significantly affected by NMDAR-LTD (Fig. 4B-C).
In 4/11 experiments burst stimulation of hippocampal afferents produced sufficient depolarisation to elicit spiking under control conditions (Fig. S4B). Following TFS-induced LTD of EPSC\textsubscript{NMDA} there was a reduction in the average number of action potentials per train of EPSPs (Fig. S4B).

Together, these results demonstrate that LTD of NMDAR- transmission can disrupt in a frequency dependent manner summation of hippocampal-PFC synaptic transmission and can attenuate subsequent action potential firing.

Disruption of hippocampal-PFC transmission by LTD of NMDARs is dependent on activation of dopamine D2Rs:

Finally we examined whether the disruption of synaptic transmission that occurred following TFS stimulation could be prevented by blocking LTD of EPSC\textsubscript{NMDA}. Thus the above experiments were repeated in the presence of 10 µM sulpiride to block D2R-dependent induction of NMDAR-LTD. Under these conditions, TFS had no effect on EPSP decay (94 ± 7 % of baseline, Fig. 5A). Summation of EPSPs in response to bursts of synaptic stimuli was not significantly reduced at any firing frequency as measured by area under curve (Fig.5B) or by EPSP peak amplitudes (Fig. 5C). Finally, action potential firing was not altered following TFS in the presence of sulpiride (Fig. S4C).

These data show that activation of D2Rs results in LTD of NMDAR transmission that disrupts hippocampal-PFC synaptic activity. These results provide an insight into potential mechanisms by which dopamine receptor hyperfunction and NMDAR hypofunction might underlie the disruption of hippocampal-PFC synchrony that occurs in schizophrenia.
Discussion

The results of this study show that synaptic transmission from hippocampus to prefrontal cortex is critically dependent on the activation of NMDARs, in a frequency dependent manner. Disruption of hippocampal-PFC transmission occurs following attenuation of NMDAR activity after application of AP5 or LTD of NMDAR-mediated synaptic transmission that relies critically on the activation of dopamine D2Rs. These results show that alterations in NMDAR function brought about by D2Rs contribute to disordered functional connectivity between hippocampus and PFC, a characteristic that is a hallmark of disorders such as schizophrenia.

NMDARs and transmission between hippocampus and PFC

The hippocampal to PFC connection is critical in associative learning (2) and synchronisation of PFC-hippocampal activity is important for working memory (5, 28, 29). We found that bursts of EPSPs at lower (20 Hz) but not at higher frequency (50 or 100Hz) are highly sensitive to NMDAR antagonism. Thus NMDARs play a crucial role in determining the synaptic activity profile between hippocampus and PFC, maintaining the postsynaptic cell at depolarised membrane potential for longer during 20 Hz transmission. Frequencies of ~20 Hz occur in the hippocampus during spatial navigation (30), so NMDARs control synaptic transmission at physiologically relevant frequencies. In addition, NMDAR activation also contributed to spike firing in layer V PFC pyramidal neurons during bursting activity. Therefore NMDAR activity controls hippocampal-PFC synaptic transmission and regulates the output of PFC pyramidal cells. Hence NMDAR-dependent regulation of transmission between hippocampus and PFC may play an important role in associative and working memory.

LTD of EPSC$_{\text{NMDA}}$

Our data show that activity-dependent LTD of EPSC$_{\text{NMDA}}$ at the hippocampal-PFC synapse relies on endogenous activation of D2Rs. This significantly extends the physiological relevance of previous studies demonstrating that activation of D2Rs by exogenous agonists can depress NMDA agonist currents or NMDA EPSCs (27, 31-33). In contrast to the report that in 9-10 month old mice only a subpopulation of PFC
pyramidal neurons express D2Rs (34) we found that in every case tested, LTD was D2R-dependent. Therefore, under the conditions of our experiments it is unlikely that a large proportion of pyramidal neurons lack D2Rs. In contrast to previous reports of D1R-mediated enhancement of NMDAR transmission (20, 35), the application of a D1 agonist had no effect on the hippocampal-PFC EPSC\textsubscript{NMDA} in the present study. Whilst changes in NMDAR function in the hippocampus have been demonstrated to be dependent on muscarinic (36) and group I mGluR activation (37) the activity-dependent LTD in our study did not rely on activation of either of these receptor types.

Different mechanisms for D2R-dependent depression of NMDA responses have been suggested previously (32, 38). Whilst we were not able to confirm a role for GSK3\(\beta\) (27) in the D2R dependent LTD of EPSC\textsubscript{NMDA} our results showing that the PKA inhibitor H89 depresses EPSC\textsubscript{NMDA} are consistent with a D2R dependent inhibition of cAMP/PKA signalling being critical for LTD (38). This finding for layer V PFC pyramidal cells is in contrast to a previous report suggesting a lack of cAMP/PKA signalling in D2R inhibition of NMDA currents in CA1 pyramidal neurons (31) but is in keeping with the mechanisms proposed to underlie the D2R-dependent decrease in NMDAR-dependent calcium influx in striatopalladial neurons (39).

That theta frequency stimulation resulted in LTD selectively of EPSC\textsubscript{NMDA} but not of EPSC\textsubscript{AMPA}, indicates that LTD of NMDA transmission is not likely to rely on a decrease in transmitter release (39). Several mechanisms have been postulated for LTD of NMDARs including internalisation of receptors (37), diffusion of receptors to extrasynaptic sites (40) or a switch in NMDAR subunits (41). A recent report has suggested that prolonged D2R activation can decrease surface expression of NR2B-containing NMDARs in CA1 region of hippocampus (42), and evidence suggests NR2B subunits have greater lateral mobility than NR2A (43). However, we found that LTD was not associated with a change in decay kinetics of EPSC\textsubscript{NMDA}, suggesting no change in NMDAR subunit composition in our experiments. PKA activity has been shown to enhance NMDAR function via phosphorylation of NR1, NR2A and NR2B subunits (44-46), thus a reduction in PKA activity and subsequent dephosphorylation of NMDARs may provide a potential mechanism underlying the decrease in NMDAR currents (44).
Consequences of LTD of NMDAR for synaptic transmission
Activity-dependent plasticity of NMDAR transmission occurs at many synapses and can lead to metaplasticity (11, 18, 19). NMDA receptor plasticity may also play a homeostatic role. Plasticity of NMDAR transmission can accompany that of AMPAR transmission, thereby preserving the AMPAR:NMDAR ratio (47). However, as TFS did not induce plasticity of AMPAR mediated transmission it is unlikely that the activity-dependent LTD of NMDARs fulfils a homeostatic function at the hippocampal-PFC input.

Aside from metaplasticity, a consequence of the long-term plasticity of NMDA transmission is the impact upon synaptic transmission. We demonstrate that the normal EPSP summation and spike firing in layer V pyramidal neurons, driven by bursts of activity in hippocampal afferents, is significantly attenuated following activity-dependent LTD of NMDAR transmission. Previous studies have underlined the importance of NMDAR transmission in temporal summation between pairs of PFC pyramidal neurons where they may play a key role in recurrent excitation (48) and persistent firing (49). Such effects may contribute to working memory processes in PFC. NMDA receptors also play a key role in integration of synaptic input in dendritic branches (10) and in the generation of plateau potentials, which can result in somatic spiking (50). Although temporal summation did not result in spiking in the majority of cases in this study, probably because of the relatively modest EPSP amplitude (~2-3 mV), NMDAR-mediated transmission may facilitate spatiotemporal integration of separate inputs in hippocampal neurons (51). Correspondingly, NMDAR LTD is likely to profoundly affect the input-output characteristics of PFC neurons receiving direct input from the hippocampus.

Implications of D2R-induced LTD of NMDA
Dysfunction of the PFC is a widely reported phenomena in schizophrenia, where the role of PFC in executive function and working memory is thought to be disrupted. Traditionally, hypotheses concerning mechanisms of schizophrenia have focussed upon dysfunction of the dopaminergic and glutamatergic systems, with D2R-like receptor hyperactivity (52) and NMDAR hypofunction (8, 53) being key features. Recently it has been shown that co-treatment of schizophrenia patients with both
D2R-like antagonists and agents which increase NMDAR co-agonist activity, such as D-serine or glycine transporter antagonists, are more effective than either treatment alone (54-56), supporting hypotheses of schizophrenia which include interaction of dopamine and NMDAR systems (21, 57, 58).

Here we present evidence that NMDAR-transmission is a key driver of normal EPSP summation and action potential firing at the hippocampal-PFC projection where glutamatergic and dopaminergic projections converge upon layer 5 pyramidal neurons (59, 60). D2R activation leads to a long-lasting reduction of NMDAR function in the hippocampal-PFC pathway that critically disrupts temporal summation at the hippocampal-PFC synapse and can lead to decreased PFC spiking in response to bursts of hippocampal activity. As there is evidence showing the importance of hippocampal-PFC signalling in working memory (5, 28, 29), associative memory (2) and executive function (61), cognitive faculties negatively affected in schizophrenia, we hypothesise that D2R-induced NMDAR hypofunction at the hippocampal-PFC pyramidal cells is a key dysfunction in the pathology of schizophrenia.
Materials and Methods

Animals.

Experiments were conducted in male pigmented rats (Lister Hooded strain, Harlan UK) postnatal day 30-32. All experiments were performed in accordance with the UK Animals (Scientific Procedures) Act 1986 and associated guidelines and had approval from the University of Bristol Ethics Committee. All efforts were made to minimize suffering and the number of animals used.

Electrophysiology.

Rats were decapitated under isoflurane anesthesia and the brain was removed and rapidly submerged in ice cold (2-4°C) oxygenated (95 % O2-5 % CO2) artificial cerebrospinal fluid (aCSF) containing (mM): 124 NaCl, 3 KCl, 26 NaHCO3, 1.25 NaH2PO4, 1 MgSO4, 10 D-glucose and 2 CaCl2. The brain was cut at an 11° modified coronal angle using a custom brain matrix (Zivic Instruments, Pittsburgh, USA) and 400 µm slices made using a vibratome before storing in room temperature aCSF for ≥ 1h before use. Slices equivalent to +2.7 to +2.2 mm from bregma were perfused with aCSF at 2 ml/min. Whole cell patch clamp recordings were made from layer 5 neurons using 2-6 MΩ glass pipettes filled with either cesium methylsulfonate based solution (voltage clamp) or potassium gluconate based solution (current clamp). Hippocampal-PFC responses were evoked by applying 0.1 ms constant current pulses to the hippocampal fibre tract using a concentric bipolar stimulating electrode (24). Where applicable NMDAR-mediated currents were isolated by bath application of picrotoxin (50 μM) and NBQX (5 μM) and voltage clamp of cells at -40 mV. Detailed information on electrophysiology and analysis can be found in SI Materials and Methods.
Acknowledgements:

This work was supported by the Wellcome Trust (grant ref: 087855/z/08/z) and the BBSRC (grant ref: BB/L001896/1). The authors declare no competing financial interests.
References

41. Matta JA, Ashby MC, Sanz-Clemente A, Roche KW, & Isaac JT (2011) mGluR5 and NMDA receptors drive the experience- and activity-dependent NMDA receptor NR2B to NR2A subunit switch. *Neuron* 70(2):339-351.

Figure legends

Figure 1: NMDA receptor inhibition reduces temporal summation of hippocampal-PFC transmission. **(A)** AP5 (50 μM) reduces 90-10 % decay time of single EPSPs \((n = 10, \text{ paired } t\text{-test } t_{(9)} = 3.96, p = 0.003)\) without affecting peak amplitude \((t_{(9)} = 0.50, p = 0.63)\). Inset example traces before and after AP5 application. **(B)** Effect of AP5 on the area under the curve of EPSP bursts at different frequencies \((n = 10)\). AP5 attenuates area under the curve at 20 Hz \((\text{paired } t\text{-test } t_{(9)} = 3.39, p = 0.008)\) but not at 50 Hz \((t_{(9)} = 1.63, p = 0.14)\) or 100 Hz \((t_{(9)} = 1.36, p = 0.21)\). **(C)** Analysis of peak amplitude of each response during 20, 50 and 100 Hz bursts \((n = 7)\). Consistent with a lack of effect on single EPSP amplitude, response 1 was not affected by AP5 at 20 Hz \((\text{paired } t\text{-test}, t_{(6)} = 1.98, p =0.095)\), 50 Hz \((t_{(6)} = 1.84, p = 0.12)\) or 100 Hz \((t_{(6)} = 0.29, p = 0.78)\). Two-way repeated measures ANOVA \((\text{factors: drug, response number; Greenhouse-Geisser correction applied})\) of responses 2-10 showed a main effect of response number at 20 Hz \((F_{(1.13,6.81)} = 8.92, p = 0.019)\), a main effect of drug \((F_{(1,6)} = 20.73, p = 0.004)\) and crucially a drug x response number interaction \((F_{(8,14.66)} = 3.72, p = 0.042)\). At 50 Hz a main effect was shown for both factors \((\text{response number } F_{(1.06,6.37)} = 16.36, p=0.019; \text{drug } F_{(1,6)} = 11.05, p = 0.016)\) but no interaction was observed \((F_{(1.63, 9.791)} = 0.753, p = 0.471)\). At 100 Hz a main effect was shown for response number \((F_{(1.36, 8.14)} = 22.16, p = 0.001)\) but not for drug \((F_{(1,6)}=0.778, p=0.412)\) and there was no interaction \((F_{(1.66, 9.94)} = 0.99, p = 0.389)\). Insets show example traces from same cell shown in (A), scale bars 100 ms/1 mV. */** = p <0.05/0.01, respectively

Figure 2: Theta-frequency stimulation induces D2R-dependent LTD of EPSC\textsubscript{NMDA} but not of EPSC\textsubscript{AMPA}. **(A)** 300 stimuli delivered at 5 Hz \((\text{TFS; delivered at time} = 0 \text{ min, filled circles})\) induced LTD of hippocampal-PFC EPSC\textsubscript{NMDA} \((\text{depressed to } 58.5 \pm 5.3 \% \text{ of baseline, } n = 10)\). Open circles: time matched control NMDA EPSCs \((89.3 \pm 3.5 \%, n = 13)\). **(B)** TFS does not depress EPSC\textsubscript{AMPA} \((\text{filled circles, 95.6} \pm 6.4 \%, n = 10)\) compared to time matched control EPSC\textsubscript{AMPA} \((\text{open circles, 85.3} \pm 8.2 \%, n = 7)\). **(C)** Induction of NMDAR-LTD was prevented by prior bath application \((\text{shaded region})\) of the D2-like dopamine receptor antagonist sulpiride \((10 \mu M, \text{filled circles}, 96.3 \pm 4.0 \%, n = 5)\); one-way ANOVA, Bonferroni post-hoc vs TFS
alone, p < 0.001) whereas D1-like dopamine receptor antagonist SCH23390 (10 µM) failed to block induction of NMDAR-LTD (open circles, 43.4 ± 6.2 %, n = 5 ; p = 1.0). (D) Bath application of D2-like dopamine receptor agonist quinpirole (10 µM) significantly depressed EPSC\textsubscript{NMDA} (55.4 ± 2.8 %, n = 5, Bonferroni vs control p = 0.001). Subsequent TFS failed to further depress EPSC\textsubscript{NMDA} (60.6 ± 3.9 %, paired t-test t\textsubscript{4} = -1.14, p = 0.316). (E) Summary of data in (A) and Fig. S2. LTD of EPSC\textsubscript{NMDA} by TFS does not require NMDAR activation. Hyperpolarisation of cell to -100 mV during TFS does not prevent induction of NMDAR-LTD and hyperpolarisation to -100 mV alone does not alter EPSC\textsubscript{NMDA} amplitude. Blockade of NMDARs with AP5 (50 µM) prior to TFS does not prevent induction of NMDAR-LTD compared to AP5 applied without TFS. (One-way ANOVA, main effect F\textsubscript{(5,42)} = 14.62, p <0.001). (F) Summary of data in (C,D) and Fig. S3. Bath application of D2R antagonist sulpiride prevents induction of NMDAR-LTD by TFS, whereas inhibition of D1Rs (SCH23390) does not. Pharamcological activation of D2Rs (quinpirole) induces LTD but activation of D1Rs (SKF81297) has no effect. Muscarinic acetylcholine receptors (atropine, scopolamine) and mGluRs (LY341495) are not required for TFS induced plasticity. One way ANOVA main effect F\textsubscript{(8,50)} = 14.76, p < 0.001). */**/*** = p <0.05/0.01/0.001 Bonferroni post-hoc compared against control group unless otherwise indicated. Insets show representative traces at baseline (black) and 46-60 mins (grey).

Figure 3. NMDAR-LTD is mediated by PKA (A) Inhibition of PKA mimicked the effect of D2-like dopamine receptor agonist quinpirole, producing a slowly developing LTD of EPSC\textsubscript{NMDA} in response to either H89 (10 µM, 58.7 ± 4.7 %, n = 5; one-way ANOVA main effect F\textsubscript{(7,53)} =13.76, p < 0.001, Bonferroni vs control, p = 0.01) or KT5720 (200 nM, 63.6 ± 5.3 %, n = 5, Bonferroni vs control, p = 0.028). (B) D2-like dopamine agonist quinpirole (10 µM, light grey shading and trace) depressed EPSC\textsubscript{NMDA} to 64.2± 3.8 % (n = 5). Subsequent application of PKA inhibitor H89 (10 µM, dark grey shading and trace) resulted in a small further depression to 55.7 ± 2.5 % of baseline (paired t-test t\textsubscript{4} = 6.06, p = 0.004). The effect of H89 after quinpirole (8.6 ± 1.4 % depression) was significantly smaller than that of H89 applied alone (38.8 ± 5.1 % depression, t-test t\textsubscript{8} = 5.67, p < 0.001). (C) PKA agonist forskolin induced a transient potentiation of EPSC\textsubscript{NMDA} (10µM, amplitude 6-20 mins post-drug = 128.4 %, p = 0.001) which returned back to baseline levels within an hour of
washout (107.3 ± 5.5 %, n = 8; p = 0.26). (D) Inclusion of calcium chelator BAPTA in
the intracellular recording solution did not prevent induction of NMDAR-LTD by TFS
(10 mM; 61.7 ± 5.6 %, n = 5; Bonferroni vs TFS: p = 1.0). Insets show
representative traces at baseline (black) and 46-60 mins (grey), scale bars = 40
pA/100 ms.

Figure 4: TFS-induced NMDAR-LTD impairs temporal summation during burst
stimulation. (A) TFS reduces the decay time of single EPSPs (57.1 ± 7.3 % of
baseline, n = 11, paired t-test, t(10) = 5.49, p < 0.001) without affecting peak
amplitude (99 ± 7 %, t(10) = 0.99, p = 0.345. (B) 30 minutes after TFS the area under
the curve of 20 Hz (paired t-test, t(10) = 4.64, p = 0.001) and 50 Hz (t(10) = 3.10, p =
0.011) synaptic bursts was reduced whilst at 100 Hz no effect was observed (t(10) =
0.313, p = 0.761). (C) Analysis of peak amplitude of each response during different
frequency bursts (non-spiking cells only, n = 8 at 20 Hz, n = 7 at 50 & 100 Hz).
Statistical analysis showed that the amplitude of response 1 was not affected by TFS
at any frequency (repeated measures ANOVA 20 Hz: F(2,16) = 0.8, p = 0.5; 50 Hz:
F(2,12) = 1.1, p = 0.4; 100 Hz: F(1,70,7.020) = 2.6, p = 0.15). Two-way repeated
measures ANOVA (factors: TFS, response number; Greenhouse-Geisser correction
applied) of responses 2-10 in the 20 Hz burst showed a main effect of response
number (F(1,895, 13.262) = 15.7, p <0.001) and of TFS (F(1,7) = 73.0, p < 0.001) and a
response x TFS interaction (F(2,030, 14.210) = 3.3, p = 0.042). At 50 Hz a main effect of
response number was found (F(2,275, 13.653) = 12.1, p = 0.001) however no significant
main effect of TFS (F(1,6) = 5.3, p = 0.061) nor interaction (F(2,221, 13,325) = 1.1, p = 0.4)
were observed. At 100 Hz effects were not significant for response number (F(1,762,
10.57) = 3.6, p = 0.07), TFS (F(1,6) = 0.8, p = 0.4), or for their interaction (F(2,11.997) = 2.4,
p = 0.13). **/*** = p < 0.05, p < 0.01, p < 0.001. Insets show representative traces
at baseline (black) and following TFS (grey), scale bars = 2 mV/100 ms.

Figure 5: D2R antagonism blocks TFS-induced effects on NMDAR
transmission and TFS-reduction in temporal summation. (A) In the presence of
D2-like dopamine receptor antagonist sulpiride, TFS affects neither the peak amplitude \((n = 7\), paired t-test, \(t_{(6)} = 0.33, \ p = 0.75 \)) nor the decay time of individual EPSPs \((t_{(6)} = 0.419, \ p = 0.69) \). Inset: example EPSPs.

(B) When delivered in the presence of sulpiride (10 μM), TFS had no effect on area under the curve of synaptic bursts at 20 (paired t-test, \(t_{(6)} = 1.36, \ p = 0.22 \)), 50 (\(t_{(6)} = 1.42, \ p = 0.21 \)) or 100 Hz (\(t_{(6)} = 1.55, \ p = 0.17 \)).

(C) Response by response analysis of temporal summation (non-spiking cells only) showed that peak amplitude changed as a function of response number at 20 Hz (two-way repeated measures ANOVA, main effect of response number \(F(2.381,16.667) = 16.0, \ p < 0.001 \)) 50 Hz \((F(1.625,9.751) = 14.1, \ p = 0.002) \) and 100 Hz \((F(1.274, 6.371) = 8.3, \ p = 0.023) \), however in the presence of sulpiride no main effect of TFS was observed at any frequency (20 Hz, \(n = 7\): \(F(1,7) = 4.7, \ p = 0.067 \); 50 Hz, \(n = 6\): \(F(1,6) = 1.8, \ p = 0.2 \); 100 Hz, \(n = 6\): \(F(1,6) = 1.8, \ p = 0.2 \)) nor were response x TFS interactions seen (20 Hz: \(F(1.723, 12.063) = 1.7, \ p = 0.2 \); 50 Hz: \(F(2.482, 14.892) = 0.3, \ p = 0.8 \); 100 Hz: \(F(1.492, 7.460) = 2.9, \ p = 0.12 \)). Insets show representative traces at baseline (black) and following TFS (grey), scale bars = 2 mV/100 ms.
A

KT5720

H89

Normalized EPSC NMDA amplitude

B

Quinpirole H89

Normalized EPSC NMDA amplitude

C

Forskolin

Normalized EPSC NMDA amplitude

D

Intracellular BAPTA

Normalized EPSC NMDA amplitude

Time (mins)
Figure A: Normalized EPSP parameter vs. baseline TFS + Sulpiride.
- Amplitude: Bar graph showing normalized values.
- Decay: Bar graph showing normalized values.

Figure B: Normalized area under curve for different stimulation frequencies: 20 Hz, 50 Hz, 100 Hz.

Figure C: Normalized peak amplitude vs. response number for different stimulation frequencies: 20 Hz, 50 Hz, 100 Hz.
Supporting Information

SI Materials and Methods

General Surgical procedure. All surgical procedures were performed on male Lister-hooded rats which weighed 300-400 g at the start of the procedure. Each rat was anaesthetised with isoflurane (induction 4%, maintenance 2–3%) and secured in a stereotaxic frame with the incisor bar set at 3.3 mm below the interaural line. Injections of tracer or neurotoxin were made through burr holes at the co-ordinates outlined below. At the end of surgery each animal received fluid replacement therapy (5ml of saline containing 1 % glucose s.c.) and analgesia (0.05 ml Vetgesic i.m.).

Hippocampal tracer injection. Anterograde tracer (200 nl dextran-conjugated AlexaFluor488 4% in phosphate-buffered saline (PBS), Life Technologies, Paisley, UK) was injected into the ventral hippocampus (-6.5mm from bregma, -4.5mm from midline, 6.4mm below dura at an angle of 10° to the vertical plane) by pressure injection using an UltraMicroPump 3 (World Precision Instruments) fitted with a 5 µl Hamilton syringe with a 33 gauge needle at a rate of 50 nl/min, with the needle left in situ for 10 min post-injection. Animals were anaesthetised with sodium pentobarbital 7 days later and transcardially perfused with PBS followed by 4% paraformaldehyde and postfixed in paraformaldehyde for 24 h then transferred to 30 % sucrose in 0.2 M phosphate buffer for 48 h before making coronal sections (40 µm) on a cryostat. Sections were mounted with Vectashield mounting medium (Vector Labs) containing 1.5 µg/ml of DAPI. Images were obtained using a Leica DFC3000 FX camera mounted on a Leica DM5000B microscope with Leica GFP and A4 filter sets used to observe AlexaFluor488 and DAPI, respectively.

Hippocampal lesions. Unilateral hippocampal excitotoxic lesions were made in six 300-400g rats by making a series of injections of NMDA as indicated in Table 1. Modified coronal slices were cut, as detailed below, 21-28 days after the lesions and electrophysiological recordings were made from both hemispheres of PFC. The remaining tissue was fixed in paraformaldehyde for 48 h, transferred to 30 % sucrose in 0.2 M PBS for 48 h and sectioned at 40 µm on a cryostat before staining with cresyl violet. To determine the extent of the lesions the remaining hippocampal tissue was measured in each hemisphere (Leica Qwin 3) in every fifth section between – 1.9 and -6.3 mm relative to bregma, and the remaining hippocampal
tissue from the lesioned hemisphere expressed as a percentage of hippocampal tissue in the opposite hemisphere of the same sections.

Slice preparation

Animals were anaesthetised with isoflurane and decapitated. The brain was rapidly removed and placed in ice-cold (2-4°C) oxygenated (95 % O₂-5 % CO₂) artificial cerebrospinal fluid (aCSF) containing (mM): 124 NaCl, 3 KCl, 26 NaHCO₃, 1.25 NaH₂PO₄, 1 MgSO₄, 10 D-glucose and 2 CaCl₂. The brain was cut at an 11° modified coronal angle as described previously for the mouse (Parent et al 2009) using a custom brain matrix (Zivic Instruments, Pittsburgh, USA) and slices cut at 400 µm using a vibratome before storing in room temperature aCSF for ≥ 1h before use.

Electrophysiology

Slices equivalent to +2.7 to +2.2 mm from bregma (Paxinos & Watson 1998) were transferred to a submerged recording chamber and perfused with aCSF at a rate of 2 ml/min. For voltage-clamp experiments layer 5 neurons were patch clamped in the whole-cell configuration using borosilicate glass (GC150F-10, Harvard Apparatus, UK) electrodes 2-6 MΩ filled with a cesium methylsulphonate based solution (in mM: 130 CsMeSO₄, 8 NaCl, 10 HEPES, 0.5 EGTA, 4Mg-ATP, 0.3 Na-GTP, 5 QX-314-Cl, pH 7.25, 280-295 mOsm) at room temperature. Recordings were obtained using an Axon Multiclamp 700B amplifier (Molecular Devices) and WinLTP v1.11b (Anderson and Collingridge, 2007) or pClamp 10 (Molecular Devices) acquisition software, filtered at 4 kHz and digitised at 20 kHz (Digidata 1322A, Molecular Devices) without liquid junction potential correction. Cells where series resistance exceeded 30 MΩ or changed > 20 % were discarded. A concentric bipolar stimulating electrode (CBAPB50, FHC) was placed on the hippocampal fibre bundle and synaptic responses evoked using 0.1 ms constant-current pulses. Picrotoxin (50 µM) and NBQX (5 µM) were bath applied and cells were held at -40 mV to isolate EPSC₅₉₆A. Activity dependent LTD was induced by delivery of 300 pulses at 5 Hz at baseline stimulus intensity.

Current clamp recordings were performed at 31 ± 1°C using a potassium gluconate based intracellular solution (in mM: 145 K-gluconate, 5 NaCl, 10 HEPES, 0.5 EGTA, 4 Mg-ATP, 0.3 Na-GTP, pH 7.25, 280-295 mOsm) and were acquired using
pClamp10.2 software (Molecular Devices) low-pass filtered at 4 kHz and digitised at 100 kHz. Cells were held at -70 mV by injecting constant current (liquid junction potentials corrected post-hoc) and single hippocampal-PFC EPSPs were evoked at 0.1 Hz before delivering synaptic trains of 10 stimuli delivered at 20, 50 and 100 Hz. In some experiments NMDA receptors were blocked pharmacologically by bath applying 50 µM D-AP5 for 10 minutes before repeating synaptic measurements. In other experiments TFS was applied by switching to voltage-clamp and stimulating 300 times at 5 Hz at \(V_{holding} = -40 \) mV. Single responses and trains were then re-measured in current clamp during a 10 min period immediately following TFS, and again in a 10 min period 30 min after TFS.

Analysis

Data was analysed using WinLTP and Clampfit (Molecular Devices) and statistical analysis using SPSS 21 (IBM). Results are expressed as mean ± SEM unless indicated otherwise. Statistical analysis of current clamp data was performed using repeated measures ANOVA or paired t-test. Statistical analysis of plasticity experiments was assessed by averaging data points from the last 15 min of the experiment using one-way ANOVA with Bonferroni post-hoc comparisons to allow inclusion of a control data group to account for effects of rundown. EPSC\textsubscript{NMDA} decay time constants were fit by a double exponential function using Clampfit and a weighted time constant (\(\tau_w \)) calculated as

\[
\tau_w = \tau_{fast} \times \left(\frac{A_{fast}}{A_{fast} + A_{slow}} \right) + \tau_{slow} \times \left(\frac{A_{slow}}{A_{slow} + A_{fast}} \right)
\]

where \(A \) = amplitude. \(\tau_w \) were compared using paired t-tests. Statistical significance was set at 0.05 for all comparisons. Statistical analysis of the effects of hippocampal lesions on electrophysiology were performed using Mann Whitney non-parametric test.
Figure Legends

Figure S1. Recording of hippocampal-PFC synaptic transmission in the rat in vitro.
Following labelling of the ventral hippocampal CA1 region with an anterograde tracer (A), fibres were observed running in a ventral-dorsal course (B, bottom right) and innervated infralimbic and prelimbic cortex (B, top right). Stimulation electrode is placed within hippocampal fibre bundle and recordings made from prelimbic layer 5. (C) To confirm the origin of the putative hippocampal fibre bundle, unilateral excitotoxic lesions were made in 6 animals. 21 days later volumetric lesion analysis showed 61 ± 8 % of hippocampal volume was lost. Largest (grey) and smallest (black) lesion volumes are shown. (D) In PFC slices contralateral to the lesion, stimulation of hippocampal afferents evoked large EPSCs in all cells (mean amplitude 299 ± 45 pA, n = 17 cells from 6 animals) whereas in slices from the ipsilateral hemisphere responses were absent or profoundly reduced in amplitude (38 ± 8.4 pA, n = 19 cells from 6 animals) when compared to the contralateral hemisphere (Mann-Whitney test, *** = p < 0.001).

Figure S2. D2-like dopamine receptor activation does not regulate basal NMDA transmission nor expression of NMDA-LTD and induction of NMDA-LTD does not require activation of NMDA receptors. (A) Bath application of sulpiride (10 µM) had no effect on basal EPSC\textsubscript{NMDA} transmission (93.8 ± 4.5 % of baseline, n = 5, paired t-test t\textsubscript{(4)} = -1.127, p = 0.32). (B) The maintenance of LTD of EPSC\textsubscript{NMDA} (45.2 ± 8.2 % of baseline, n = 6) is unaffected by sulpiride (10 µM), when bath applied 30 minutes later (44.7 ± 10.3 % of baseline, paired t-test t\textsubscript{(5)} = 0.192, p = 0.86). (C) Hyperpolarisation of cell to -100 mV during TFS (shaded region) prevented ionic conductance through NMDA receptors (dark grey trace, inset) but did not prevent induction of NMDAR-LTD (filled circles, 57.4 ± 5.5 % of baseline, n = 5, one-way ANOVA, Bonferroni post hoc vs TFS, p = 1.0). Hyperpolarisation to -100 mV in the
absence of TFS was not sufficient to induce NMDAR-LTD (open circles, 87.1 ± 8.8 %, n = 4, post hoc vs TFS p = 0.002, post hoc vs control p = 1.0). See Fig. 2E for summary. (D) Bath application of AP5 (50 µM, shaded region) before delivery of TFS did not prevent induction of LTD (filled circles, 56.4 ± 4.8 %, n = 8, Bonferroni post vs TBS alone p = 1.0, Control p < 0.001). Furthermore TFS applied in the presence of AP5 was significantly different to a control group AP5 applied in the absence of TFS (open circles, 74.6 ± 2.7 %, n = 8, Bonferroni post hoc, p = 0.041). The AP5 control group was not significantly different to time matched controls (p = 0.11). See Fig. 2E for summary. Insets show representative traces at baseline (black) and 46-60 mins (grey).

Figure S3. (A) D1R-like dopamine receptor agonist SKF81297 (0.5 µM) had no effect on EPSC_{NMDA} (98.9 ± 8.6 % of baseline, n = 5, one way-ANOVA, Bonferroni vs control p = 1.0, vs TFS p < 0.001). Bath application of muscarinic acetylcholine receptor antagonists (B) atropine (1 µM, 52.7 ± 4.6 %, n = 5; post hoc vs TFS alone p = 1.0) or (C) scopolamine (10 µM, 55.2 ± 9.4 % n = 6; post hoc vs TFS alone p = 1.0) did not prevent induction of LTD by TFS. (D) Bath application of LY341495 at a concentration (100 µM) that acts as a broad spectrum mGluR antagonist did not prevent activity-dependent NMDAR-LTD (70.1 ± 4.6 %, n = 5, post hoc vs TFS alone p = 1.0). (E) LTD of EPSC_{NMDA} by TFS (64.8 ± 2.1 %, n = 5, light grey trace) was reversed by bath application of forskolin (10 µM, dark grey trace, 90.8 ± 10.8 % of baseline, paired t-test t(4) = -2.79, p = 0.495). (F) NMDAR-LTD induced by TFS was not blocked by bath application of GSK3β antagonists TDZD-8 (10 µM; 58.5 ± 7.1 %, n = 6; Bonferroni vs TFS: p = 1.0) or SB216763 (10 µM, 60.7 ± 5.6 %, n = 9, post hoc vs TFS alone p = 1.0). Insets show representative traces at baseline (black) and 46-60 mins (grey). (A-D are summarised in Fig. 2F).

Figure S4. Effects of NMDA receptor modulation on action potential firing. (A) Left: plot of action potentials fired during synaptic bursts at different frequencies before and after bath application of AP5 (50 µM), averaged across 3 cells. Right: example trace of a cell that fires in response to a 20 Hz synaptic burst before, but not after AP5. (B) Left: action potentials fired before and after TFS averaged across 4
cells. Right: Example traces of cell spiking in response to a 50 Hz synaptic burst with spiking attenuated following TFS. (C) Left: A single cell fired in response to 50 and 100 Hz synaptic bursts both before and after delivery of TFS in the presence of sulpiride. Right: example traces of 50 Hz bursts before and after TFS + sulpiride. Due to low experimental number statistical analyses were not performed on these data.