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Summary 

Cord blood stem cells are an attractive starting source for the production of red blood cells in 

vitro for therapy because of additional expansion potential compared to adult peripheral 

blood progenitors, and cord blood banks usually being more representative of national 

populations than blood donors. Consequently it is important to establish how similar cord 

RBCs are to adult cells. In this study we used Multiplex Tandem Mass Tag labeling 

combined with nanoLC-MS/MS to compare the proteome of adult and cord RBCs and 

reticulocytes. 2838 unique proteins were identified, providing the most comprehensive 

compendium of RBC proteins to date. Using stringent criteria 1674 proteins were quantified, 

and only a small number differed in amount between adult and cord RBC. We focussed on 

proteins critical for RBC function. Of these only the expected differences in globin subunits, 

along with higher levels of carbonic anhydrase 1 & 2 and aquaporin-1 in adult RBCs would 

be expected to have a phenotypic effect since they are associated with the differences in 

gaseous exchange between adults and neonates. Since the RBC and reticulocyte samples used 

were autologous, we catalog the change in proteome following reticulocyte maturation. The 

majority of proteins (>60% of the 1671 quantified) reduced in abundance between 2 and 100-

fold following maturation. However, ~5% were at a higher level in RBCs, localised almost 

exclusively to cell membranes, in keeping with the known clearance of intracellular recycling 

pools during reticulocyte maturation.  Overall, these data suggest that with respect to the 

proteome there is no barrier to the use of cord progenitors for the in vitro generation of RBCs 

for transfusion to adults other than the expression of fetal not adult haemoglobin. 
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Introduction 

The generation of human red blood cells (RBCs) in vitro for transfusion purposes is a major 

goal of health services globally. In recent years advances in the development of systems for 

the generation of erythrocytes in vitro have progressed rapidly using progenitor cells isolated 

from adult peripheral blood (PB)(1) umbilical cord blood(2,3) and human pluripotent stem 

cells.(4-6) Cells from adult PB and cord can be expanded and induced to differentiate 

efficiently down the erythroid pathway to generate significant numbers of enucleated 

reticulocytes as an end point.(1) However, adult PB progenitors have a more limited 

proliferative capacity than cord, which restricts the number of red cells that can be obtained 

by in vitro culture methods and greatly impacts the economic viability of producing 

therapeutic quantities of red cells from this source. Therefore, progenitors isolated from cord 

are attractive as a starting material for in vitro blood production because of their potential for 

greater expansion capacity.(3,7) In addition cord stem cell banks are generally more 

representative of blood group diversity in the population compared to adult donor blood 

banks. 

Although cord progenitors offer a realistic potential for generating therapeutic quantities of 

erythroid cells, these cells appear to maintain a fetal, rather than adult phenotype. The most 

obvious difference between erythroblasts generated from cord compared to adult PB is their 

expression of predominately γ- (fetal) rather than β- (adult) globin. Other differences have 

been reported,(8,9) including expression of i rather than I antigen, and weak expression of 

ABH antigens on cord cells. However, to date a comprehensive, comparative analysis of the 

proteome of cord cells compared with adult cells has not been undertaken, although such 

information is essential before such cells can be considered for therapeutic use. 
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Another poorly defined feature of erythropoiesis is the change in proteome as reticulocytes 

undergo extensive transformation to create mature erythrocytes. Alterations in membrane 

proteins have been observed to occur during enucleation,(10) and the role of autophagic 

vesicles in reticulocyte maturation has recently been described.(1,11) However, a more 

comprehensive understanding of the final stages of reticulocyte maturation is now required in 

order to facilitate the study of inherited and acquired anaemias exhibiting reticulocytosis,(12) 

and aid in extending in vitro culture systems to create mature erythrocytes.  

 

We have undertaken multiplex Tandem Mass Tag (TMT) labelling and nanoLC-MS/MS to 

compare the proteome of adult and cord endogenous RBCs, and also of reticulocytes 

generated in vitro from adult PB and cord progenitors.  In addition, as our culture system 

generates functional, mature reticulocytes(1) we were able to compare the proteome of these 

cells with that of the original donors own mature RBCs, mimicking as close as possible the in 

vivo maturation process.  

 

Materials and Methods 

Isolation of adult and Cord Blood RBCs and CD34+ cells 

Leukocyte Reduction System (LRS) cones and CB units were obtained from healthy donors 

with written informed consent for research use in accordance with the Declaration of Helsinki 

and approved by local Research Ethics Committees (Southmead Research Ethics Committee 

reference 08/H0102/26 and Bristol Research Ethics Committee reference 12/SW/0199). 

Adult RBCs and CD34+ cells, and CB RBCs and CD34+ cells were isolated from the same 

Leukocyte Reduction System cones and cord blood units respectively. CD34+ cells were 

separated as described by Griffiths et al(1).  
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Erythroid differentiation of CD34+ cells 

CD34+ cells were differentiated in our three-stage culture system,(1) harvested on day 19 and 

passed through a PALL WBF leukocyte filter(1) to isolate mature reticulocytes.  

 

Preparation of membrane and cytosol fractions 

The RBCs and reticulocytes were separated into membrane and cytoplasmic fractions to 

reduce protein complexity for Mass Spectrometry (MS). Cells were washed twice in cold 

PBS, followed by 2 washes with iso-osmotic buffer (Na2HPO4 103 mM, NaH2PO4 155 mM 

pH 7.4). The cells were then lysed in lysis buffer (1 in 20 dilution of iso-osmotic buffer with 

water, 1x complete protease inhibitor [Roche] and 0.5 mM PMSF [Sigma-Aldrich]) at 50x 

packed cell volume, followed by centrifugation at 15,000 rpm for 10 minutes at 4°C. The first 

supernatant was collected and kept as a cytoplasmic fraction. The lysis step was repeated an 

identical number of times for the adult and cord cells until the membrane pellet of both 

become white. The pellets were solubilized in sodium phosphate buffer with 1x complete 

protease inhibitor and 0.5mM PMSF. 

 

SDS-PAGE and Western blot 

Washed cell pellets were re-suspended in solubilisation buffer (20 mM Tris HCL pH 7.5, 150 

mM NaCl, 10% glycerol, 1% Triton, 0.1% SDS) containing 1x complete protease inhibitor 

and 2 mM PMSF at 200 µl of buffer to 1x107 cells. After 1 hour incubation on ice the protein 

samples were treated with 25 Uml-1 Bensonase (Sigma-Aldrich) for 1 hour on ice and then 

centrifuged at 17,000 g for 5 minutes, at 4°C. Cytoplasmic and nuclear fractions were 

prepared in the same way as samples for mass spectrometry (above). Proteins were resolved 

by SDS-PAGE and transferred to PVDF by Western blot.  Membranes were blocked with 

10% milk powder for 1 hour, followed by incubation with primary antibodies overnight at 
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4°C. Primary antibodies used were Aquaporin I (CHIP28) and Glycophorin A (CVDP) 

1:1000 dilution, Ankyrin 1 (BRIC274) 1:100 dilution and Band 3 (BRIC170) 1:2000 dilution 

all validated and supplied by IBGRL 

(http://ibgrl.blood.co.uk/ResearchProducts/ResProdHome.htm). BCL11A[14B5] (ab19487) 

and CAII (ab6621) 1:1000 dilution, CAI (ab34978) and Myosin IIB (ab684) 1:2000 dilution, 

Tropomodulin 4 (ab67776) 1:500 dilution, all from Abcam; β–globin (37-8; sc21757) 1:5000 

dilution, γ-globin (51-7; sc21756) and α-globin (D-16; sc31110) 1:1000 dilution all from 

Santa Cruz Biotechnology; β–actin (A1978;Sigma) 1:2000 dilution. Specificity of antibodies 

has been previously demonstrated(13-15); Abcam plc.  

 

Lentiviral constructs and transduction of erythroblasts 

pLKO.1-TRC BCL11A short hairpin (sh) RNA plasmids (B1 and B5) were designed by the 

Broad Institute and purchased from Open Biosystems. The sequence of hairpin B1 is 5'-

CCGG-CGCACAGAACACTCATGGATT-CTCGAG-AATCCATGAGTGTTCTGTGCG-

TTTTTG-3', targeting nucleotides 792-812 and the sequence of B5 is 5'-CCGG-

GCATAGACGATGGCACTGTTA-CTCGAG-TAACAGTGCCATCGTCTATGC-

TTTTTG-3', targeting nucleotides 2015-35 of BCL11A-XL (accession number 

NM_022893.3). Transduction of erythroblasts was performed as described by Satchwell et al 

and Trakarnsanga et al.(15,16)  

 

 Polymerase Chain Reaction (PCR) 

RNA (400 ng) was reverse transcribed into cDNA using SuperScript II reverse transcriptase 

(Invitrogen). Globin expression was analysed using primers to β-globin 5’ 

CTTTAGTGATGGCCTGGCTC and 5' GGCAGAATCCAGATGCTCAA, and γ-globin 5' 
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GGGCAAGGTGAATGTGGAAGAT and 5' GGGTCCATGGGTAGACAACCA as 

described previously.(15) 

 

Tandem Mass Tag labelling, preparation of samples for mass spectrometry, database 

search parameters and acceptance criteria for identifications 

For multiplexed comparative proteomics 100 µg of each cell lysate was digested with trypsin 

and labeled with Tandem Mass Tag (TMT) reagents according to the manufacturer’s protocol 

(Thermo Fisher Scientific).  After labeling, samples were combined in equal amounts, and 50 

µg of pooled sample fractionated by strong cation exchange using an Ettan LC system (GE 

Healthcare) prior to analysis by nanoLC-MS/MS.  The raw data files were processed and 

quantified using Proteome Discoverer software v1.2 and v1.4 (Thermo Scientific) and 

searched against the UniProt/SwissProt Human database release version 57.3 (20326 entries) 

using the SEQUEST (Ver. 28 Rev. 13) algorithm.  Peptide precursor mass tolerance was set 

at 10 ppm, and MS/MS tolerance was set at 0.8 Da. Search criteria included oxidation of 

methionine (+15.9949) as a variable modification and carbamidomethylation of cysteine 

(+57.0214) and the addition of isobaric mass tags (+229.163) to peptide N-termini and lysine 

as fixed modifications. Searches were performed with full tryptic digestion and a maximum 

of 1 missed cleavage was allowed.  The reverse database search option was enabled and all 

peptide data was filtered to satisfy false discovery rate (FDR) of 5%. The Proteome 

Discoverer software generates a reverse “decoy” database from the same protein database 

and any peptides passing the initial filtering parameters that were derived from this decoy 

database are defined as false positive identifications. The minimum cross-correlation factor 

(Xcorr) filter was readjusted for each individual charge state separately to optimally meet the 

predetermined target FDR of 5% based on the number of random false positive matches from 

the reverse decoy database. Thus each data set has its own passing parameters.  Quantitation 
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was performed using a peak integration window tolerance of 0.0075 Da with the integration 

method set as the most confident centroid.  Protein ratios represent the median of the raw 

measured peptide ratios for each protein. These methods are described in Trakarnsanga et 

al.(5) The mass spectrometry (MS) proteomics data have been deposited to the 

ProteomeXchange Consortium(17) via the PRIDE partner repository with the dataset 

identifier PXD003276. 

For analysis only rank 1 peptides were used, and only quantifications obtained using 2 or 

more unique peptides with high/medium confidence per protein were considered (although 

for additional information proteins quantified from 1 unique peptide are sometimes included). 

Proteins recorded as uncharacterized by the software were returned with a gene ID. We 

selected a comparative protein threshold of 2, such that proteins that differed in level by 2.00 

fold or more between adult and cord samples were considered differentially expressed. For 

classification by cellular component and molecular function proteins were analysed using 

WebGestalt GSAT V2. 

 

Experimental design and Rationale 

The human samples for this study were provided as a pool of autologous CD34+ cells and 

RBCs from 16 adults, and a pool of autologous CD34+ cells and RBCs from 4 cord samples, 

minimising intrinsic variability between individuals. To ensure robustness of our comparative 

data the level of proteins in the pooled adult sample were further compared to an additional 

cord RBC and reticulocyte sample, and only proteins that also differed between the adult and 

these second cord samples are reported as differentially expressed. For comparative analysis 

between adult and cord erythroid cells internal controls included proteins known to be 

consistent in level, eg. α-globin, and to differ in level, eg. β- and γ-globin, between these cells, 

as described. For comparative analysis between reticulocytes and mature RBCs, internal 
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controls included proteins known to change in level following reticulocyte maturation, as 

described.  

 

Results and discussion 

Membrane and cytosol fractions of the adult and cord RBC and reticulocytes were each 

labelled with a different TMT, pooled and analysed by MS.  Using this methodology, 1880 

proteins were identified in the membrane fractions, and 1602 in the cytosolic fractions 

(Supplemental Tables 1A & B, 2A & B). Certain proteins were detected in both fraction 

hence overall we identified 2838 unique proteins, which represents the most comprehensive 

identification of RBC proteins to date. No membrane or cytosol protein detected was unique 

to just adult or cord, or just RBCs or reticulocytes. 

 

We detected 26 RBC blood group protein antigens in these data (Table 1). As stated 

previously(5), Duffy is a large glycosylated protein with few trypsin sites resulting in a large 

peptide that is not compatible with MS identification. We have previously shown that our 

culture system does not alter the blood group protein expression profile of cultured adult 

erythroid cells.(1) In the present study we further compared the abundance of the RBC blood 

group proteins between the endogenous RBCs and autologous cultured cells. The levels were 

either consistent or lower in the cultured cells (Table 1), reassuring that the cultured cells are 

not more immunogenic than endogenous cells. We performed the same analysis for RBCs 

and autologous cultured cells from a single cord blood donor, confirming abundance of the 

RBC blood group proteins was either consistent or lower in the cultured cells (Supplemental 

Table 3). We also performed serological analysis of cord blood cells, again comparing the 

expression of blood group antigens between endogenous and erythroid cells differentiated 

from CD34+ cells from the same donor (Supplemental Fig 1). As expected, Ch and Rg were 
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not detected on the cultured cells as these antigens are expressed on Complement component 

C4, absorbed onto red cells from plasma. When blood group antigens defined by 

carbohydrate structures were examined (ABH, Ii, P1, P, Pk, LKE), cultured cord 

reticulocytes showed stronger expression of P1 and I antigens and weaker expression of H 

and LKE antigens. Weaker expression of ABH antigens and stronger expression of i antigen 

on cord RBC's when compared with adult RBC's is well known.(8,18,19) Such variations in 

the degree of N-glycosylation are unlikely to impact on the use of cultured cord reticulocytes 

for therapy although the possibility of exposure of novel cryptantigens cannot be entirely 

ruled out. 

 

Previous reports of the RBC proteome include studies by Kakhniashvili et al who identified 

181 proteins,(20) Pasini et al, (21) who reported 534 proteins with unique IDs, and Roux-

Dalvai et al(22) who used hexapeptide libraries to reduce the signal from haemoglobin during 

MS and thus maximise identification of RBC cytosolic proteins, detecting 1578 proteins. 

Recently, Heqedus et al(23) performed MS for RBC membranes, identifying 419 proteins, 

pooling these data with that available in the literature to generate a database for the RBC 

membrane containing 846 proteins. D’Alessandro et al(24) also interrogated the literature 

compiling a list of 1989 RBC proteins, pathway and network analysis of which supported the 

concept that RBCs suffer exacerbated oxidative stress. Basu et al(25)recently catalogued 

proteins of the RBC membrane skeleton identifying unexpected components such as myosin-

9, lipid raft proteins and multiple chaperone proteins. Such studies clearly reveal the power of 

proteomic technologies. Our data represents a significant advance in the number of erythroid 

proteins identified to date, and was achieved for both cytosolic and membrane proteins 

simultaneously from the same cells. The depth of our coverage is confirmed by identification 
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of the nine haemoglobin chains, including those low expression chains highlighted by Roux-

Dalvai et al(22) as normally hidden by the α- and β-globin chains. 

 

Proteomic comparison of protein levels between adult and cord erythroid cells 

We compared the level of proteins between the adult and cord RBCs and adult and cord 

reticulocytes.  

Of the identified proteins 943 membrane proteins and 731 cytosolic proteins were quantified 

(Supplemental Tables 4A & B). Of these only 2.6% varied in level between adult and cord 

reticulocytes, and 6% between adult and cord RBCs.  

 

As expected the level of β- and δ-globin was higher in adult than cord RBCs (5 and 12 fold 

respectively) and reticulocytes (2.2 and 3.4 fold), whereas the level of γ-globin 1 and 2 was 

higher in cord than adult RBCs (12 and 66 fold respectively) and reticulocytes (3 and 9 fold). 

The level of ε- and ξ-globin was also higher in cord than adult RBCs (23 and 56 fold 

respectively) and reticulocytes (both 4 fold). The level of α-globin was consistent between 

adult and cord RBCs and between adult and cord reticulocytes.  

 

We interrogated the data to ensure inclusion of proteins critical for RBC function. All 

proteins of the band 3-ankyrin macro-complex and 4.1R junctional complex(26-28) were 

quantified, except the Rh antigens and RhAG which were identified, but as from only 1 

unique peptide their quantification was not considered. Protein levels were consistent 

between the membrane fraction of adult and cord RBCs, and adult and cord reticulocytes 

(Supplemental Table 5).  
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We next searched for proteins with known adhesion or transport function, metabolic enzymes 

and cytoskeleton proteins essential for RBC structure, identifying 137 and quantifying 92 

(Supplemental Table 5).  

 

The overall abundance of all was equivalent between adult and cord reticulocytes.  

 

In RBCs, five proteins (carbonic anhydrase 1 & 2, aquaporin 1, BCAM [Lutheran] and 

semaphorin-7A) were at a higher level in the adult cells (Table 2). The higher level of 

carbonic anhydrase 1 and 2 and aquaporin-1, along with the expression of β-globin in adult 

RBCs can be attributed to known differences in gaseous exchange requirement between 

adults and neonates. We previously showed that transduction of cord derived erythroid cells 

with transcription factors KLF1 and BCL11A-XL induces the switch from γ- to β-globin.(15) 

Conversely, knockdown of BCL11A in adult erythroblasts reverses the globin switch, 

increasing the expression of γ-globin.(29) We knocked down the level of BCL11A in adult 

erythroid cells using two different shRNA, B1 and B5 (Supplemental Fig 2). There was a 

greater increase in γ-globin expression following transduction with shRNA B5, we therefore 

compared the protein expression profile of these cells with that of control cells using TMT 

labeling and MS. The level of β-globin decreased as expected, but interestingly the level of 

carbonic anhydrase 1 & 2 and aquaporin-1 (Table 3) was also reduced, suggesting co-

regulatory mechanisms for these proteins. Variation in abundance of Semaphorin 7A which 

carries the JMH blood group antigens and BCAM with carries the Lutheran blood group 

antigens would not be expected to have any clinical sequalae. 

 

Three proteins, myosin heavy chain 9 and 10 and myosin regulatory light chain 12A, all 

subunits of the myosin cellular motor proteins that interact with actin, were at a higher level 
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in cord than adult RBCs (Table 2). A higher level of myosin 9 has previously been reported 

in neonatal RBCs.(30) Differences in the level of these proteins could contribute to 

differences in membrane deformability between cord and adult RBCs, although data 

pertaining to such are conflicting.(31,32) However, 40 other cytoskeleton proteins, including 

those critical for RBC stability, were at equivalent abundance, suggesting an overall 

similarity between the cell’s resistance to mechanical stress.  

 

Quantification of western blots of adult and cord RBC lysates probed with antibodies to 

selected proteins corroborated the MS data (Supplemental Fig 3).  Glycophorin A and α-

globin, which were consistent in level between adult and cord RBCs in the MS data, served 

as controls. 

 

The similarity between the proteome of adult and cord erythroid cells makes their distinct 

globin expression profiles even more striking, as clearly their differences in oxygen binding 

capacity are not associated with significant differences in the expression of other proteins. 

 

Analysis of the change in proteome following reticulocyte maturation to RBC 

Detailed analysis of the change in proteome during maturation of human reticulocytes to 

mature RBCs has been hampered by the difficulty isolating a suitable population and amount 

of reticulocytes. As we were able to generate a large number of mature functional 

reticulocytes by in vitro culture, we were able to compare the proteome of these cells with 

that of the autologous endogenous RBCs using our MS data.  

 

We first confirmed that specific proteins known to decrease in level during maturation of 

reticulocytes to RBCs(1,33) did so in our study. Transferrin receptor 1, integrin β1, CD98, 65 



	 14	

ribosome subunits, all subunits of the sodium potassium ATPase detected and all isoforms of 

tubulin detected were at a lower level in both adult and cord RBCs compared to reticulocytes. 

 

We next looked at the change in proteome between the adult autologous reticulocytes and 

RBCs. A total of 943 proteins were quantified in the membrane and 728 in the cytosol 

fraction (Supplemental Tables 6A and B).  

 

In the membrane fraction 500 proteins were at a lower level in RBCs compared to 

reticulocytes, of these 370 were reduced by 2-10 fold and 130 by >10 fold. There were just 

86 proteins at a higher level in RBCs, and the number of proteins with a large magnitude of 

change was far less with only 3 proteins (Glycophorin A, Sorbitol dehydrogenase and 

Cathepsin E) >10 fold higher. In the cytosol fraction 588 proteins were at a lower level in 

RBCs, comprising 464 proteins reduced by 2-10 fold and 124 by >10 fold. Only 4 proteins 

were at a higher level in RBCs compared to reticulocytes, with just Carbonic anhydrase 1 

>10 fold higher. All proteins that differed in level by 10 fold or more in the membrane and 

cytosol fraction are shown in Supplemental Tables 7A & B respectively. 

 

We classified the proteins by cellular component and molecular function (Figure 1). 

Examples from these analyses show the majority of ribosomal and mitochondrial proteins are 

lost from reticulocytes as expected. The majority of proteins involved in translation 

regulation and chromatin binding were also lost from reticulocytes, whereas proteins 

involved in lipid and oxygen binding were at a higher level in RBCs than reticulocytes 

 

As there was a distinct difference in the number of proteins that increased in level in the 

membrane compared to cytosol fraction of RBCs, we questioned whether some proteins 
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underwent differential partitioning between the cytosol to the membrane during maturation. 

To address this we interrogated our MS data for proteins at a higher level in the RBC than 

reticulocyte membrane fraction, with a corresponding decrease in level in the RBC cytosol 

(Supplemental Table 8), notably this included a disproportionate number of proteins 

belonging to the band 3-ankyrin and 4.1R junctional membrane complexes. To determine 

whether other proteins in these complexes displayed the same trend we employed reduced 

stringency of 1 unique peptide, which although below our normal robust stringency of 2 

unique peptides per protein for comparative analysis, still ensures that the peptide is specific 

to that protein and gives an indication of abundance. Using 2 or more unique peptides 

reassures consistency between comparisons. Using this approach we found that all proteins 

detected displayed such partitioning (Supplemental Table 9) in both adult and cord cells. This 

may be due to proportional loss of other membrane proteins, but more likely re-localisation 

of proteins from the cytosol to the membrane occurs during reticulocyte maturation reflecting 

the known loss of intracellular endocytic pools of proteins during maturation.(1,34) Data for 

selected proteins was confirmed by quantification of western blots (Supplemental Fig 4). 

 

Using the reduced stringency we also found all 14 α and β proteasome subunits at a higher 

level in RBCs than reticulocytes, which along with the identification of other proteasome 

subunits support a function for proteasome in RBCs.  

 

Finally, we examined the profile of all globin subunits in the cytosol fraction (Table 4). In 

adult cells the level of β- and δ-globin was consistent between reticulocytes and RBCs, 

however the level of gamma 1 & 2, ε- and ζ-globin was lower in RBCs than reticulocytes.  In 

cord cells the level of both γ subunits, ε- and ζ-globin was consistent between reticulocytes 

and RBCs, but the level of β- and δ-globin was lower in RBCs than reticulocytes. The level 
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of α-globin was consistent. These data suggest selective loss of globin subunits during 

reticulocyte maturation, or differences in the stability of different mRNAs resulting in the 

continued translation of some but not other transcripts.  Similar mechanisms may function for 

other proteins, as overall levels were more consistent between adult and cord reticulocytes 

than RBCs. 

 

Conclusion 

Our data provide the most comprehensive identification to date of the RBC proteome, and 

insight into the change in proteome during maturation, which will serve as a useful resource. 

Apart from the known differences in globin expression and key proteins known to be 

involved in gaseous exchange (aquaporin 1 and carbonic anhydrase 1 & 2), these data 

indicate the proteome of adult and cord erythroid cells are reassuringly similar.  Thus, with 

respect to the proteome there is no detectable barrier to using cord progenitors for the in vitro 

generation of RBCs for adult therapeutics other than the known differences in oxygen uptake 

and release of HbF and HbA.  
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Table 1. RBC blood group proteins in pooled erythroid cell samples.   

Endogenous adult and cord RBCs and reticulocytes (Retic) differentiated in vitro from adult 

peripheral blood and cord CD34+ cells (RBCs and CD34+ cells pooled from 16 and 4 

individuals respectively) were fractionated and proteins subjected to trypsin digest, with 

resultant peptides labelled with TMTs for nanoLC-MS/MS based quantitation. Values show 

the ratio of protein levels between adult RBCs and reticulocytes (Retic) and cord RBCs and 

reticulocytes. Proteins were quantified from at least 2 unique peptides. Peptides and unique 

peptides; the total number of peptide sequences and number of unique peptides identified for 

that protein. Proteome Discoverer software v1.4 was used for analysis. 

 

Accession Description System Unique 

Peptides 

Peptides Adult 

RBC/Retic 

Cord 

RBC/Retic 

C9JGQ9 ACHE  Yt 5 5 2.742 1.406 

E9PC21 AQP1  Colton 2 2 5.165 3.412 

Q9NP58 ATP-binding cassette 

sub-family B member 6 

LAN 14 15 0.816 1.166 

Q9UNQ0 ATP-binding cassette 

sub-family G member 2  

JR 3 3 2.204 2.023 

P02730 Band 3 anion transport Dieago 27 27 3.826 3.604 
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protein  

P50895 Basal cell adhesion 

molecule  

Lutheran 10 10 2.373 1.155 

Q54A51 Basigin  Ok 11 11 0.954 1.260 

Q02161 Blood group Rh(D) 

polypeptide  

Rh 1 2 2.872 8.032 

A6H8M8 C4A protein  Chido/ 

Rodgers 

1 1 6.252 1.575 

B6EAT9 CD44  Indian 6 6 1.946 1.188 

E9PNW4 CD59  CD59 3 3 1.259 2.748 

A6NIW1 CD99 antigen  Xg 1 1 2.014 0.741 

E9PDY4 CR1  knops 2 2 1.885 1.083 

Q14UF5 Decay-accelerating 

factor  

Cromer 11 11 2.113 2.026 

Q93070 Ecto-ADP-

ribosyltransferase 4  

Dombrock 3 3 3.086 3.262 

Q96PL5 Erythroid membrane-

associated protein  

Scianna 10 10 3.127 2.423 

B8Q185 Glycophorin A MNS 

blood group  

MNS 3 3 12.251 11.878 

P04921 Glycophorin-C  Gerbich 4 4 2.685 2.892 

Q14773 Intercellular adhesion 

molecule 4  

Landsteiner-

Wiener 

5 5 2.414 4.418 

P23276 Kell blood group 

glycoprotein  

Kell 8 8 3.245 2.189 

P51811 Membrane transport 

protein XK  

Kx 6 6 2.411 2.520 

F5H250 RHAG  Rh 

associated 

1 1 1.431 5.235 
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glycoprotein 

E7EWZ5 RHCE  Rh 1 2 1.431 5.235 

O75326 Semaphorin-7A  John Milton 

Hagen 

8 8 5.814 3.986 

E9PR61 SLC14A1  Kidd 1 5 2.675 1.397 

Q13336 Urea transporter 1 

SLC14A1  

Kidd 3 7 2.844 2.518 

 

 

Table 2. Proteins that differ in amount between adult and cord RBCs 

See legend for Table 1 for experimental details. Values show the ratio of protein levels 

between adult and cord RBCs and adult and cord reticulocytes.  

 

 

Accession Description Unique 

Peptides 

Peptides RBC 

Adult/Cord 

Retic 

Adult/Cord 

E9PC21 Aquaporin 1 2 2 2.104 1.565 

P50895 Basal cell adhesion 

molecule  

10 10 3.236 1.560 

P00915 Carbonic anhydrase 1  11 11 8.706 1.075 

P00918 Carbonic anhydrase 2  11 11 4.976 1.470 

O75326 Semaphorin-7A  8 8 2.152 1.399 

      

P19105 Myosin regulatory light 

chain 12A  

4 4 0.339 0.918 

P35579 Myosin-9  83 96 0.375 0.796 

P35580 Myosin-10  74 88 0.175 0.737 
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Table 3. Alteration in protein levels following knockdown of BCL11A in adult erythroid 

cells 

Adult erythroid cells differentiated from peripheral blood CD34+ cells were transduced with a 

BCL11A shRNA at day 3 in culture, with cells collected on day 8. Cells were lysed and 

protein levels analysed as described in legend for Table 1. Values show the ratio of protein 

levels between control erythroid cells and those transduced with BCL11A shRNA (BCL11A 

KD). Glycophorin A and Band 3 were included to show that changes in protein expression 

following BCL11A knockdown were not generic or due to delayed differentiation. Globin 

subunits were quantified using high stringency, all other proteins were quantified using 

medium stringency peptide ID. 

 

 Description Unique 

Peptides 

Peptides Control/ 

BCL11A KD 

β-globin 2 13 7  

γ-globin  7 8 0.3 

ε-globin 2 3 0.09 

Aquaporin 1 3 3 3 

Carbonic 

anhydrase 1  

10 10 11 

Carbonic 

anhydrase 2  

14 14 3 

Band 3 28 30 1 

Glycophorin A 2 3 1 
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Table 4. Comparing the level of globin subunits between adult and cord erythroid cells, 

and between RBCs and reticulocytes 

See legend for Table 1 for experimental details. Proteins were analysed in the cytosol fraction 

of cells. Values show the ratio of protein levels between RBCs and reticulocytes (Retic), and 

between adult and cord cells. 

 

Accession Globin 

subunit 

Unique 

peptides 

Peptides RBC  

Adult/Cord  

Retic  

Adult/Cord  

Adult 

RBC/Retic 

Cord 

RBC/Retic 

P69905 Alpha  13 14 1.115 0.951 0.894 0.725 

P68871 Beta  8 16 4.842 2.203 0.970 0.450 

P02042 Delta  6 14 11.660 3.431 0.901 0.268 

D9YZU8 Gamma-1 4 15 0.085 0.328 0.253 0.933 

P69892 Gamma-2  3 14 0.015 0.106 0.174 1.171 

P02100 Epsilon  3 6 0.044 0.281 0.123 0.968 

P02008 Zeta  8 9 0.018 0.231 0.119 1.291 

Q6B0K9 Mu  5 5 0.206 0.362 0.161 0.496 

P09105 Theta-1  3 3 0.627 0.690 0.720 0.652 

 

 

Figure 1. Cellular component and molecular function of proteins that decrease, increase 

and remain at the same level during maturation of adult reticulocytes to RBCs.  

Proteins from endogenous adult RBCs and reticulocytes differentiated in vitro from adult 

peripheral blood CD34+ cells were subjected to trypsin digest and resultant peptides labelled 

with TMTs for nanoLC-MS/MS based quantitation. Proteins were quantified using at least 2 

unique peptides and analysed using WebGestalt GSAT V2. The proportion of proteins as a 

percentage of the total in each of the groups, cellular component and molecular function, was 

calculated.  
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