
Peer reviewed version
License (if available):
CC BY-NC
Link to published version (if available):
10.2514/1.41538

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Geometrically Nonlinear First Order Shear Deformation Theory for General Anisotropic Shells

Alberto Pirre and Paul M. Weaver

University of Bristol, Bristol, UK, BS8 1TR

A generalized first order shear deformation theory for anisotropic multilayered shells is presented. It includes the effects of geometrically nonlinear deformations and general initial curvature. The field equations are expressed in orthogonal conjugate curvilinear coordinates in the shell’s middle surface. Hence, this formulation is particularly suitable for the analysis of monocoque structures formed using the increasingly exploited fiber placement manufacturing techniques. A novel expression for the stiffness matrix is presented in which the relationship between the shell shape and the stiffness coefficients is highlighted. It is also shown that the stiffnesses herein obtained may lead to significantly different deformation fields from those based upon flat plate expressions.

Nomenclature

\(\xi_1, \xi_2, \xi \) = orthogonal curvilinear coordinates

\(\mathbf{r} \) = position vector of a point on the middle surface

\(\mathbf{R} \) = position vector of an arbitrary point

\(E, F, G \) = surface metric tensor elements

\(a_1, a_2 \) = scale factors

\(A_1, A_2 \) = Lamé coefficients

\(R_1, R_2 \) = normal radii of curvature of the middle surface

\(N_{ij}, M_\theta, Q_\theta \) = stress resultants per unit length

\(\sigma_i \) = stress components

\(\varepsilon_{ij} \) = nonlinear strain components

\(\varepsilon_{11}, \varepsilon_{22} \) = nonlinear elongation of those line elements having (before deformation) directions coincident

1 PhD Student, Dept. of Aerospace Engineering, University of Bristol, UK, AIAA student member
2 Reader, Dept. of Aerospace Engineering, University of Bristol, UK, AIAA member
with the coordinates directions

\[e_{12}, e_{13}, e_{23} \] = nonlinear shear deformations (change of angles) between those line elements having (before deformation) directions coincident with the coordinate directions

\[e_{11}, e_{22} \] = linear elongation of those line elements having (before deformation) directions coincident with the coordinate directions

\[e_{12}, e_{13}, e_{23} \] = linear shear deformations between those line elements having (before deformation) directions coincident with the coordinate directions

\[\omega_1, \omega_2, \omega_3 \] = components of the curl of the displacements field

\[u, v, w \] = displacements

\[u_0, v_0, w_0 \] = displacements of the middle surface of the shell

\[\phi_1, \phi_2 \] = rotations of a normal to reference surface

\[\bar{Q}_{ij} \] = transformed sti#nesses, referred to the laminate coordinate directions

\[K_s \] = shear correction factor

\[A_{ij}, B_{ij}, D_{ij} \] = stiffness matrix coefficients

\[A_{ij}, B_{ij}, \Delta_{ij}, \Gamma_{ij} \] = stiffness matrix coefficients

\[E_{ij}, Z_{ij}, H_{ij} \] = stiffness matrix coefficients

\[\delta K \] = virtual variation of the kinematic energy

\[\delta U \] = virtual variation of the strain energy

\[\delta V \] = virtual variation of the potential of the applied forces

\[I_0, I_1, I_2 \] = mass inertias

I. Introduction

One of the most remarkable features of composite materials is their versatility that allows engineers to design not only a structure but also its constituent material. Partly due to their excellent specific stiffness, there is often the tendency to use them to replicate the well known behavior of isotropic materials, thus missing the opportunity to exploit many of the benefits that composites could provide.

It is becoming increasingly important for novel applications to exploit the capabilities that composite laminates offer by either increasing structural efficiency or by creating novel functionality. For instance, parts made from
unsymmetric stacking sequences have been used rarely because they may introduce several structural couplings and because on cooling-down from cure to room temperature they may develop internal stresses and warp. Nonetheless, these, or similar phenomena, offer great capabilities for novel concepts to be used in emerging research fields like ‘elastic tailoring’ and ‘morphing structures’ [1].

In order to exploit these capabilities it is crucially important to fully understand the structural behavior of the materials and to examine all sources of anisotropy. The aim of this paper is to gather the understanding necessary to design materials and obtain tailored structural responses of general shells. Particular attention is given to the relationship between curvatures and stiffness coefficients.

Shell structures have been widely used in engineering applications. The literature offers a variety of theories for both general elasticity problems and particular design purposes. Each theory, or analysis, has been developed starting from a common point, namely the differential equations of elastic equilibrium. However, they may differ greatly depending on the different purpose-driven assumptions and approximations used. Furthermore, despite the availability of a huge variety of papers dedicated to the study of most shell related structural phenomena, literature almost exclusively applies to the analysis of shells of practical and common use in engineering. Therefore, most published work has been concerned specifically with simple shapes such as cylinders, spheres, cones or, more generally, with shells having small thickness to radius of curvature ratios. Under this assumption, the effect of the curvature on stiffness is often negligible [2]. Comprehensive literature reviews on the mechanics of laminated anisotropic shells can be found in recent papers by Qatu [2] and Toorani and Lakis [3]. Survey articles often emphasize that shear deformations and rotary inertia effects are generally more important for composites than isotropic materials. Interestingly, Qatu showed that neglecting the geometric terms $1+\zeta/R_i$ [4, 5], besides leading to stress resultants that contradict the equations of equilibrium [6], may entail errors of the same order of magnitude as those introduced by Kirchhoff-Love’s first approximation. Furthermore, independently and with a different approach, Voyiadjis [7, 8] showed, with his work on isotropic shells, that curvature has a significant effect on shell elasticity. He found that the effect of initial curvature on stress resultants and couples is in general not negligible. In the present formulation, the term $1+\zeta/R_i$ is integrated exactly. It will be shown that this procedure provides precise relationships between the stiffness coefficients and shell curvatures and, notably, the influence that these relationships has on both linear and nonlinear structural phenomena.
For all of the aforementioned reasons, the current work attempts to develop a novel model describing shell-like two-dimensional structures. A first-order shear deformation theory (FSDT) for anisotropic, multilayered, deep and thick shells is presented. It is based on work by Reddy for thin, doubly-curved, shallow shells [9, 10]. It is the current aim to further develop that work to shells of general shape by following Qatu’s recommendations [4, 5] and including the effects of geometrically nonlinear deformations, as described by Novozhilov [11, 12].

In an attempt to be as general as possible, the model takes into account full anisotropy, general shell geometry, nonlinear and transverse shear deformations. Inconsistencies, that were common in many of the past theories, have been considered and overcome [6, 9, 10, 13–15].

The field equations are expressed in curvilinear coordinates lying on the shell’s middle surface. For the sake of simplicity this net is taken to be coincident with ‘surfaces’ principal curves (sometimes called lines of curvature). A novel expression for the stiffness matrix is presented. It is also shown that many of the stiffness coupling terms and the strain components are strongly dependent on the shape of the structure.

Finally, it is noted that there have been a great number of technical papers on the theory of shells in the last century. Those of particular interest, which are in addition to those already mentioned, are detailed in [16–40].

II. Theoretical Development

In the following sections, the theoretical development leading from the governing field equations to the analytical solution, namely the load-displacement equations for shell structures, are presented.

Usual assumptions are followed:

1) Linear elastic behavior of the material.
2) The transverse normal fibers are not elongated.
3) The normal stress in the thickness direction is negligible compared to other stresses in the same direction.
4) The Love-Kirchhoff hypothesis is relaxed, so those elemental fibers which were straight and normal to the middle plane before deformation remain straight but no longer normal to that plane after deformation.

A. Geometry of Curved Surfaces

The previous assumptions allow the mechanics of the shell to be described as a two-dimensional problem. The structural behavior of the generic shell is then reduced to a function of its middle surface.
It is assumed that the middle surface of the shell structure is described by the curvilinear coordinate system \((\zeta_1, \zeta_2, \zeta)\) [10], where \(\zeta_1\) and \(\zeta_2\) are coordinates describing the position on the middle surface and \(\zeta\) is the coordinate in the thickness direction. This being the case, points on the middle surface and in an arbitrary position are described, respectively, by a vector \(r = r(\zeta_1, \zeta_2, 0)\) and \(R = R(\zeta_1, \zeta_2, \zeta)\).

The metric properties of a surface are completely described by the first fundamental form. It determines the length of an element of middle surface as

\[
ds^2 = dr \cdot dr = E \, ds^2_1 + 2F \, ds_1 \, ds_2 + G \, ds^2_2
\]

The coefficients in Eq. (1) represent the elements of the surface metric tensor and are defined as

\[
E = \frac{\partial r}{\partial \zeta_1} \cdot \frac{\partial r}{\partial \zeta_1}, \quad F = \frac{\partial r}{\partial \zeta_1} \cdot \frac{\partial r}{\partial \zeta_2}, \quad G = \frac{\partial r}{\partial \zeta_2} \cdot \frac{\partial r}{\partial \zeta_2}
\]

In curvilinear coordinate systems, the quantities \(a_1 = \sqrt{E}\) and \(a_2 = \sqrt{G}\) represent the length of the vectors tangent to curves of constant \(\zeta_1\) and \(\zeta_2\) and are called scale factors whereas \(F\) is proportional to the angle \(\chi\) between the tangent vectors and is equal to \(a_1 a_2 \cos \chi\). Similarly, \(A_1\) and \(A_2\), the so called Lamé coefficients, have analogous meanings for points through the thickness. Provided that \(R_1\) and \(R_2\) denote the normal radii of curvature of the middle surface, then

\[
A_1 = a_1 \left(1 + \frac{\zeta}{R_1}\right), \quad A_2 = a_2 \left(1 + \frac{\zeta}{R_2}\right)
\]

The first fundamental form defines a family of surfaces with the same metric. The surface, itself, is fully determined by also considering the coefficients of the second fundamental form. These coefficients are related to the surface curvature and are defined as

\[
L = \frac{\partial^2 r}{\partial \zeta_1^2} \cdot \mathbf{n}, \quad M = \frac{\partial^2 r}{\partial \zeta_1 \partial \zeta_2} \cdot \mathbf{n}, \quad N = \frac{\partial^2 r}{\partial \zeta_2^2} \cdot \mathbf{n}
\]

where \(\mathbf{n}\) is the unit vector normal to the middle surface and is defined as
\[n = \frac{\partial \mathbf{r} \times \partial \mathbf{r}}{a_1 a_2} \]

For the sake of simplicity, in the following formulation the elasticity equations will be expressed in the curvilinear coordinates system defined by the surface’s principal curves, i.e. curves whose tangent is always coincident with one of the principal directions. It is then assumed that the coordinate lines are both orthogonal \((F = 0)\) and conjugate \((M = 0)\). This can be done without losing generality. Although the coefficients of the fundamental forms depend on the surface parametric definition that is adopted, finding a coordinate transformation to fulfill the above requirements \((i.e. F = M = 0)\) is not a trivial matter. However, in the theory of surfaces it has been proved that every surface can be referred to its principal lines and that they are uniquely determined, see Refs. [16], [4] and [6] for further details.

Here, a common analytical method to find principal curves is briefly described. It exploits the concept of velocity vector of a curve. Let \(\mathbf{x} \) be a surface defined in \(\mathbb{R}^3 \) and \(\mathbf{a}(t) = \mathbf{x}(f(t), g(t)) \) a curve lying on it. Then \(\mathbf{a} \) is a principal curve if and only if the following differential equation [16] holds

\[
\left(ME - LF \right) \left(\frac{df}{dt} \right)^2 + \left(NE - LG \right) \frac{df}{dt} \frac{dg}{dt} + \left(NF - MG \right) \left(\frac{dg}{dt} \right)^2 = 0
\]

(6)

In fact, it is of note that for certain surfaces there is a more convenient method to find principal curves based on the notion of triply orthogonal system of surfaces [16].

B. Strain-Displacement Relations

The nonlinear strains, under the hypothesis of small relative deformations, are defined in curvilinear coordinates [11] as

\[
\varepsilon_{11} = e_{11} + \frac{1}{2} \left(e_{12}^2 + \left(\frac{1}{2} e_{13} + \omega_3 \right)^2 \right) + \left(\frac{1}{2} e_{13} - \omega_2 \right)^2
\]

\[
\varepsilon_{22} = e_{22} + \frac{1}{2} \left(e_{23}^2 + \left(\frac{1}{2} e_{21} - \omega_1 \right)^2 \right) + \left(\frac{1}{2} e_{23} + \omega_1 \right)^2
\]

(7)
\[
\varepsilon_{ij} = e_{ij} + e_{ij} \left(\frac{1}{2} e_{ij} - \omega_i \right) + e_{ij} \left(\frac{1}{2} e_{ij} + \omega_i \right) + \left(\frac{1}{2} e_{ij} - \omega_i \right) \left(\frac{1}{2} e_{ij} + \omega_i \right)
\]

\[
\varepsilon_{13} = e_{13} + e_{13} \left(\frac{1}{2} e_{13} + \omega_i \right) + \frac{1}{2} e_{13} + \omega_i \left(\frac{1}{2} e_{13} - \omega_i \right)
\]

\[
\varepsilon_{23} = e_{23} + e_{23} \left(\frac{1}{2} e_{23} - \omega_i \right) + \frac{1}{2} e_{23} + \omega_i \left(\frac{1}{2} e_{23} + \omega_i \right)
\]

The expressions in Eqs. (7) are a nonlinear combination of those elements that fully describe continuum deformations under the hypothesis of small displacements and rotations, i.e. in the classical linear theory of elasticity (in which \(\varepsilon_i = e_i \)). It is shown in several works [2–15] that linear deformations in orthogonal curvilinear coordinates are described using the relationships

\[
e_{11} = \frac{1}{A} \left(\frac{\partial u}{\partial \xi_1} + \frac{1}{A_1} \frac{\partial A_1}{\partial \xi_2} \right) w_1 + \frac{1}{A} \left(\frac{\partial u}{\partial \xi_1} + \frac{1}{A_2} \frac{\partial A_2}{\partial \xi_2} \right) w_2
\]

\[
e_{22} = \frac{1}{A_1} \left(\frac{\partial v}{\partial \xi_2} + \frac{1}{A_1} \frac{\partial A_1}{\partial \xi_2} \right) w_1 + \frac{1}{A_2} \left(\frac{\partial v}{\partial \xi_2} + \frac{1}{A_2} \frac{\partial A_2}{\partial \xi_2} \right) w_2
\]

\[
e_{12} = \frac{A_1}{A} \frac{\partial v}{\partial \xi_1} + \frac{A_2}{A} \frac{\partial u}{\partial \xi_2} = \frac{1}{A} \left(\frac{\partial v}{\partial \xi_1} + \frac{1}{A_1} \frac{\partial A_1}{\partial \xi_2} \right) + \frac{1}{A} \left(\frac{\partial u}{\partial \xi_2} + \frac{1}{A_2} \frac{\partial A_2}{\partial \xi_2} \right)
\]

\[
e_{13} = \frac{A_1}{A} \frac{\partial u}{\partial \xi_1} + \frac{1}{A_1} \frac{\partial w}{\partial \xi_1} = \frac{1}{A_1} \frac{\partial u}{\partial \xi_1} + \frac{1}{A_1} \frac{\partial w}{\partial \xi_1} \left(\frac{1}{1 + \frac{\xi}{R_1} - \frac{\xi}{R_1}} \right)
\]

\[
e_{23} = \frac{1}{A} \frac{\partial w}{\partial \xi_2} + \frac{A_2}{A} \frac{\partial v}{\partial \xi_2} = \frac{1}{A} \frac{\partial w}{\partial \xi_2} + \frac{1}{A_2} \frac{\partial w}{\partial \xi_2} \left(\frac{1}{1 + \frac{\xi}{R_2} - \frac{\xi}{R_2}} \right)
\]

\[
2 \omega_1 = \frac{1}{A} \left(\frac{\partial w}{\partial \xi_2} \frac{\partial v}{\partial \xi_1} \right) = \frac{1}{A} \frac{\partial v}{\partial \xi_2} + \frac{1}{A_2} \frac{\partial w}{\partial \xi_2} \left(\frac{1}{1 + \frac{\xi}{R_2} - \frac{\xi}{R_2}} \right)
\]
\[
2\omega_2 = \frac{1}{A} \left[\frac{\partial}{\partial \zeta} \left(A u \right) - \frac{\partial w}{\partial \xi_2} \right] = \frac{\partial u}{\partial \zeta} - \frac{1}{1 + \frac{\zeta}{R}} \left(\frac{1}{a_i} \frac{\partial w}{\partial \xi_1} - u \right)
\]

\[
2\omega_1 = \frac{1}{A A_i} \left[\frac{\partial}{\partial \xi_1} \left(A u \right) - \frac{\partial}{\partial \xi_2} \left(A u \right) \right] = \frac{1}{A} \left(\frac{\partial v}{\partial \xi_1} - \frac{1}{a_i} \frac{\partial a_1}{\partial \xi_2} \right) - \frac{1}{A_i} \left(\frac{\partial w}{\partial \xi_2} - \frac{1}{a_i} \frac{\partial a_1}{\partial \xi_1} \right)
\]

According to the hypothesis described at the beginning of Section II, the surface displacements \(u, v \) and \(w \) are assumed to be

\[
u(\xi_1, \xi_2, \xi, t) = v_0(\xi_1, \xi_2, t) + \xi \phi_1(\xi_1, \xi_2, t)
\]

\[
u(\xi_1, \xi_2, \xi, t) = v_0(\xi_1, \xi_2, t) + \xi \phi_2(\xi_1, \xi_2, t)
\]

Substituting Eqs. (9) into Eqs. (8) enables the linear strains to be separated into terms (or components) depending on displacements and rotations of the middle surface,

\[
\begin{align*}
\epsilon^0_1 &= \frac{1}{a_1} \left(\frac{\partial u_0}{\partial \xi_1} + \frac{\partial v_0}{\partial \xi_2} \right) - \frac{a_1}{R}, \\
\epsilon^0_2 &= \frac{1}{a_2} \left(\frac{\partial v_0}{\partial \xi_1} + \frac{\partial a_1}{\partial \xi_2} \right) - \frac{a_1}{R}
\end{align*}
\]

\[
\begin{align*}
\kappa^0_1 &= \frac{1}{a_1} \left(\frac{\partial w_0}{\partial \xi_2} - \frac{a_2}{R} \right), \\
\kappa^0_2 &= \frac{1}{a_2} \left(- \frac{\partial w_0}{\partial \xi_1} + \frac{a_1}{R} \right)
\end{align*}
\]

\[
\begin{align*}
\kappa^0 = \frac{1}{a_1} \left(\frac{\partial w_0}{\partial \xi_2} - \frac{a_2}{R} \right), \\
\kappa^0 &= \frac{1}{a_2} \left(- \frac{\partial w_0}{\partial \xi_1} + \frac{a_1}{R} \right)
\end{align*}
\]
\[
\omega^l = \frac{1}{a_1} \left(\frac{\partial \phi_1}{\partial \xi_1} a_2 - \frac{\phi_1}{a_2} \frac{\partial a_1}{\partial \xi_1} \right) \\
\omega^l = \frac{1}{a_2} \left(\frac{\partial \phi_2}{\partial \xi_2} a_1 - \frac{\phi_2}{a_1} \frac{\partial a_2}{\partial \xi_2} \right)
\]

\[
\kappa^l = -2 \frac{\phi_{12}}{R_1} \quad \kappa^l = +2 \frac{\phi_{12}}{R_1}
\]

Herein, superscripts \(\theta \) and \(l \) refer to in-surface and out-of-surface components of linear deformations, respectively.

Substituting Eqs. (10) into Eqs. (7) the following expressions for nonlinear strains are obtained,

\[
\epsilon_{11} = \frac{\epsilon_0^0 + \xi \epsilon_0^l}{1 + \xi / R_1} + \frac{1}{2(1 + \xi / R_1)} \left[(\epsilon_0^0 + \xi \epsilon_0^l) + (\omega_0^0 + \xi \omega_0^l) + \frac{1}{4} (\epsilon_k^0 - \kappa_0^0 - \xi \kappa_0^l) \right]
\]

\[
\epsilon_{22} = \frac{\epsilon_0^0 + \xi \epsilon_0^l}{1 + \xi / R_2} + \frac{1}{2(1 + \xi / R_2)} \left[(\epsilon_0^0 + \xi \epsilon_0^l) + (\omega_0^0 + \xi \omega_0^l) + \frac{1}{4} (\epsilon_k^0 - \kappa_0^0 - \xi \kappa_0^l) \right]
\]

\[
\epsilon_{12} = \frac{\epsilon_0^0 + \xi \epsilon_0^l}{1 + \xi / R_1} + \frac{\epsilon_0^0 + \xi \epsilon_0^l}{1 + \xi / R_2} + \frac{1}{(1 + \xi / R_1)(1 + \xi / R_2)} \left[(\epsilon_0^0 + \xi \epsilon_0^l)(\omega_0^0 + \xi \omega_0^l) + (\epsilon_k^0 - \kappa_0^0 - \xi \kappa_0^l)(\epsilon_0^0 + \xi \epsilon_0^l) \right]
\]

\[
\epsilon_{13} = \frac{\epsilon_0^0 + \xi \epsilon_0^l}{1 + \xi / R_1} + \frac{1}{2} \left[\frac{(\epsilon_0^0 + \xi \epsilon_0^l)(\epsilon_0^0 + \xi \epsilon_0^l + \kappa_0^0 + \xi \kappa_0^l)}{(1 + \xi / R_1)^2} + \frac{(\epsilon_0^0 + \xi \epsilon_0^l)(\epsilon_k^0 - \kappa_0^0 - \xi \kappa_0^l)}{(1 + \xi / R_1)(1 + \xi / R_2)} \right]
\]

\[
\epsilon_{23} = \frac{\epsilon_0^0 + \xi \epsilon_0^l}{1 + \xi / R_1} + \frac{1}{2} \left[\frac{(\epsilon_0^0 + \xi \epsilon_0^l)(\epsilon_0^0 + \xi \epsilon_0^l + \kappa_0^0 + \xi \kappa_0^l)}{(1 + \xi / R_1)^2} + \frac{(\epsilon_0^0 + \xi \epsilon_0^l)(\epsilon_k^0 + \kappa_0^0 + \xi \kappa_0^l)}{(1 + \xi / R_1)(1 + \xi / R_2)} \right]
\]

Equations (7) or (11) are generally valid for small relative deformations but in some practical problems this level of accuracy might be not necessary. Simplified expressions (even though less general) can be found in [11] under the hypothesis of small rotations or in [10] with Von-Karman nonlinearities. The proposed model can be simplified accordingly.
C. Stress Resultants

The stress resultants acting on the shell element are obtained by integrating each stresses over the thickness [10] as

\[
\begin{bmatrix}
N_{11} \\
N_{22} \\
Q_{11} \\
M_{11} \\
M_{12}
\end{bmatrix}
= \int_{-h/2}^{h/2} \begin{bmatrix}
\sigma_z \\
\sigma_{\theta z} \\
\zeta \sigma_z \\
\zeta \sigma_{\theta z} \\
\zeta \sigma_{\theta z}
\end{bmatrix} d\zeta
\begin{bmatrix}
\sigma_z \\
\sigma_{\theta z} \\
\zeta \sigma_z \\
\zeta \sigma_{\theta z} \\
\zeta \sigma_{\theta z}
\end{bmatrix}
= \int_{-h/2}^{h/2} \left(1 + \frac{\zeta}{R_i}\right) d\zeta
\begin{bmatrix}
N_{22} \\
N_{21} \\
Q_{22} \\
M_{22} \\
M_{21}
\end{bmatrix}
= \int_{-h/2}^{h/2} \left(1 + \frac{\zeta}{R_i}\right) d\zeta
\begin{bmatrix}
\sigma_z \\
\sigma_{\theta z} \\
\zeta \sigma_z \\
\zeta \sigma_{\theta z} \\
\zeta \sigma_{\theta z}
\end{bmatrix}
\]

(12)

where \(K_\zeta \) is the shear correction factor used to adjust the discrepancy between the true variation of the transverse shear and that which has been imposed.

The definition of the stress resultants is a key feature of the present formulation and merits further discussion. In many shallow thin shell theories the term \(1 + \frac{\zeta}{R_i} \), which is due to the integration over the thickness of a curved section, has been ignored and the stiffness coefficients calculated as for flat plates (henceforth we will refer to this as Plate Approximation or P.A. [4]). This led to fairly good results even though it was clear that the artificially achieved symmetry of the resultants \((M_{ij} = M_{ji}, N_{ij} = N_{ji}) \) contradicts drilling equilibrium [6]. This inconsistency was often overcome by expanding the term in a geometric series, thus restoring the relationship

\[
\frac{M_{21}}{R_1} - \frac{M_{22}}{R_2} + N_{21} - N_{22} = 0
\]

(13)

which derives from the exact definition of resultants and identically satisfies one of the equilibrium equations. Alternatively, some researchers including the effects of \(1 + \frac{\zeta}{R_i} \), suggested use of modified stress resultants to ensure symmetry [13–17].

As already established, transverse shear deformations may have a significant role in the mechanics of thick laminated composite structures and their effects may need to be included in the analysis of shells. According to Ref. [4] the error introduced by neglecting them is of the same order of magnitude as that created by approximating \(1 + \frac{\zeta}{R_i} \) to unity.

For consistency purposes, then, the integration of Eqs. (12) has to be carried out exactly. By so doing, we will find that curvatures are a source of anisotropy (coupling between membrane and flexural effects) even for isotropic
materials and that the stiffness coefficients are not constants, as when calculated with the flat plate approximation, but functions of the curvatures. Ref. [4] also shows that the results of the study of linear phenomena, using exact stiffness coefficients, are generally more accurate when compared to those of FSDT or even higher order shear deformation theory (HSDT). This degree of accuracy is due to the different way in which the stiffness matrix is calculated. It will be shown here that this difference will lead to appreciably different values of strain components. It is thus argued that maintaining the accurate expression of the stresses resultant will affect nonlinear effects such as buckling or post-buckling phenomena.

D. Constitutive Relations

Suppose that the shell structure is composed of \(N \) layers. For each layer the constitutive law is

\[
\begin{bmatrix}
\sigma_1 \\
\sigma_2 \\
\sigma_3 \\
\sigma_4 \\
\sigma_5 \\
\sigma_6
\end{bmatrix}^{(i)} = \begin{bmatrix}
Q_{11} & Q_{12} & 0 & 0 & Q_{16} \\
Q_{12} & Q_{22} & 0 & 0 & Q_{26} \\
0 & 0 & Q_{44} & Q_{45} & 0 \\
0 & 0 & Q_{45} & Q_{55} & 0 \\
Q_{16} & Q_{26} & 0 & 0 & Q_{66}
\end{bmatrix}^{(i)} \begin{bmatrix}
e_1 \\
e_2 \\
e_3 \\
e_4 \\
e_5 \\
e_6
\end{bmatrix}^{L} + \begin{bmatrix}
e_1 \\
e_2 \\
e_3 \\
e_4 \\
e_5 \\
e_6
\end{bmatrix}^{NL}
\]

For convenience, in Eq. (14), the strain vector is split in two parts in which the superscripts \(L \) and \(NL \) mean linear and nonlinear, respectively. Similarly, the stress resultants are presented as a sum of two vectors corresponding to distributed forces and moments resulting from linear and nonlinear strains. So that, for example, \(N_{11} \) will be the sum of \(N_{11}^L \) and \(N_{11}^{NL} \).

By means of Eqs. (7) one can write

\[
\begin{bmatrix}
e_1 \\
e_2 \\
e_4 \\
e_5 \\
e_6
\end{bmatrix}^{L} = \begin{bmatrix}
e_{11} \\
e_{22} \\
e_{23} \\
e_{13} \\
e_{12}
\end{bmatrix}
\]
Then, substituting Eq. (14) back into Eqs. (12) and integrating the resulting expressions, it is possible to obtain the laminate constitutive relations reported in Eqs. (17)-(19) and Eqs. (26)-(28).

E. Laminate Stiffness Matrix Corresponding to Linear Strains

The constitutive equations are

\[
\begin{bmatrix}
 N_{11} \\
 N_{12} \\
 N_{22} \\
 N_{21}
\end{bmatrix}^T = \begin{bmatrix}
 A_{11} & A_{16} & A_{12} & A_{18} \\
 A_{16} & A_{66} & A_{26} & A_{68} \\
 A_{12} & A_{26} & A_{22} & A_{28} \\
 A_{18} & A_{68} & A_{62} & A_{68}
\end{bmatrix}\begin{bmatrix}
 \varepsilon_0^1 \\
 \omega_0^1 \\
 \varepsilon_0^2 \\
 \omega_0^2
\end{bmatrix} + \begin{bmatrix}
 B_{11} & B_{16} & B_{12} & B_{18} \\
 B_{16} & B_{66} & B_{26} & B_{68} \\
 B_{12} & B_{26} & B_{22} & B_{28} \\
 B_{18} & B_{68} & B_{62} & B_{68}
\end{bmatrix}\begin{bmatrix}
 \varepsilon_i^1 \\
 \omega_i^1 \\
 \varepsilon_i^2 \\
 \omega_i^2
\end{bmatrix}
\]

(17)

\[
\begin{bmatrix}
 M_{11} \\
 M_{12} \\
 M_{22} \\
 M_{21}
\end{bmatrix}^T = \begin{bmatrix}
 B_{11} & B_{16} & B_{12} & B_{18} \\
 B_{16} & B_{66} & B_{26} & B_{68} \\
 B_{12} & B_{26} & B_{22} & B_{28} \\
 B_{18} & B_{68} & B_{62} & B_{68}
\end{bmatrix}\begin{bmatrix}
 \varepsilon_0^1 \\
 \omega_0^1 \\
 \varepsilon_0^2 \\
 \omega_0^2
\end{bmatrix} + \begin{bmatrix}
 D_{11} & D_{16} & D_{12} & D_{18} \\
 D_{16} & D_{66} & D_{26} & D_{68} \\
 D_{12} & D_{26} & D_{22} & D_{28} \\
 D_{18} & D_{68} & D_{62} & D_{68}
\end{bmatrix}\begin{bmatrix}
 \varepsilon_i^1 \\
 \omega_i^1 \\
 \varepsilon_i^2 \\
 \omega_i^2
\end{bmatrix}
\]

(18)

\[
\begin{bmatrix}
 Q_{12} \\
 Q_{11}
\end{bmatrix} = K\begin{bmatrix}
 A_{44} & A_{46} \\
 A_{64} & A_{66}
\end{bmatrix}\begin{bmatrix}
 \varepsilon_4^0 \\
 \varepsilon_4^1
\end{bmatrix}
\]

(19)

or in a more compact form,
The elements of Eqs. (17)-(20), which are due to the linear part of the strain components, are calculated using

\[A = \begin{bmatrix} A_1 & A_1' & A_2 & A_{16} \\ A_1' & A_6 & A_6' & A_{66} \\ A_2 & A_{26} & A_{26}' & A_{266} \\ A_{16} & A_{66} & A_{66}' & A_{666} \end{bmatrix} - \sum_{k=1}^{\infty} \begin{bmatrix} a_{k1}' Q_{11} & a_{k1}' Q_{16} & c_{k1}' Q_{11} & c_{k1}' Q_{16} \\ a_{k1}' Q_{16} & a_{k6}' Q_{66} & c_{k1}' Q_{16} & c_{k6}' Q_{66} \\ c_{k2}' Q_{26} & c_{k2}' Q_{26} & a_{k2}' Q_{26} & a_{k2}' Q_{266} \end{bmatrix}^{(k)} \]

\[B = \begin{bmatrix} B_1 & B_1' & B_2 & B_{16} \\ B_1' & B_6 & B_{66} & B_{66}' \\ B_2 & B_{26} & B_{26}' & B_{266} \\ B_{16} & B_{66} & B_{66}' & B_{666} \end{bmatrix} - \sum_{k=1}^{\infty} \begin{bmatrix} b_{k1}' Q_{11} & b_{k1}' Q_{16} & d_{k1}' Q_{11} & d_{k1}' Q_{16} \\ b_{k1}' Q_{16} & b_{k6}' Q_{66} & d_{k1}' Q_{16} & d_{k6}' Q_{66} \\ d_{k2}' Q_{26} & d_{k2}' Q_{26} & b_{k2}' Q_{26} & b_{k2}' Q_{266} \end{bmatrix}^{(k)} \]

\[D = \begin{bmatrix} D_1 & D_1' & D_2 & D_{16} \\ D_1' & D_6 & D_{66} & D_{66}' \\ D_2 & D_{26} & D_{26}' & D_{266} \\ D_{16} & D_{66} & D_{66}' & D_{666} \end{bmatrix} - \sum_{k=1}^{\infty} \begin{bmatrix} e_{k1}' Q_{11} & e_{k1}' Q_{16} & f_{k1}' Q_{11} & f_{k1}' Q_{16} \\ e_{k1}' Q_{16} & e_{k6}' Q_{66} & f_{k1}' Q_{16} & f_{k6}' Q_{66} \\ f_{k2}' Q_{26} & f_{k2}' Q_{26} & e_{k2}' Q_{26} & e_{k2}' Q_{266} \end{bmatrix}^{(k)} \]

\[\begin{bmatrix} A_{44} & A_{45} \\ A_{45} & A_{55} \end{bmatrix} = \sum_{k=1}^{\infty} \begin{bmatrix} a_{k4}' Q_{44} & c_{k4}' Q_{45} \\ c_{k4}' Q_{45} & a_{k5}' Q_{55} \end{bmatrix}^{(k)} \]

and

\[a_{k}^+ = \frac{R}{R_i} \left((\xi_{k+1} - \xi_{k}) + (R_2 - R_1) \ln \left(\frac{R_3 + \xi_{k+1}}{R_3 + \xi_{k}} \right) \right) \]
b^i = \frac{R_i}{R_2} \left[\frac{1}{2} (\xi_{i+1}^2 - \xi_i^2) + (R_2 - R_i) \left(\xi_{i+1} - \xi_i \right) - R_i \left(R_2 - R_i \right) \ln \left(\frac{R_i + \xi_{i+1}}{R_i + \xi_i} \right) \right]

c^i = (\xi_{i+1} - \xi_i)

\begin{equation}
d^i = \frac{1}{2} (\xi_{i+1}^2 - \xi_i^2)
\end{equation}

\begin{equation}
e^i = \frac{R_i}{R_2} \left[\frac{1}{3} (\xi_{i+1}^3 - \xi_i^3) + \frac{1}{6} (R_2 - R_i) \left(\xi_{i+1}^2 - \xi_i^2 \right) - R_i \left(R_2 - R_i \right) \left(\xi_{i+1} - \xi_i \right) + R_i \left(R_2 - R_i \right) \ln \left(\frac{R_i + \xi_{i+1}}{R_i + \xi_i} \right) \right]
\end{equation}

\begin{equation}
f^i = \frac{1}{3} (\xi_{i+1}^3 - \xi_i^3)
\end{equation}

Similar coefficients, with \(R_2\) as subscript, can be obtained simply interchanging subscripts \(i\) and \(2\). Note, symmetry has been achieved by decomposing shear strains into two separate components. By splitting shear strain into two constituent parts allows distinct components for \(N_{i2}, N_{21}, M_{i2}\) and \(M_{21}\) to be retained whilst both allowing physically meaningful stress components and symmetry for our problem, noting that symmetry is retained via two 4x4 stiffness matrices rather than the conventional 3x3. As such, our formulation is an alternative to that proposed by Budiansky and Sanders shown in Ref. [13–17].

F. Laminate Stiffness Matrix Corresponding to Nonlinear Strains

Similarly, it is possible to obtain the part of the constitutive equations due to the nonlinear strains,

\begin{equation}
\begin{bmatrix}
N_{11} \\
N_{12} \\
N_{22} \\
N_{21}
\end{bmatrix}^{\text{NL}} = \frac{1}{4} \begin{bmatrix}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33} \\
A_{41} & A_{42} & A_{43}
\end{bmatrix} \left[\begin{array}{c}
\frac{1}{2} \left(4e'^{\alpha_1} + 4e'^{\alpha_2} + e'^{\alpha_3} + \kappa'^{\alpha_1} - 2e'^{\kappa}\right) \\
\frac{1}{2} \left(4e'^{\alpha_2} + 4e'^{\alpha_3} + e'^{\alpha_1} + \kappa'^{\alpha_2} + 2e'^{\kappa}\right) \\
4e_{\omega_1}^{\alpha_1} + 4e_{\omega_1}^{\alpha_2} + e_{\omega_1}^{\alpha_3} + e_{\omega_1}^{\kappa_1} - e_{\omega_1}^{\kappa_2} - e_{\omega_1}^{\kappa_3} - e_{\omega_1}^{\kappa_4} \\
4e_{\omega_2}^{\alpha_1} + 4e_{\omega_2}^{\alpha_2} + e_{\omega_2}^{\alpha_3} + e_{\omega_2}^{\kappa_1} + e_{\omega_2}^{\kappa_2} + e_{\omega_2}^{\kappa_3} + e_{\omega_2}^{\kappa_4}
\end{array} \right] + \frac{1}{4} \begin{bmatrix}
G_{11} & G_{12} & G_{13} \\
G_{21} & G_{22} & G_{23} \\
G_{31} & G_{32} & G_{33} \\
G_{41} & G_{42} & G_{43}
\end{bmatrix} \left[\begin{array}{c}
4e_{\omega_1}^{\kappa_1} + 4e_{\omega_1}^{\kappa_2} - e_{\omega_1}^{\kappa_3} + \kappa'_1 \kappa'_3 + \kappa'_1 \kappa'_4 \\
4e_{\omega_2}^{\kappa_1} + 4e_{\omega_2}^{\kappa_2} + e_{\omega_2}^{\kappa_3} + \kappa'_2 \kappa'_3 + \kappa'_2 \kappa'_4
\end{array} \right]
\end{equation}
\[
\begin{bmatrix}
B_{11} & B_{12} & B_{13} \\
B_{21} & B_{22} & B_{23} \\
B_{31} & B_{32} & B_{33} \\
B_{41} & B_{42} & B_{43}
\end{bmatrix}
\left\{ \begin{array}{l}
\frac{1}{2} \left(4e_i^2 + 4\omega_i^2 + \kappa_i^2 \right) \\
\frac{1}{2} \left(4e_i^2 + 4\omega_i^2 + \kappa_i^2 \right) \\
\frac{1}{2} \left(4e_i^2 + 4\omega_i^2 + \kappa_i^2 \right) \\
4\omega_i e_i + 4\omega_i e_i - \kappa_i^2
\end{array} \right\}
\]

\[
\begin{bmatrix} M_{11} \\
M_{12} \\
M_{22} \\
M_{21} \end{bmatrix}_{NL} = \frac{1}{4} \begin{bmatrix} \Gamma_{11} & \Gamma_{12} & \Gamma_{13} \\
\Gamma_{21} & \Gamma_{22} & \Gamma_{23} \\
\Gamma_{31} & \Gamma_{32} & \Gamma_{33} \\
\Gamma_{41} & \Gamma_{42} & \Gamma_{43} \end{bmatrix} \left\{ \begin{array}{l}
\frac{1}{2} \left(4e_i^2 + 4\omega_i^2 + \kappa_i^2 \right) \\
\frac{1}{2} \left(4e_i^2 + 4\omega_i^2 + \kappa_i^2 \right) \\
4\omega_i e_i + 4\omega_i e_i - \kappa_i^2 \\
4\omega_i e_i + 4\omega_i e_i - \kappa_i^2
\end{array} \right\} + \frac{1}{4} \begin{bmatrix} B_{11} & B_{12} & B_{13} \\
B_{21} & B_{22} & B_{23} \\
B_{31} & B_{32} & B_{33} \\
B_{41} & B_{42} & B_{43} \end{bmatrix} \left\{ \begin{array}{l}
4e_i^2 + 4\omega_i^2 + \kappa_i^2 \\
4e_i^2 + 4\omega_i^2 + \kappa_i^2 \\
4\omega_i e_i + 4\omega_i e_i - \kappa_i^2 \\
4\omega_i e_i + 4\omega_i e_i - \kappa_i^2
\end{array} \right\}
\]

\[
\begin{bmatrix} \Delta_{11} & \Delta_{12} & \Delta_{13} \\
\Delta_{21} & \Delta_{22} & \Delta_{23} \\
\Delta_{31} & \Delta_{32} & \Delta_{33} \\
\Delta_{41} & \Delta_{42} & \Delta_{43} \end{bmatrix} \left\{ \begin{array}{l}
\frac{1}{2} \left(4e_i^2 + 4\omega_i^2 + \kappa_i^2 \right) \\
\frac{1}{2} \left(4e_i^2 + 4\omega_i^2 + \kappa_i^2 \right) \\
4\omega_i e_i + 4\omega_i e_i - \kappa_i^2 \\
4\omega_i e_i + 4\omega_i e_i - \kappa_i^2
\end{array} \right\}
\]

and

\[
\begin{bmatrix} Q_{12} \\
Q_{11} \end{bmatrix}_{NL} = K \begin{bmatrix} E_{11} & E_{12} & E_{13} & E_{14} \\
E_{21} & E_{22} & E_{23} & E_{24} \end{bmatrix} \left\{ \begin{array}{l}
e_i^4 e_i^4 - e_i^0 \kappa_i^0 \\
\omega_i^0 e_i^0 + \omega_i^0 \kappa_i^0 \\
e_i^4 e_i^4 + e_i^0 \kappa_i^0 \\
\omega_i^0 e_i^0 - \omega_i^0 \kappa_i^0
\end{array} \right\} + K \begin{bmatrix} Z_{11} & Z_{12} & Z_{13} & Z_{14} \\
Z_{21} & Z_{22} & Z_{23} & Z_{24} \end{bmatrix} \left\{ \begin{array}{l}
e_i^4 e_i^4 - e_i^0 \kappa_i^0 \\
\omega_i^0 e_i^0 + \omega_i^0 \kappa_i^0 \\
e_i^4 e_i^4 + e_i^0 \kappa_i^0 \\
\omega_i^0 e_i^0 - \omega_i^0 \kappa_i^0
\end{array} \right\}
\]

\[
\begin{bmatrix} H_{11} & H_{12} & H_{13} & H_{14} \\
H_{21} & H_{22} & H_{23} & H_{24} \end{bmatrix} \left\{ \begin{array}{l}
- e_i^0 \kappa_i^0 \\
\omega_i^0 \kappa_i^0 \\
e_i^0 \kappa_i^0 \\
- \omega_i^0 \kappa_i^0
\end{array} \right\}
\]

The coefficients of Eqs. (26)-(28), which are due to the nonlinear part of the strains, are calculated using
\[
\Delta = \begin{bmatrix}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33} \\
A_{41} & A_{42} & A_{43}
\end{bmatrix} = \sum_{i=1}^{N} \begin{bmatrix}
\overline{Q}_{1i}a_{i1}^{NL} & \overline{Q}_{1i}a_{i2}^{NL} & \overline{Q}_{1i}a_{i3}^{NL} \\
\overline{Q}_{2i}a_{i1}^{NL} & \overline{Q}_{2i}a_{i2}^{NL} & \overline{Q}_{2i}a_{i3}^{NL} \\
\overline{Q}_{3i}a_{i1}^{NL} & \overline{Q}_{3i}a_{i2}^{NL} & \overline{Q}_{3i}a_{i3}^{NL} \\
\overline{Q}_{4i}a_{i1}^{NL} & \overline{Q}_{4i}a_{i2}^{NL} & \overline{Q}_{4i}a_{i3}^{NL}
\end{bmatrix}^{(i)}
\]

(29)

\[
\mathbf{B} = \begin{bmatrix}
B_{11} & B_{12} & B_{13} \\
B_{21} & B_{22} & B_{23} \\
B_{31} & B_{32} & B_{33} \\
B_{41} & B_{42} & B_{43}
\end{bmatrix} = \sum_{i=1}^{N} \begin{bmatrix}
\overline{Q}_{1i}c_{i1}^{NL} & \overline{Q}_{1i}c_{i2}^{NL} & \overline{Q}_{1i}c_{i3}^{NL} \\
\overline{Q}_{2i}c_{i1}^{NL} & \overline{Q}_{2i}c_{i2}^{NL} & \overline{Q}_{2i}c_{i3}^{NL} \\
\overline{Q}_{3i}c_{i1}^{NL} & \overline{Q}_{3i}c_{i2}^{NL} & \overline{Q}_{3i}c_{i3}^{NL} \\
\overline{Q}_{4i}c_{i1}^{NL} & \overline{Q}_{4i}c_{i2}^{NL} & \overline{Q}_{4i}c_{i3}^{NL}
\end{bmatrix}^{(i)}
\]

(30)

\[
\Gamma = \begin{bmatrix}
\Gamma_{11} & \Gamma_{12} & \Gamma_{13} \\
\Gamma_{21} & \Gamma_{22} & \Gamma_{23} \\
\Gamma_{31} & \Gamma_{32} & \Gamma_{33} \\
\Gamma_{41} & \Gamma_{42} & \Gamma_{43}
\end{bmatrix} = \sum_{i=1}^{N} \begin{bmatrix}
\overline{Q}_{1i}b_{i1}^{NL} & \overline{Q}_{1i}b_{i2}^{NL} & \overline{Q}_{1i}b_{i3}^{NL} \\
\overline{Q}_{2i}b_{i1}^{NL} & \overline{Q}_{2i}b_{i2}^{NL} & \overline{Q}_{2i}b_{i3}^{NL} \\
\overline{Q}_{3i}b_{i1}^{NL} & \overline{Q}_{3i}b_{i2}^{NL} & \overline{Q}_{3i}b_{i3}^{NL} \\
\overline{Q}_{4i}b_{i1}^{NL} & \overline{Q}_{4i}b_{i2}^{NL} & \overline{Q}_{4i}b_{i3}^{NL}
\end{bmatrix}^{(i)}
\]

(31)

\[
\Delta = \begin{bmatrix}
\Delta_{11} & \Delta_{12} & \Delta_{13} \\
\Delta_{21} & \Delta_{22} & \Delta_{23} \\
\Delta_{31} & \Delta_{32} & \Delta_{33} \\
\Delta_{41} & \Delta_{42} & \Delta_{43}
\end{bmatrix} = \sum_{i=1}^{N} \begin{bmatrix}
\overline{Q}_{1i}g_{i1}^{NL} & \overline{Q}_{1i}g_{i2}^{NL} & \overline{Q}_{1i}g_{i3}^{NL} \\
\overline{Q}_{2i}g_{i1}^{NL} & \overline{Q}_{2i}g_{i2}^{NL} & \overline{Q}_{2i}g_{i3}^{NL} \\
\overline{Q}_{3i}g_{i1}^{NL} & \overline{Q}_{3i}g_{i2}^{NL} & \overline{Q}_{3i}g_{i3}^{NL} \\
\overline{Q}_{4i}g_{i1}^{NL} & \overline{Q}_{4i}g_{i2}^{NL} & \overline{Q}_{4i}g_{i3}^{NL}
\end{bmatrix}^{(i)}
\]

(32)

\[
\mathbf{E} = \begin{bmatrix}
E_{11} & E_{12} & E_{13} & E_{14} \\
E_{21} & E_{22} & E_{23} & E_{24}
\end{bmatrix} = \sum_{i=1}^{N} \begin{bmatrix}
\overline{Q}_{1i}a_{i1}^{NL} & \overline{Q}_{1i}a_{i2}^{NL} & \overline{Q}_{1i}a_{i3}^{NL} & \overline{Q}_{1i}a_{i4}^{NL} \\
\overline{Q}_{2i}a_{i1}^{NL} & \overline{Q}_{2i}a_{i2}^{NL} & \overline{Q}_{2i}a_{i3}^{NL} & \overline{Q}_{2i}a_{i4}^{NL} \\
\overline{Q}_{3i}a_{i1}^{NL} & \overline{Q}_{3i}a_{i2}^{NL} & \overline{Q}_{3i}a_{i3}^{NL} & \overline{Q}_{3i}a_{i4}^{NL} \\
\overline{Q}_{4i}a_{i1}^{NL} & \overline{Q}_{4i}a_{i2}^{NL} & \overline{Q}_{4i}a_{i3}^{NL} & \overline{Q}_{4i}a_{i4}^{NL}
\end{bmatrix}^{(i)}
\]

(33)

\[
\mathbf{Z} = \begin{bmatrix}
Z_{11} & Z_{12} & Z_{13} & Z_{14} \\
Z_{21} & Z_{22} & Z_{23} & Z_{24}
\end{bmatrix} = \sum_{i=1}^{N} \begin{bmatrix}
\overline{Q}_{1i}d_{i1}^{NL} & \overline{Q}_{1i}d_{i2}^{NL} & \overline{Q}_{1i}d_{i3}^{NL} & \overline{Q}_{1i}d_{i4}^{NL} \\
\overline{Q}_{2i}d_{i1}^{NL} & \overline{Q}_{2i}d_{i2}^{NL} & \overline{Q}_{2i}d_{i3}^{NL} & \overline{Q}_{2i}d_{i4}^{NL} \\
\overline{Q}_{3i}d_{i1}^{NL} & \overline{Q}_{3i}d_{i2}^{NL} & \overline{Q}_{3i}d_{i3}^{NL} & \overline{Q}_{3i}d_{i4}^{NL} \\
\overline{Q}_{4i}d_{i1}^{NL} & \overline{Q}_{4i}d_{i2}^{NL} & \overline{Q}_{4i}d_{i3}^{NL} & \overline{Q}_{4i}d_{i4}^{NL}
\end{bmatrix}^{(i)}
\]

(34)

\[
\mathbf{H} = \begin{bmatrix}
H_{11} & H_{12} & H_{13} & H_{14} \\
H_{21} & H_{22} & H_{23} & H_{24}
\end{bmatrix} = \sum_{i=1}^{N} \begin{bmatrix}
\overline{Q}_{4i}e_{i1}^{NL} & \overline{Q}_{4i}e_{i2}^{NL} & \overline{Q}_{4i}e_{i3}^{NL} & \overline{Q}_{4i}e_{i4}^{NL} \\
\overline{Q}_{5i}e_{i1}^{NL} & \overline{Q}_{5i}e_{i2}^{NL} & \overline{Q}_{5i}e_{i3}^{NL} & \overline{Q}_{5i}e_{i4}^{NL}
\end{bmatrix}^{(i)}
\]

(35)

where

\[
ad_{ni}^{NL} = \frac{R_{i}}{R_{g}} \left[\ln \left(\frac{R_{i} + \delta_{i+1}}{R_{i} + \delta_{i}} \right) + (R_{g} - R_{i}) \left(\frac{\delta_{i+1} - \delta_{i}}{(R_{i} + \delta_{i})(R_{i} + \delta_{i+1})} \right) \right]
\]
\[b_{R_i}^{NL} = \frac{R_i^2}{R_s} \left[(\xi_i + 1 - \xi_i^2) + (R_s - 2R_i) \ln \left(\frac{R_i + \xi_i}{R_s + \xi_i} \right) - \frac{1}{R_s} \left(R_i - R_s \right) \frac{1}{\xi_i + \xi_i} - \frac{2}{R_i} \right] \]

\[c_{R_i}^{NL} = \frac{R_i^2}{R_s} \left[\frac{1}{2} \frac{1}{\xi_i + \xi_i} + (R_s - 2R_i) \left(\xi_i - \xi_i^2 \right) + R_i \left(3R_s - 2R_i \right) \ln \left(\frac{R_i + \xi_i}{R_s + \xi_i} \right) \right] + \left(\xi_i - \xi_i^2 \right) \left(\xi_i - \xi_i^2 \right) \]

\[d_{R_i}^{NL} = R_i \ln \left(\frac{R_i + \xi_i}{R_s + \xi_i} \right) \]

\[e_{R_i}^{NL} = R_i \left[\left(\xi_i + 1 - \xi_i^2 \right) - R_i \ln \left(\frac{R_i + \xi_i}{R_s + \xi_i} \right) \right] \]

\[f_{R_i}^{NL} = R_i \left[\frac{1}{2} \frac{1}{\xi_i + \xi_i} + \left(\frac{R_i^2}{2} - R_i \right) \left(\xi_i - \xi_i^2 \right) + R_i \left(3R_s - 2R_i \right) \ln \left(\frac{R_i + \xi_i}{R_s + \xi_i} \right) \right] + \left(\xi_i - \xi_i^2 \right) \left(\xi_i - \xi_i^2 \right) \]

\[g_{R_i}^{NL} = R_i \left[\frac{1}{3} \frac{1}{\xi_i + \xi_i^2} + \frac{1}{2} \left(\xi_i - \xi_i^2 \right) \right] + \left(\xi_i - \xi_i^2 \right) \left(\xi_i - \xi_i^2 \right) \]

\[h_{R_i}^{NL} = R_i \left[\frac{1}{3} \frac{1}{\xi_i + \xi_i^2} - \frac{1}{2} R_i \left(\xi_i - \xi_i^2 \right) + R_i \left(\xi_i - \xi_i^2 \right) \right] - R_i \ln \left(\frac{R_i + \xi_i}{R_s + \xi_i} \right) \]

III. Equations of Motion

The following six equations of equilibrium are widely accepted [2–15]. They reflect the equilibrium of the middle surface when a transverse load \(q \) is applied, and are

\[\frac{\partial}{\partial \xi_i} (a_i N_{ii}) + \frac{\partial}{\partial \xi_i} (a_i N_{j}) - N_{ii} \frac{\partial a_i}{\partial \xi_i} + N_{ij} \frac{\partial a_j}{\partial \xi_i} + a_i \frac{a_i}{R_i} Q_i = a_i a_i \left(I_s \frac{\partial^2 \nu_i}{\partial t^2} + I_i \frac{\partial^2 \phi_i}{\partial t^2} \right) \]

\[\frac{\partial}{\partial \xi_i} (a_i N_{j}) + \frac{\partial}{\partial \xi_i} (a_i N_{j}) - N_{ij} \frac{\partial a_i}{\partial \xi_i} + N_{ij} \frac{\partial a_j}{\partial \xi_i} + a_i \frac{a_i}{R_i} Q_j = a_i a_i \left(I_s \frac{\partial^2 \nu_i}{\partial t^2} + I_i \frac{\partial^2 \phi_i}{\partial t^2} \right) \]
\[
\frac{\partial}{\partial \xi_i} (a_2 Q_i) + \frac{\partial}{\partial \xi_2} (a_1 Q_i) - a_i a_j \left(\frac{N_{ii}}{R_i} + \frac{N_{ij}}{R_j} \right) = qa_i a_j + a_i a_j I_0 \frac{\partial^2 w_0}{\partial t^2} \tag{37}
\]

\[
\frac{\partial}{\partial \xi_i} (a_2 M_{ii}) + \frac{\partial}{\partial \xi_2} (a_1 M_{ii}) - M_{ii} \frac{\partial a_i}{\partial \xi_i} + M_{ij} \frac{\partial a_i}{\partial \xi_j} - a_i a_j Q_i = a_i a_j \left(I_1 \frac{\partial^2 u_a}{\partial t^2} + I_2 \frac{\partial^2 \phi}{\partial t^2} \right) \]

\[
\frac{\partial}{\partial \xi_i} (a_2 M_{ij}) + \frac{\partial}{\partial \xi_2} (a_1 M_{ij}) - M_{ij} \frac{\partial a_i}{\partial \xi_i} + M_{ji} \frac{\partial a_i}{\partial \xi_j} - a_i a_j Q_i = a_i a_j \left(I_1 \frac{\partial^2 v_a}{\partial t^2} + I_2 \frac{\partial^2 \phi}{\partial t^2} \right) \]

\[
\frac{M_{ii}}{R_i} - \frac{M_{ij}}{R_j} + N_{ij} - N_{ii} = 0.
\]

The mass inertias \(I_0, I_1, I_2 \) are calculated using

\[
I_i = \sum_{n=1}^{N} \int_{V_n} \rho \, dV \, \left(1 + \frac{\xi_i}{R_i} \right) \left(1 + \frac{\xi_j}{R_j} \right) \xi_i \, d\xi \quad (i = 0, 1, 2) \tag{38}
\]

where \(\rho \) is the mass density.

Due to the definition of the stress resultants, the last expression in Eq. (37), concerning “drilling” equilibrium, is identically satisfied and, for this reason, is usually not considered in deriving the differential equations relating displacements and applied loads. It is noted that drilling equilibrium is always satisfied unless the flat plate approximation is assumed in the definition of the stress resultants. In fact, in many previous theories in which the term \(1 + \frac{\xi}{R_i} \) is approximated to unity, the definition of stress resultants does not satisfy the sixth equilibrium equation.

In deriving the stress resultants, approximate expressions for the displacements field have been used. It has been demonstrated that this discrepancy leads to non-zero strain components (note, not strains) and stress resultants corresponding to a small rigid body rotation, and that Eq. (20) is thus in need of some modification [9, 10, 13, 14]. Analytically, this is done by modifying the strain-displacement relations in Eq. (20) by replacing those terms without tilde using the following terms with tilde,

\[
\tilde{\omega}_x = \frac{1}{a_1} \left(\frac{\partial v_x}{\partial \xi_1} - \frac{a_2}{a_1} \frac{\partial a_1}{\partial \xi_1} \right) - \phi_x \quad \tilde{\omega}_y = \frac{1}{a_2} \left(\frac{\partial v_y}{\partial \xi_2} - \frac{a_2}{a_1} \frac{\partial a_1}{\partial \xi_1} \right) + \phi_y
\]
\[
\widetilde{\omega}_i = \frac{1}{a_i} \left(\frac{\partial \phi_i}{\partial \xi_1} - \frac{\phi_i}{a_i} \frac{\partial a_i}{\partial \xi_1} \right) - \frac{\phi_i}{R_i} \\
\widetilde{\omega}_j = \frac{1}{a_j} \left(\frac{\partial \phi_j}{\partial \xi_2} - \frac{\phi_j}{a_j} \frac{\partial a_j}{\partial \xi_2} \right) + \frac{\phi_j}{R_j}
\]

(39)

Here the term \(\phi_n \) is the third component of the curl of the shell middle surface displacements field, hence

\[
\phi_n = \frac{1}{2a_i a_j} \left[\frac{\partial}{\partial \xi_1} \left(a_i \nu_i \right) - \frac{\partial}{\partial \xi_1} \left(a_i \mu_i \right) \right]
\]

(40)

The same correction does not apply to Eqs. (26)-(28). This reasoning is understood by considering Ref. [13]. In this work, Sanders imposed the displacement field generated by a small rigid rotation, on the structure. Since he was dealing with a linear theory and small displacements, he could approximate the small rigid rotation with a curl. In linear theories, this must result in zero strain components, thus the correction. In nonlinear theories, a curl cannot be approximated to a rigid rotation. It actually entails some deformations and these deformations are analytically described by the nonlinear strains in Eq. (16). The physical meaning of the latter equation would be altered by applying the curl correction to Eqs. (26)-(28).

IV. Numerical Results

One of the features on the present work is that the term \(1 + \zeta/R_i \) has been retained in the derivation of the shell model. This term is typically neglected because, for the range of applicability of any shell theory based on an approximation of the shell as a two dimensional structure, the quantity \(\zeta/R_i \) is small if compared to unity.

In the following sections, examples of application of the developed theory are presented. The expressions of the stiffnesses are presented as functions of the geometry of the shell in its orthogonal conjugate curvilinear system i.e. of the normal radii of curvature. These functions therefore represent a point-to-point mapping between the structure’s idealized domain and stiffness. In other words, they allow one to calculate analytically the exact stiffnesses of a differential element, within a structure.

It is later shown that, even when the approximation \(\zeta/R_i << 1 \) holds correctly, neglecting this term entails the loss of important information. Indeed, the geometry of a shell structure can affect the stiffness matrix, by introducing coupling terms even for symmetric laminates or isotropic materials. This effect is readily explained by simplifying the expressions in Eq. (25). For instance, consider a generic shell of thickness \(h \) and assume that the material is isotropic. A series expansion of Eqs. (25) yields the following relationships:
\[a_{ni}^i = a_{n_2i}^i = h - \frac{1}{12} R_i \left(\frac{1}{R_i^2} - \frac{1}{R_l^2} \right) \]
\[b_{ni}^i = b_{n_2i}^i = \frac{h^3}{12} \left(\frac{1}{R_i} - \frac{1}{R_l} \right) \]
\[e_{ni}^i = e_{n_2i}^i = \frac{1}{12} h^3 \quad e_{n_2i}^i = 0 \quad e_{ni}^i = e_{n_2i}^i = \frac{1}{12} h^3 \]

Equations (41) give an idea of the order of magnitude of the difference between classic lamination theory (CLT) stiffnesses and the ones herein presented, and also show that this difference depends on thickness, radii of curvature and on the sign of their product, \(R_i R_l \). By comparing the latter expressions to the classic case (P.A.), in which

\[a_{ni}^i = a_{n_2i}^i = h \quad b_{ni}^i = b_{n_2i}^i = 0 \quad e_{ni}^i = e_{n_2i}^i = \frac{1}{12} h^3 \]

it becomes clear that, with the notable exception of the sphere, there is a small non-uniform relative difference for the \(A_{ij} \) and \(D_{ij} \) terms and that the same difference, which is magnified for structures in which \(R_i R_l < 0 \), is larger in \(B_{ij} \) terms. Indeed, the latter differ from zero by the order of \(D_{ij}/R_i \). For composite structures, these differences are then expected to be of the same order of magnitude as those obtained using Eq. (41) and (42).

The bending-stretching matrix is non-zero, even for symmetrically laminated structures, due to the inherent geometry. An important general rule may be deduced from the expressions in Eqs. (41), and that is, the effect of the initial geometry on the elastic behavior of a curved surface depends on its Gaussian curvature, \(GC \). This quantity is defined as the product of the principal curvatures and it is positive for synclastic surfaces (e.g. elliptic paraboloids), zero for developable or ruled surfaces (e.g. cylinders or cones) and negative for anticlastic surfaces (e.g. hyperbolic paraboloids). For structures with different geometries and identical thicknesses and lamination, the magnitude of the elements of bending-stretching matrix increases for decreasing \(GC \). In summary, from Eq. (41),

\[GC > 0 \quad \Rightarrow \quad B_{ij} = O \left(\frac{h^3}{\left| R_i \right|} - \frac{h^3}{\left| R_l \right|} \right) \]
\[GC = 0 \Rightarrow B_{ij} = O \left(\frac{h^3}{|R|} \right) \]

\[GC < 0 \Rightarrow B_{ij} = O \left(\frac{h^3}{|R|} + \frac{h^3}{|R|} \right) \]

Interestingly, the significance of the \(B_{ij} \) terms depends only on geometry, via \(GC \), and not on material stiffness properties. As such, the effect of curvature on \(B_{ij} \) is completely captured by \(GC \), noting that largest effects occur for anticlastic geometries, such as the hyperbolic paraboloid (negative \(GC \)) and smallest for synclastic curvatures (positive \(GC \)) with zero effect for spheres. Curvature effects on \(B_{ij} \), for cylindrical shells, are intermediate between the two previous examples, as may be expected, due to their zero \(GC \) value.

In the following sections, stiffness matrices resulting from Eqs. (21) to (24) are compared with the equivalent P.A. matrices, as in Ref. [10]. Results for synclastic, developable and anticlastic surfaces are shown with the aim of showing both the order of magnitude of the difference and the relationship between the difference and the Gaussian curvature.

The material properties used in the following examples are \(E_1 = 206.8 \) GPa, \(E_2 = 20.7 \) GPa, \(\nu_{12} = 0.25 \), \(G_{12} = G_{13} = 10.3 \) GPa and \(G_{23} = 4.1 \) GPa. Two different lay-ups, with stacking sequence \([45\ 30\ 90\ 0]\)\(_8\) and \([90\ 4\ 0]\)\(_r\), are considered. All the structures have been chosen to have thickness \(h = 0.01 \) m and thickness-to-radius ratios equal to 0.1 and less than 0.1, respectively.

For a useful comparison it is worth noting that literature, for shells having the above mentioned features, considers \(N_{12} = N_{21}, M_{12} = M_{21} \) and:

\[
\begin{align*}
N_{11} &= \left[A_{11} \ A_{12} \ A_{16} \right] \left[e_1^0 \ e_2^0 \right] + \left[B_{11} \ B_{12} \ B_{16} \right] \left[e_1^i \ e_2^i \right] \\
N_{22} &= \left[A_{12} \ A_{22} \ A_{26} \right] \left[e_1^0 \ e_2^0 \right] + \left[B_{12} \ B_{22} \ B_{26} \right] \left[e_1^i \ e_2^i \right] \\
N_{12} &= \left[A_{16} \ A_{26} \ A_{66} \right] \left[\omega_1^0 + \omega_2^0 \right] + \left[B_{16} \ B_{26} \ B_{66} \right] \left[\omega_1^i + \omega_2^i \right] \\
M_{11} &= \left[B_{11} \ B_{12} \ B_{16} \right] \left[e_1^0 \ e_2^0 \right] + \left[D_{11} \ D_{12} \ D_{16} \right] \left[e_1^i \ e_2^i \right] \\
M_{22} &= \left[B_{12} \ B_{22} \ B_{26} \right] \left[e_1^0 \ e_2^0 \right] + \left[D_{12} \ D_{22} \ D_{26} \right] \left[e_1^i \ e_2^i \right] \\
M_{12} &= \left[B_{16} \ B_{26} \ B_{66} \right] \left[\omega_1^0 + \omega_2^0 \right] + \left[D_{16} \ D_{26} \ D_{66} \right] \left[\omega_1^i + \omega_2^i \right]
\end{align*}
\]

\[21 \]

American Institute of Aeronautics and Astronautics
In the following, a series of tables is presented in which, to compare like for like, stiffness coefficients multiplying the same component of strain are compared.

A. Elliptic Paraboloid

In this section, the stiffness coefficients of an elliptic paraboloid are presented. They correspond to the point on the top of the structure that has been defined to have \(R_1 = 1/10 \) m and \(R_2 = 1/15 \) m

<table>
<thead>
<tr>
<th>((i, j))</th>
<th>Plate approx.</th>
<th>(A_{ij})</th>
<th>Present equations</th>
<th>(A'_{ij})</th>
<th>(A''_{ij})</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,1)</td>
<td>1.0681</td>
<td>1.0683</td>
<td>N/A</td>
<td>N/A</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>(2,2)</td>
<td>0.8339</td>
<td>0.8338</td>
<td>N/A</td>
<td>N/A</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>(1,6)</td>
<td>0.2664</td>
<td>0.2666</td>
<td>N/A</td>
<td>N/A</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>(6,6)</td>
<td>0.2972</td>
<td>0.2973</td>
<td>N/A</td>
<td>N/A</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>(2,6)</td>
<td>0.1705</td>
<td>N/A</td>
<td>N/A</td>
<td>0.1705</td>
<td>< 0.01</td>
<td></td>
</tr>
<tr>
<td>(6,6)</td>
<td>0.2972</td>
<td>N/A</td>
<td>N/A</td>
<td>0.2972</td>
<td>< 0.01</td>
<td></td>
</tr>
<tr>
<td>(4,4)</td>
<td>0.0685</td>
<td>0.0685</td>
<td>N/A</td>
<td>N/A</td>
<td>< 0.01</td>
<td></td>
</tr>
<tr>
<td>(5,5)</td>
<td>0.0763</td>
<td>0.0763</td>
<td>N/A</td>
<td>N/A</td>
<td>< 0.01</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>((i, j))</th>
<th>Plate approx.</th>
<th>(10^{-6}B_{ij})</th>
<th>Present equations</th>
<th>(10^{-6}B'_{ij})</th>
<th>(10^{-6}B''_{ij})</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,1)</td>
<td>0.00</td>
<td>-2.3373</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>(2,2)</td>
<td>0.00</td>
<td>2.0690</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>(1,6)</td>
<td>0.00</td>
<td>N/A</td>
<td>-1.2462</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>(6,6)</td>
<td>0.00</td>
<td>N/A</td>
<td>-1.2744</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>(2,6)</td>
<td>0.00</td>
<td>N/A</td>
<td>N/A</td>
<td>0.9299</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>(6,6)</td>
<td>0.00</td>
<td>N/A</td>
<td>N/A</td>
<td>1.2746</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>((i, j))</th>
<th>Plate approx.</th>
<th>(10^{-6}D_{ij})</th>
<th>Present equations</th>
<th>(10^{-6}D'_{ij})</th>
<th>(10^{-6}D''_{ij})</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,1)</td>
<td>7.0109</td>
<td>7.0112</td>
<td>N/A</td>
<td>N/A</td>
<td>< 0.01</td>
<td></td>
</tr>
<tr>
<td>(2,2)</td>
<td>6.1571</td>
<td>6.1322</td>
<td>N/A</td>
<td>N/A</td>
<td>-0.40</td>
<td></td>
</tr>
<tr>
<td>(1,6)</td>
<td>3.7342</td>
<td>3.7357</td>
<td>N/A</td>
<td>N/A</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>(6,6)</td>
<td>3.8178</td>
<td>3.8195</td>
<td>N/A</td>
<td>N/A</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>(2,6)</td>
<td>2.7851</td>
<td>N/A</td>
<td>N/A</td>
<td>2.7828</td>
<td>-0.08</td>
<td></td>
</tr>
<tr>
<td>(6,6)</td>
<td>3.8178</td>
<td>N/A</td>
<td>N/A</td>
<td>3.8147</td>
<td>-0.08</td>
<td></td>
</tr>
</tbody>
</table>
Notably, the following relationships hold

\[
B^{st}(R_1, R_2) = \begin{bmatrix}
B_{11} & B'_{16} & 0 & 0 \\
B'_{16} & B_{66} & 0 & 0 \\
0 & 0 & B_{22} & B'_{26} \\
0 & 0 & B_{26} & B_{66}
\end{bmatrix}
\]

\[
B^{cp} = \begin{bmatrix}
B_{11} & B_{12} & B_{16} \\
B_{12} & B_{22} & B_{26} \\
B_{16} & B_{26} & B_{66}
\end{bmatrix}
\]

\[
\text{(46)}
\]

As expected, the difference between the new and classic \(B_j\) elements in Eqs. (46) is of the order of \(D_j/R_i\) and, as shown by the \(b_{ki}^j\) terms in Eq. (37), is proportional to \(h(1/R_2−1/R_1)\). Due to this proportionality, the coupling follows
the trend shown in Fig. 1. It is also interesting to highlight that the effects of the curvature on the stiffness matrices are remarkably larger for the unsymmetric lay-up. These effects are also observed in the following examples concerning a cylinder and a hyperbolic paraboloid and appear to be a general feature.

Fig. 1 $h(1/R_2-1/R_1)$ over a quarter of elliptic paraboloid.

B. Cylindrical Shell

The following tables refer to a cylindrical structure. The radii of curvature are constant through the domain so that $1/R_2 = 10$ m$^{-1}$ and $1/R_1 = 0$ m$^{-1}$. The relationship between the stiffnesses and Gaussian curvature is clearly observed here and in the next section. The errors are indeed progressively larger as GC decreases. As already mentioned, this feature is magnified for unsymmetric stacking sequences.

<table>
<thead>
<tr>
<th>(i,j)</th>
<th>Plate approx. A_{ij}, GN/m</th>
<th>A_{ij}, GN/m</th>
<th>A'_{ij}, GN/m</th>
<th>A''_{ij}, GN/m</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,1)</td>
<td>1.0681</td>
<td>1.0681</td>
<td>N/A</td>
<td>N/A</td>
<td>0.00</td>
</tr>
<tr>
<td>(2,2)</td>
<td>0.8339</td>
<td>0.8345</td>
<td>N/A</td>
<td>N/A</td>
<td>0.07</td>
</tr>
<tr>
<td>(1,6)</td>
<td>0.2664</td>
<td>N/A</td>
<td>0.2664</td>
<td>N/A</td>
<td>0.00</td>
</tr>
<tr>
<td>(6,6)</td>
<td>0.2972</td>
<td>N/A</td>
<td>0.2972</td>
<td>N/A</td>
<td>0.00</td>
</tr>
<tr>
<td>(2,6)</td>
<td>0.1705</td>
<td>N/A</td>
<td>N/A</td>
<td>0.1708</td>
<td>0.18</td>
</tr>
<tr>
<td>(6,6)</td>
<td>0.2972</td>
<td>N/A</td>
<td>N/A</td>
<td>0.2976</td>
<td>0.13</td>
</tr>
<tr>
<td>(4,4)</td>
<td>0.0685</td>
<td>0.0686</td>
<td>N/A</td>
<td>N/A</td>
<td>0.15</td>
</tr>
<tr>
<td>(5,5)</td>
<td>0.0763</td>
<td>0.0763</td>
<td>N/A</td>
<td>N/A</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Table 8 Stiffness B_{ij} parameters for $[45\ 30\ 90\ 0]_s$ laminated cylinder. ($1/R = 0.1$)

<table>
<thead>
<tr>
<th>(i, j)</th>
<th>Plate approx.</th>
<th>Present equations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$10^{-5}B_{ij}$, GN</td>
<td>$10^{-5}B_{ij}$, GN</td>
</tr>
<tr>
<td>(1,1)</td>
<td>0.00</td>
<td>7.0109</td>
</tr>
<tr>
<td>(2,2)</td>
<td>0.00</td>
<td>-6.1655</td>
</tr>
<tr>
<td>(1,6)</td>
<td>0.00</td>
<td>N/A</td>
</tr>
<tr>
<td>(6,6)</td>
<td>0.00</td>
<td>N/A</td>
</tr>
<tr>
<td>(2,6)</td>
<td>0.00</td>
<td>N/A</td>
</tr>
<tr>
<td>(6,6)</td>
<td>0.00</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 9 Stiffness D_{ij} parameters for $[45\ 30\ 90\ 0]_s$ laminated cylinder. ($1/R = 0.1$)

<table>
<thead>
<tr>
<th>(i, j)</th>
<th>Plate approx.</th>
<th>Present equations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$10^{-6}D_{ij}$, GN·m</td>
<td>$10^{-6}D_{ij}$, GN·m</td>
</tr>
<tr>
<td>(1,1)</td>
<td>7.0109</td>
<td>7.0109</td>
</tr>
<tr>
<td>(2,2)</td>
<td>6.1571</td>
<td>6.1655</td>
</tr>
<tr>
<td>(1,6)</td>
<td>3.7342</td>
<td>N/A</td>
</tr>
<tr>
<td>(6,6)</td>
<td>3.8178</td>
<td>N/A</td>
</tr>
<tr>
<td>(2,6)</td>
<td>2.7851</td>
<td>N/A</td>
</tr>
<tr>
<td>(6,6)</td>
<td>3.8178</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 10 Stiffness A_{ij} parameters for $[90\ 0]_4T$ laminated cylinder. ($1/R = 0.1$)

<table>
<thead>
<tr>
<th>(i, j)</th>
<th>Plate approx.</th>
<th>Present equations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A_{ij}, GN/m</td>
<td>A_{ij}, GN/m</td>
</tr>
<tr>
<td>(1,1)</td>
<td>1.1448</td>
<td>1.1682</td>
</tr>
<tr>
<td>(2,2)</td>
<td>1.1448</td>
<td>1.1692</td>
</tr>
<tr>
<td>(1,6)</td>
<td>0.00</td>
<td>N/A</td>
</tr>
<tr>
<td>(6,6)</td>
<td>0.1034</td>
<td>N/A</td>
</tr>
<tr>
<td>(2,6)</td>
<td>0.00</td>
<td>N/A</td>
</tr>
<tr>
<td>(6,6)</td>
<td>0.1034</td>
<td>N/A</td>
</tr>
<tr>
<td>(4,4)</td>
<td>0.0724</td>
<td>0.0732</td>
</tr>
<tr>
<td>(5,5)</td>
<td>0.0724</td>
<td>0.0732</td>
</tr>
</tbody>
</table>
Table 11 Stiffness B_{ij} parameters for $[90, 0]_T$ laminated cylinder. ($1/R = 0.1$)

<table>
<thead>
<tr>
<th>(i,j)</th>
<th>Plate approx. 10^3B_{ij}, GN</th>
<th>Present equations 10^3B_{ij}, GN</th>
<th>$10^3B'_{ij}$, GN</th>
<th>$10^3B''_{ij}$, GN</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,1)</td>
<td>2.3416</td>
<td>2.4370</td>
<td>N/A</td>
<td>N/A</td>
<td>4.07</td>
</tr>
<tr>
<td>(2,2)</td>
<td>-2.3416</td>
<td>-2.4401</td>
<td>N/A</td>
<td>N/A</td>
<td>4.21</td>
</tr>
<tr>
<td>(1,6)</td>
<td>0.00</td>
<td>N/A</td>
<td>0.00</td>
<td>N/A</td>
<td>0.00</td>
</tr>
<tr>
<td>(6,6)</td>
<td>0.00</td>
<td>N/A</td>
<td>0.0096</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>(2,6)</td>
<td>0.00</td>
<td>N/A</td>
<td>0.00</td>
<td>N/A</td>
<td>0.00</td>
</tr>
<tr>
<td>(6,6)</td>
<td>0.00</td>
<td>N/A</td>
<td>-0.0086</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 12 Stiffness D_{ij} parameters for $[90, 0]_T$ laminated cylinder. ($1/R = 0.1$)

<table>
<thead>
<tr>
<th>(i,j)</th>
<th>Plate approx. 10^6D_{ij}, GN·m</th>
<th>Present equations 10^6D_{ij}, GN·m</th>
<th>$10^6D'_{ij}$, GN·m</th>
<th>$10^6D''_{ij}$, GN·m</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,1)</td>
<td>9.5399</td>
<td>9.8326</td>
<td>N/A</td>
<td>N/A</td>
<td>3.07</td>
</tr>
<tr>
<td>(2,2)</td>
<td>9.5399</td>
<td>9.8474</td>
<td>N/A</td>
<td>N/A</td>
<td>3.22</td>
</tr>
<tr>
<td>(1,6)</td>
<td>0.00</td>
<td>N/A</td>
<td>0.00</td>
<td>N/A</td>
<td>0.00</td>
</tr>
<tr>
<td>(6,6)</td>
<td>0.8618</td>
<td>N/A</td>
<td>0.8618</td>
<td>N/A</td>
<td>0.00</td>
</tr>
<tr>
<td>(2,6)</td>
<td>0.00</td>
<td>N/A</td>
<td>0.00</td>
<td>N/A</td>
<td>0.00</td>
</tr>
<tr>
<td>(6,6)</td>
<td>0.8618</td>
<td>N/A</td>
<td>0.8631</td>
<td>N/A</td>
<td>0.15</td>
</tr>
</tbody>
</table>

C. Hyperbolic Paraboloid

In this section, the stiffness coefficients of a hyperbolic paraboloid are presented. They correspond to the saddle point of the structure that has been taken to have $1/R_1 = -10$ m$^{-1}$ and $1/R_2 = 10$ m$^{-1}$.

Table 13 Stiffness A_{ij} parameters for $[45 30 90 0]_S$ laminated hyperbolic paraboloid at its saddle point.

<table>
<thead>
<tr>
<th>(i,j)</th>
<th>Plate approx. A_{ij}, GN/m</th>
<th>Present equations A_{ij}, GN/m</th>
<th>A'_{ij}, GN/m</th>
<th>A''_{ij}, GN/m</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,1)</td>
<td>1.0681</td>
<td>1.0695</td>
<td>N/A</td>
<td>N/A</td>
<td>0.13</td>
</tr>
<tr>
<td>(2,2)</td>
<td>0.8339</td>
<td>0.8351</td>
<td>N/A</td>
<td>N/A</td>
<td>0.14</td>
</tr>
<tr>
<td>(1,6)</td>
<td>0.2664</td>
<td>N/A</td>
<td>0.2672</td>
<td>N/A</td>
<td>0.30</td>
</tr>
<tr>
<td>(6,6)</td>
<td>0.2972</td>
<td>N/A</td>
<td>0.2980</td>
<td>N/A</td>
<td>0.27</td>
</tr>
<tr>
<td>(2,6)</td>
<td>0.1705</td>
<td>N/A</td>
<td>N/A</td>
<td>0.1711</td>
<td>0.35</td>
</tr>
<tr>
<td>(6,6)</td>
<td>0.2972</td>
<td>N/A</td>
<td>N/A</td>
<td>0.2980</td>
<td>0.27</td>
</tr>
<tr>
<td>(4,4)</td>
<td>0.0685</td>
<td>0.0686</td>
<td>N/A</td>
<td>N/A</td>
<td>0.15</td>
</tr>
<tr>
<td>(5,5)</td>
<td>0.0763</td>
<td>0.0764</td>
<td>N/A</td>
<td>N/A</td>
<td>0.13</td>
</tr>
</tbody>
</table>
Table 14 Stiffness B_{ij} parameters for $[45\ 30\ 90\ 0]_S$ laminated hyperbolic paraboloid at its saddle point.

<table>
<thead>
<tr>
<th>(i,j)</th>
<th>Plate approx. 10^3B_{ij}, GN</th>
<th>Present equations 10^3B_{ij}, GN</th>
<th>$10^3B'_{ij}$, GN</th>
<th>$10^3B''_{ij}$, GN</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,1)</td>
<td>0.00</td>
<td>1.4043</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>(2,2)</td>
<td>0.00</td>
<td>-1.2334</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>(1,6)</td>
<td>0.00</td>
<td>N/A</td>
<td>0.7480</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>(6,6)</td>
<td>0.00</td>
<td>N/A</td>
<td>0.7648</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>(2,6)</td>
<td>0.00</td>
<td>N/A</td>
<td>N/A</td>
<td>-0.5580</td>
<td>N/A</td>
</tr>
<tr>
<td>(6,6)</td>
<td>0.00</td>
<td>N/A</td>
<td>N/A</td>
<td>-0.7647</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 15 Stiffness D_{ij} parameters for $[45\ 30\ 90\ 0]_S$ laminated hyperbolic paraboloid at its saddle point.

<table>
<thead>
<tr>
<th>(i,j)</th>
<th>Plate approx. 10^6D_{ij}, GN·m</th>
<th>Present equations 10^6D_{ij}, GN·m</th>
<th>$10^6D'_{ij}$, GN·m</th>
<th>$10^6D''_{ij}$, GN·m</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,1)</td>
<td>7.0109</td>
<td>7.0315</td>
<td>N/A</td>
<td>N/A</td>
<td>0.29</td>
</tr>
<tr>
<td>(2,2)</td>
<td>6.1571</td>
<td>6.1771</td>
<td>N/A</td>
<td>N/A</td>
<td>0.32</td>
</tr>
<tr>
<td>(1,6)</td>
<td>3.7342</td>
<td>N/A</td>
<td>3.7456</td>
<td>N/A</td>
<td>0.31</td>
</tr>
<tr>
<td>(6,6)</td>
<td>3.8178</td>
<td>N/A</td>
<td>3.8302</td>
<td>N/A</td>
<td>0.32</td>
</tr>
<tr>
<td>(2,6)</td>
<td>2.7851</td>
<td>N/A</td>
<td>N/A</td>
<td>2.7952</td>
<td>0.36</td>
</tr>
<tr>
<td>(6,6)</td>
<td>3.8178</td>
<td>N/A</td>
<td>N/A</td>
<td>3.8291</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Table 16 Stiffness A_{ij} parameters for $[90_4\ 0_4]_T$ laminated hyperbolic paraboloid at its saddle point.

<table>
<thead>
<tr>
<th>(i,j)</th>
<th>Plate approx. A_{ij}, GN/m</th>
<th>Present equations A_{ij}, GN/m</th>
<th>A'_{ij}, GN/m</th>
<th>A''_{ij}, GN/m</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,1)</td>
<td>1.1448</td>
<td>1.1936</td>
<td>N/A</td>
<td>N/A</td>
<td>4.26</td>
</tr>
<tr>
<td>(2,2)</td>
<td>1.1448</td>
<td>1.1936</td>
<td>N/A</td>
<td>N/A</td>
<td>4.26</td>
</tr>
<tr>
<td>(1,6)</td>
<td>0.00</td>
<td>N/A</td>
<td>0.00</td>
<td>N/A</td>
<td>0.00</td>
</tr>
<tr>
<td>(6,6)</td>
<td>0.1034</td>
<td>N/A</td>
<td>0.1036</td>
<td>N/A</td>
<td>0.19</td>
</tr>
<tr>
<td>(2,6)</td>
<td>0.00</td>
<td>N/A</td>
<td>N/A</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>(6,6)</td>
<td>0.1034</td>
<td>N/A</td>
<td>N/A</td>
<td>0.1036</td>
<td>0.19</td>
</tr>
<tr>
<td>(4,4)</td>
<td>0.0724</td>
<td>0.0741</td>
<td>N/A</td>
<td>N/A</td>
<td>2.35</td>
</tr>
<tr>
<td>(5,5)</td>
<td>0.0724</td>
<td>0.0741</td>
<td>N/A</td>
<td>N/A</td>
<td>2.35</td>
</tr>
</tbody>
</table>
Table 17 Stiffness B_{ij} parameters for $[90\degree,0\degree]_T$ laminated hyperbolic paraboloid at its saddle point.

<table>
<thead>
<tr>
<th>(i,j)</th>
<th>Plate approx. $10^3 B_{ij}$, GN</th>
<th>Present equations $10^3 B_{ij}$, GN</th>
<th>$10^3 B'_{ij}$, GN</th>
<th>$10^3 B''_{ij}$, GN</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,1)</td>
<td>2.3416</td>
<td>2.5386</td>
<td>N/A</td>
<td>N/A</td>
<td>8.41</td>
</tr>
<tr>
<td>(2,2)</td>
<td>-2.3416</td>
<td>-2.5386</td>
<td>N/A</td>
<td>N/A</td>
<td>8.41</td>
</tr>
<tr>
<td>(1,6)</td>
<td>0.00</td>
<td>N/A</td>
<td>0.00</td>
<td>N/A</td>
<td>0.00</td>
</tr>
<tr>
<td>(6,6)</td>
<td>0.00</td>
<td>N/A</td>
<td>0.0172</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>(2,6)</td>
<td>0.00</td>
<td>N/A</td>
<td>N/A</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 18 Stiffness D_{ij} parameters for $[90\degree,0\degree]_T$ laminated hyperbolic paraboloid at its saddle point.

<table>
<thead>
<tr>
<th>(i,j)</th>
<th>Plate approx. $10^6 D_{ij}$, GN·m</th>
<th>Present equations $10^6 D_{ij}$, GN·m</th>
<th>$10^6 D'_{ij}$, GN·m</th>
<th>$10^6 D''_{ij}$, GN·m</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,1)</td>
<td>9.5399</td>
<td>10.1560</td>
<td>N/A</td>
<td>N/A</td>
<td>6.46</td>
</tr>
<tr>
<td>(2,2)</td>
<td>9.5399</td>
<td>10.1381</td>
<td>N/A</td>
<td>N/A</td>
<td>6.27</td>
</tr>
<tr>
<td>(1,6)</td>
<td>0.00</td>
<td>N/A</td>
<td>0.00</td>
<td>N/A</td>
<td>0.00</td>
</tr>
<tr>
<td>(6,6)</td>
<td>0.8618</td>
<td>N/A</td>
<td>0.8645</td>
<td>N/A</td>
<td>0.31</td>
</tr>
<tr>
<td>(2,6)</td>
<td>0.00</td>
<td>N/A</td>
<td>N/A</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>(6,6)</td>
<td>0.8618</td>
<td>N/A</td>
<td>N/A</td>
<td>0.8638</td>
<td>0.23</td>
</tr>
</tbody>
</table>

The distribution of B_{ij} terms follows the trend shown in Fig. 2 and shows significant values with their maximum occurring at the center of the structure.

![Fig. 2](image_url)
V. Geometrically Exact Strain Components

Tables 19 to 28 show a comparison between the components of strain obtained using the present formulation (Present Equations, P.E.) and those valid for plates and commonly used for shells (Plate Approximations, P.A.). The effect of accurately calculated stiffness coefficients on free vibrations has been investigated in Ref. [4]. The main focus here is to show that the same approach may have relevant influences on the nonlinear behavior of shell structures. In fact, it is shown that even the slightest difference in the stiffness matrix may lead to appreciably different components of strain. This is shown by applying unitary stress resultants to the structural points of the symmetric laminate, used in the previous sections, and calculating the resulting deformations by inverting Eq. (20).

Table 19 Strain components for [45 30 90 0]s laminate.

<table>
<thead>
<tr>
<th></th>
<th>Applied load N_{11}=1 N/m, Q_{11}=1 N/m</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10^{-9} P.A.</td>
<td>Paraboloid</td>
<td>Cylinder</td>
<td>Hyperboloid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10^{-9} P.E.</td>
<td>Error %</td>
<td>10^{-9} P.E.</td>
<td>Error %</td>
<td>10^{-9} P.E.</td>
</tr>
<tr>
<td>e_{i}</td>
<td>1.2232</td>
<td>1.229</td>
<td>0.47</td>
<td>1.2297</td>
<td>0.53</td>
</tr>
<tr>
<td>e_{j}</td>
<td>-0.1545</td>
<td>-0.1387</td>
<td>-10.21</td>
<td>-0.1386</td>
<td>-10.26</td>
</tr>
<tr>
<td>\omega_{i} + \omega_{j}</td>
<td>-1.0079</td>
<td>-0.7595</td>
<td>-24.65</td>
<td>-0.7595</td>
<td>-24.64</td>
</tr>
<tr>
<td>e_{i}</td>
<td>-2.8853</td>
<td>-2.885</td>
<td>-0.01</td>
<td>-2.8827</td>
<td>-0.09</td>
</tr>
<tr>
<td>e_{j}</td>
<td>13.6583</td>
<td>13.6545</td>
<td>-0.03</td>
<td>13.6578</td>
<td>< 0.01</td>
</tr>
<tr>
<td>e_{i}</td>
<td>0</td>
<td>4.3098</td>
<td>N/A</td>
<td>-12.381</td>
<td>N/A</td>
</tr>
<tr>
<td>e_{j}</td>
<td>0</td>
<td>-0.3541</td>
<td>N/A</td>
<td>0.426</td>
<td>N/A</td>
</tr>
<tr>
<td>\omega_{i} + \omega_{j}</td>
<td>0</td>
<td>-4.6293</td>
<td>N/A</td>
<td>3.5694</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 20 Strain components for [45 30 90 0]s laminate.

<table>
<thead>
<tr>
<th></th>
<th>Applied load N_{22}=1 N/m, Q_{22}=1 N/m</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10^{-9} P.A.</td>
<td>Paraboloid</td>
<td>Cylinder</td>
<td>Hyperboloid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10^{-9} P.E.</td>
<td>Error %</td>
<td>10^{-9} P.E.</td>
<td>Error %</td>
<td>10^{-9} P.E.</td>
</tr>
<tr>
<td>e_{i}</td>
<td>-0.1545</td>
<td>-0.1387</td>
<td>-10.21</td>
<td>-0.1386</td>
<td>-10.26</td>
</tr>
<tr>
<td>e_{j}</td>
<td>1.3781</td>
<td>1.4204</td>
<td>3.07</td>
<td>1.4202</td>
<td>3.05</td>
</tr>
<tr>
<td>\omega_{i} + \omega_{j}</td>
<td>-0.6522</td>
<td>0.0101</td>
<td>-101.55</td>
<td>0.0103</td>
<td>-101.59</td>
</tr>
<tr>
<td>e_{i}</td>
<td>15.2045</td>
<td>15.2074</td>
<td>0.02</td>
<td>15.1909</td>
<td>-0.09</td>
</tr>
<tr>
<td>e_{j}</td>
<td>-2.8853</td>
<td>-2.885</td>
<td>-0.01</td>
<td>-2.8827</td>
<td>-0.09</td>
</tr>
<tr>
<td>e_{i}</td>
<td>0</td>
<td>0.9414</td>
<td>N/A</td>
<td>-1.375</td>
<td>N/A</td>
</tr>
<tr>
<td>e_{j}</td>
<td>0</td>
<td>-5.2142</td>
<td>N/A</td>
<td>13.9371</td>
<td>N/A</td>
</tr>
<tr>
<td>\omega_{i} + \omega_{j}</td>
<td>0</td>
<td>-6.6581</td>
<td>N/A</td>
<td>-7.5181</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Applied load $N_{ij}=1$ N/m, $N_{ij}=1$ N/m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>------------------</td>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10^{-6} P.A.</td>
<td>Paraboloid</td>
<td>Cylinder</td>
<td>Hyperboloid</td>
<td></td>
</tr>
<tr>
<td>e_i^1</td>
<td>1.0687</td>
<td>1.0903</td>
<td>2.02</td>
<td>1.091</td>
<td>2.09</td>
</tr>
<tr>
<td>e_i^2</td>
<td>1.2236</td>
<td>1.2817</td>
<td>4.75</td>
<td>1.2815</td>
<td>4.74</td>
</tr>
<tr>
<td>$\omega_i^1 + \omega_i^2$</td>
<td>-1.66</td>
<td>-0.7494</td>
<td>-54.86</td>
<td>-0.7492</td>
<td>-54.87</td>
</tr>
<tr>
<td>e_i^1</td>
<td>0</td>
<td>5.2512</td>
<td>N/A</td>
<td>-13.7561</td>
<td>N/A</td>
</tr>
<tr>
<td>e_i^2</td>
<td>0</td>
<td>-5.5683</td>
<td>N/A</td>
<td>14.3632</td>
<td>N/A</td>
</tr>
<tr>
<td>$\omega_i^1 + \omega_i^2$</td>
<td>0</td>
<td>-11.2873</td>
<td>N/A</td>
<td>-3.9488</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Applied load $M_{ij}=1$ N</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10^{-6} P.A.</td>
<td>Paraboloid</td>
<td>Cylinder</td>
</tr>
<tr>
<td>e_i^1</td>
<td>0</td>
<td>0.0043</td>
<td>N/A</td>
</tr>
<tr>
<td>e_i^2</td>
<td>0</td>
<td>0.0009</td>
<td>N/A</td>
</tr>
<tr>
<td>$\omega_i^1 + \omega_i^2$</td>
<td>0</td>
<td>0.0045</td>
<td>N/A</td>
</tr>
<tr>
<td>e_i^1</td>
<td>307.5838</td>
<td>307.467</td>
<td>-0.04</td>
</tr>
<tr>
<td>e_i^2</td>
<td>-49.6147</td>
<td>-49.615</td>
<td>< 0.01</td>
</tr>
<tr>
<td>$\omega_i^1 + \omega_i^2$</td>
<td>-264.6526</td>
<td>-264.6258</td>
<td>-0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Applied load $M_{ij}=1$ N</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10^{-6} P.A.</td>
<td>Paraboloid</td>
<td>Cylinder</td>
</tr>
<tr>
<td>e_i^1</td>
<td>0</td>
<td>-0.0004</td>
<td>N/A</td>
</tr>
<tr>
<td>e_i^2</td>
<td>0</td>
<td>-0.0052</td>
<td>N/A</td>
</tr>
<tr>
<td>$\omega_i^1 + \omega_i^2$</td>
<td>0</td>
<td>-0.0059</td>
<td>N/A</td>
</tr>
<tr>
<td>e_i^1</td>
<td>-49.6147</td>
<td>-49.615</td>
<td>< 0.01</td>
</tr>
<tr>
<td>e_i^2</td>
<td>250.4062</td>
<td>250.4879</td>
<td>0.03</td>
</tr>
<tr>
<td>$\omega_i^1 + \omega_i^2$</td>
<td>-134.1468</td>
<td>-134.0989</td>
<td>-0.04</td>
</tr>
</tbody>
</table>
Table 24 Strain components for [45 30 90]s laminate.

<table>
<thead>
<tr>
<th></th>
<th>Applied load $M_{zz}=1$ N, $M_{yy}=1$ N</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10^6 P.A.</td>
<td>10^6 P.E.</td>
<td>Error %</td>
<td>10^6 P.A.</td>
<td>10^6 P.E.</td>
</tr>
<tr>
<td>e_1^0</td>
<td>0</td>
<td>0.004</td>
<td>N/A</td>
<td>-0.012</td>
<td>N/A</td>
</tr>
<tr>
<td>e_2^0</td>
<td>0</td>
<td>-0.0043</td>
<td>N/A</td>
<td>0.0126</td>
<td>N/A</td>
</tr>
<tr>
<td>$\omega_1^0 + \omega_2^0$</td>
<td>0</td>
<td>-0.0014</td>
<td>N/A</td>
<td>0.0003</td>
<td>N/A</td>
</tr>
<tr>
<td>e_1^i</td>
<td>257.9691</td>
<td>257.852</td>
<td>-0.05</td>
<td>258.1106</td>
<td>0.05</td>
</tr>
<tr>
<td>e_2^i</td>
<td>200.7915</td>
<td>200.8729</td>
<td>0.04</td>
<td>200.6803</td>
<td>-0.06</td>
</tr>
<tr>
<td>$\omega_1^i + \omega_2^i$</td>
<td>-398.7993</td>
<td>-398.7246</td>
<td>-0.02</td>
<td>-398.7413</td>
<td>-0.01</td>
</tr>
</tbody>
</table>

Table 25 Strain components for [45 30 90]s laminate.

<table>
<thead>
<tr>
<th></th>
<th>Applied load $N_{yy}=1$ N/m, $M_{zz}=1$ N</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10^6 P.A.</td>
<td>10^6 P.E.</td>
<td>Error %</td>
<td>10^6 P.A.</td>
<td>10^6 P.E.</td>
</tr>
<tr>
<td>e_1^0</td>
<td>0.0012</td>
<td>0.0055</td>
<td>352.8</td>
<td>-0.0112</td>
<td>-1011.63</td>
</tr>
<tr>
<td>e_2^0</td>
<td>-0.0002</td>
<td>0.0008</td>
<td>-619.53</td>
<td>-0.0015</td>
<td>879.75</td>
</tr>
<tr>
<td>$\omega_1^0 + \omega_2^0$</td>
<td>-0.001</td>
<td>0.0037</td>
<td>-468.14</td>
<td>0.0086</td>
<td>-956.33</td>
</tr>
<tr>
<td>e_1^i</td>
<td>307.5838</td>
<td>307.4713</td>
<td>-0.04</td>
<td>307.6908</td>
<td>0.03</td>
</tr>
<tr>
<td>e_2^i</td>
<td>-49.6147</td>
<td>-49.6153</td>
<td><0.01</td>
<td>-49.5921</td>
<td>-0.05</td>
</tr>
<tr>
<td>$\omega_1^i + \omega_2^i$</td>
<td>-264.6526</td>
<td>-264.6304</td>
<td>-0.01</td>
<td>-264.7078</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Table 26 Strain components for [45 30 90]s laminate.

<table>
<thead>
<tr>
<th></th>
<th>Applied load $N_{zz}=1$ N/m, $M_{yy}=1$ N</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10^6 P.A.</td>
<td>10^6 P.E.</td>
<td>Error %</td>
<td>10^6 P.A.</td>
<td>10^6 P.E.</td>
</tr>
<tr>
<td>e_1^0</td>
<td>-0.0002</td>
<td>-0.0005</td>
<td>219.01</td>
<td>0.0003</td>
<td>-286.02</td>
</tr>
<tr>
<td>e_2^0</td>
<td>0.0014</td>
<td>-0.0038</td>
<td>-375.3</td>
<td>0.0154</td>
<td>1014.41</td>
</tr>
<tr>
<td>$\omega_1^0 + \omega_2^0$</td>
<td>-0.0007</td>
<td>-0.0058</td>
<td>796.08</td>
<td>-0.009</td>
<td>1287.63</td>
</tr>
<tr>
<td>e_1^i</td>
<td>-49.6147</td>
<td>-49.614</td>
<td><0.01</td>
<td>-49.5939</td>
<td>-0.04</td>
</tr>
<tr>
<td>e_2^i</td>
<td>250.4062</td>
<td>250.4827</td>
<td>0.03</td>
<td>250.2867</td>
<td>-0.05</td>
</tr>
<tr>
<td>$\omega_1^i + \omega_2^i$</td>
<td>-134.1468</td>
<td>-134.1055</td>
<td>-0.03</td>
<td>-134.0375</td>
<td>-0.08</td>
</tr>
</tbody>
</table>

Data in Table 25 and Table 26 include effects of combined stretching-bending. The large discrepancies are explained in terms of orders of magnitude effects by using the same assumptions that lead to Eqs. (41) and (42). The
following expressions are obtained inverting Eq. (20) and applying loads as in Table 25 and Table 26. In fact, one can show that the errors are proportional to

\[
\frac{\left(\frac{1}{R_z} - \frac{1}{R_t}\right)}{\left[1 - \frac{h^2}{12} \left(\frac{1}{R_t} - \frac{1}{R_z}\right)\right]^2} \left[\frac{h^2}{12} \left(\frac{1}{R_t} - \frac{1}{R_z}\right) - 1\right] = O(10^i)\% \tag{47}
\]

and

\[
\frac{\frac{h^2}{12} \left(\frac{1}{R_t} - \frac{1}{R_z}\right)}{\left[1 - \frac{h^2}{12} \left(\frac{1}{R_t} - \frac{1}{R_z}\right)\right]^2} \left[\left(\frac{1}{R_t} - \frac{1}{R_z}\right) - 1\right] = O(10^{-2})\% \tag{48}
\]

for in-plane and out-of-plane components of deformation, respectively.

The order of magnitude of the error for the in-plane components of strain is thus explained. It is due to the presence of a populated coupling matrix and obviously tends to zero when the principal curvatures tend to infinity.

<table>
<thead>
<tr>
<th>Table 27 Strain components for ([45 30 90 0]_s) laminate.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied load (N_{12} = 1) N/m, (N_{21} = 1) N/m</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(e_1^i)</td>
</tr>
<tr>
<td>(e_2^i)</td>
</tr>
<tr>
<td>(e_3^i + \omega_3^i)</td>
</tr>
<tr>
<td>(e_1^i)</td>
</tr>
<tr>
<td>(e_2^i)</td>
</tr>
<tr>
<td>(e_3^i + \omega_3^i)</td>
</tr>
</tbody>
</table>
Table 28 Strain components for [45 30 90 0]_s laminate.

<table>
<thead>
<tr>
<th>Paraboloid</th>
<th>Cylinder</th>
<th>Hyperboloid</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{23}=R_2/R_1=1.5$ N</td>
<td>$M_{21}=R_2/R_1=0$ N</td>
<td>$M_{21}=R_2/R_1=-1$ N</td>
</tr>
<tr>
<td>P.A.</td>
<td>P.E.</td>
<td>Error %</td>
</tr>
<tr>
<td>e_1^0</td>
<td>0</td>
<td>-3.0711</td>
</tr>
<tr>
<td>e_2^0</td>
<td>0</td>
<td>-8.1779</td>
</tr>
<tr>
<td>$\omega_1^0 + \omega_2^0$</td>
<td>0</td>
<td>-128.7234</td>
</tr>
<tr>
<td>e_1^1</td>
<td>N/A</td>
<td>350.0595</td>
</tr>
<tr>
<td>e_2^1</td>
<td>N/A</td>
<td>118.5717</td>
</tr>
<tr>
<td>$\omega_1^1 + \omega_2^1$</td>
<td>N/A</td>
<td>2235.7513</td>
</tr>
</tbody>
</table>

The data in Table 28 is particularly interesting because it presents a loading condition that can not be reproduced by assuming the plate approximation. In that case, the artificially achieved symmetry of the stress resultants implies $M_{12} = M_{21}$. However, Eq. (13) is more appropriate and, if $N_{12} = N_{21} = 0$ and $M_{12} = 1, M_{21} = R_2/R_1$.

It is noted that, due to Eq. (13), the stiffness matrix of Eq. (20) is singular and cannot be inverted, as is. This problem is easily overcome because, by using Eq. (13), and by noting that due to Eq. (40), $\tilde{\omega}_1^0$ is equal to $\tilde{\omega}_2^0$, it is possible to reduce the 10 by 10 singular stiffness matrix to a 9 by 9 whose determinant is non-zero.

VI. Conclusion

General equations of multilayered anisotropic shells were developed by including the effects of shear deformation, initial curvature and geometrically nonlinear deformation effects. A novel expression for the stiffness matrix has been presented in which the relationship between the shell shape and the stiffness coefficients has been made explicit.

It is noted that the linear part of the developed model is in good agreement with results from Ref. [4]; the model has been further extended to include the effects of geometrically nonlinear deformations and to take into account and solve the most common theoretical inconsistencies of previous formulations. Precisely, retaining the coefficient $1 + \zeta/R_i$ in the definition of stress resultants has made it possible to satisfy the equation of drilling equilibrium. Also, since it is based on the work by Reddy [9, 10], the present model does not give non-physical strain and stress resultants due to rigid-body motion.
The role of geometry (initial curvatures), as a source of anisotropy, has been analyzed. It has been shown that the effect of curvature significantly affects the bending-stretching matrix and that its magnitude depends on the sign of the Gaussian curvature and on the degree of symmetry of lamination. Generally, each element of the stiffness matrix partially depends on the thickness/local radius of curvature ratio and on the Gaussian curvature.

The stiffness coefficients presented herein differ from those obtained with the plate approximation giving errors up to 5-8% for values of thickness-to-radius ratios of the order of 0.1. It is shown that neglecting curvature effects may lead to variations of the strain components from a few to several dozens of percentage points. It is noted that such a difference may significantly affect buckling and post-buckling phenomena.

Acknowledgments

The authors thank the funding of Airbus UK and SWRDA through a Great Western Research grant.

References

