
Peer reviewed version

Link to published version (if available):
10.1142/S179304211750021X

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via World Scientific at http://www.worldscientific.com/doi/10.1142/S179304211750021X. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
HECKE EIGENVALUES AND RELATIONS FOR DEGREE n
SIEGEL EISENSTEIN SERIES OF SQUARE-FREE LEVEL

LYNNE H. WALLING

Abstract. We describe a basis of Siegel Eisenstein series of degree n, square-free level N and arbitrary character χ; then, without using knowledge of their Fourier coefficients, we evaluate the action of the Hecke operators $T(q), T_j(q^2)$ $(1 \leq j \leq n)$ for primes $q|N$. We find the space of Siegel Eisenstein series with square-free level has a basis of simultaneous eigenforms for these operators, and we compute the eigenvalues, thereby obtaining a multiplicity-one result. We then compute the action of the Hecke operators $T(p), T_j(p^2)$ on a basis of Siegel Eisenstein series of level $N \in \mathbb{Z}_+$ provided $4 \nmid N$ and p is a prime with $p \nmid N$, and from this construct a basis of simultaneous eigenforms.

§1. Introduction

Remark that space of Eisenstein series is invariant under Hecke operators

\begin{equation*}
\Gamma_{\infty}^+ \setminus \mathbb{R}^n
\end{equation*}

Refer to notation $E_k^{(n)}(N, \chi)$

§2. Defining Siegel Eisenstein series

For $k, n, N \in \mathbb{Z}_+$ and χ a character modulo N, we want to define a degree n, weight k, level N Eisenstein series with character χ for each element of the quotient $\Gamma_{\infty} \backslash \mathbb{R}^n / \Gamma_0(N)$. Given $\gamma \rho \in \mathbb{R}^n$, the natural object to define is

\begin{equation*}
E_{\rho}(\tau) = \sum_{\gamma} \chi(\rho) 1(\gamma) | \gamma \rho |^{-k}
\end{equation*}

where $\gamma \in \Gamma_0(N)$ varies so that $\Gamma_{\infty} \gamma \rho \gamma$ varies over the (distinct) elements of $\Gamma_{\infty} \gamma \rho \Gamma_0(N)$, and

\begin{equation*}
1(\tau) \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(C \tau + D)^{-k}
\end{equation*}

1991 Mathematics Subject Classification. 11F41.

Key words and phrases. Siegel modular forms, Eisenstein series, Hecke operators.

Typeset by AMs-TEX
for \(\begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(n)(\mathbb{Z}) \). If well-defined, this series converges absolutely uniformly on compact subsets of \(\mathcal{H}(n) \) provided \(k \geq n + 2 \) (and hence is analytic).

[??? it is majorised by the level 1 Eisenstein series in the case \(k \) is even; what about when \(k \) is odd??]

Hence we assume \(k \geq n + 2 \). However, defined as above, \(E_\rho \) may not be well-defined. Thus we over-sum, producing a well-defined function \(E_\rho' \) that is 0 whenever the above sum for \(E_\rho \) is not well-defined, and is a multiple of \(E_\rho \) when \(E_\rho \) is well-defined.

Note that when \(\gamma \in \Gamma_\infty^+ \), \((1(\tau)|\gamma = 1(\tau)) \). Thus taking \(\gamma^* \in \Gamma(N) \) so that

\[
\Gamma_\infty^+ \Gamma(N) = \bigcup_i \Gamma_\infty^+ \gamma_i^* \text{ (disjoint)},
\]

and setting

\[
E^*(\tau) = \sum_j 1(\tau)|\gamma_j^*;
\]

\(E^* \) is well-defined (and converges absolutely uniformly on compact subsets, so is analytic). With

\[
\Gamma_\rho^+ = \{ \gamma \in \Gamma_0(N) : \Gamma_\infty^+ \Gamma(N) \gamma \rho = \Gamma_\infty^+ \Gamma(N) \gamma \rho \},
\]

take \(\delta_i \in \Gamma_0(N) \), \(\delta'_\ell \in \Gamma_\rho^+ \) so that

\[
\Gamma_0(N) = \bigcup_i \Gamma_\rho^+ \delta_i \text{ (disjoint)}, \quad \Gamma_\rho^+ = \bigcup_\ell \Gamma(N) \delta'_\ell \text{ (disjoint)}
\]

(note that \(\Gamma(N) \subseteq \Gamma_\rho^+ \)). Thus

\[
\Gamma_0(N) = \bigcup_i \Gamma_\rho^+ \delta_i \text{ (disjoint)}.
\]

Set \(G_\pm = \begin{pmatrix} I_{n-1} & -1 \\ 0 & 1 \end{pmatrix} \), \(\gamma_\pm = \begin{pmatrix} G_\pm \\ G_\pm \end{pmatrix} \); remembering \(\Gamma(N) \) is a normal subgroup of \(Sp(n)(\mathbb{Z}) \), we have

\[
\Gamma_\infty \gamma_\rho \Gamma_0(N) = \bigcup_{i,\ell} (\Gamma_\infty^+ \gamma_\rho \Gamma(N) \delta'_\ell \delta_i \cup \Gamma_\infty^+ \gamma_\pm \gamma_\rho \Gamma(N) \delta'_\ell \delta_i) = \bigcup_{i,\ell} (\Gamma_\infty^+ \Gamma(N) \gamma_\rho \delta'_\ell \delta_i \cup \Gamma_\infty^+ \Gamma(N) \gamma_\pm \gamma_\rho \delta'_\ell \delta_i).
\]

Now set

\[
E'_\rho = \sum_{i,\ell} \chi(\delta'_\ell \delta_i) E^*|\gamma_\rho \delta'_\ell \delta_i + \sum_{i,\ell} \chi(\gamma_\pm \delta'_\ell \delta_i) E^*|\gamma_\pm \gamma_\rho \delta'_\ell \delta_i.
\]

Since \(\Gamma_\infty^+ \Gamma(N) \gamma_\pm = \gamma_\pm \Gamma_\infty^+ \Gamma(N) \), we have

\[
E^*|\gamma_\pm = (-1)^k E^*;
\]

hence \(E'_\rho = 0 \) if \(\chi(-1) \neq (-1)^k \).
Assume now that $\chi(-1) = (-1)^k$. Then, since $\Gamma_+^+\Gamma(N)\gamma_0\delta_0 = \Gamma_+^+\Gamma(N)\gamma$, we have $E^*|\gamma \delta_0 = E^*|\gamma$, and hence

$$E'_\rho = 2 \left(\sum_\ell \overline{\chi}(\delta_\ell) \right) \sum_i \overline{\chi}(\delta_i) E^*|\gamma \delta_i.$$

Here δ_ℓ varies over a set of representatives for the group $\Gamma(N)\Gamma_\rho^+$ (and we know χ is trivial on $\Gamma(N)$), so unless χ is trivial on Γ_ρ^+, we have $E'_\rho = 0$.

Note that $\gamma \in \Gamma(N)$ if and only if $N \leq 2$. So when $N \leq 2$, we have $\Gamma_\infty \gamma_j$ varying twice over the distinct elements of $\Gamma_\infty \backslash \Gamma_\infty \Gamma(N)$, and

$$E^* = E^*|\gamma \pm = (-1)^k E^*.$$

Hence when $N \leq 2$ and k is odd, $E^* = 0$, and thus $E'_\rho = 0$. When $N > 2$ or k is even,

$$\lim_{\tau \to i \infty} E^*(\tau) = \left\{ \begin{array}{ll} 2 & \text{if } N \leq 2, \\ 1 & \text{if } N > 2, \end{array} \right.$$

and $\lim_{\tau \to i \infty} E'_\rho(\tau)|\gamma_0^{-1} = 2|\Gamma_0(N) : \Gamma_\rho^+| \lim_{\tau \to i \infty} E^*(\tau)$. (see §4 [Freitag, 1996]).

Also, with $\gamma_j = \gamma_0^{-1} \gamma_0 \gamma_j$, we have

$$\Gamma_\infty \gamma_0 \Gamma_0(N) = \bigcup_{i,j} \Gamma_\infty \gamma_i^{-1} \gamma_j \delta_i = \bigcup_{i,j} \Gamma_\infty \gamma_0 \gamma_j \delta_i.$$

(The above unions over i, j are disjoint when $N > 2$.)

Thus we have proved the following.

Proposition 2.1. Assume $\chi(1) = (-1)^k$.

1. For $\gamma_0 \in Sp_n(\mathbb{Z})$, E_ρ is well-defined if and only if χ is trivial on Γ_ρ^+. When well-defined, E_ρ is a nonzero multiple of E'_ρ, and $E'_\rho \neq 0$ when $N > 2$ or k is even.

2. Suppose $N \leq 2$ and k is odd. Then $E'_\rho = 0$, so either E_ρ is not well-defined or $E_\rho = 0$.

Next we give a description of a convenient choice of representatives corresponding to the Eisenstein series.

Proposition 2.2. For any $\gamma \in Sp_n(\mathbb{Z})$, there exists some $\gamma_0 = \begin{pmatrix} I & 0 \\ M_\rho & I \end{pmatrix} \in Sp_n(\mathbb{Z})$ so that $\gamma \in \Gamma_\infty \gamma_0 \Gamma_0(N)$. When N is square-free, take $\rho = (N_0, \ldots, N_n)$ to be a (degree n) multiplicative partition of N, meaning $N_0 \cdots N_n = N$. Take M_ρ diagonal so that $M_\rho \equiv \begin{pmatrix} I_d & 0 \\ 0 & I \end{pmatrix}$ (for each prime q dividing N_d ($0 \leq d \leq n$)); then as ρ varies, γ_0 varies over a set of representatives for $\Gamma_\infty \backslash Sp_n(\mathbb{Z})/\Gamma_0(N)$. Further, when N is square-free and $\gamma = \begin{pmatrix} * & * \\ M & N \end{pmatrix} \in Sp_n(\mathbb{Z})$, we have $\gamma \in \Gamma_\infty \gamma_0 \Gamma_0(N)$ if and only if $\text{rank}_q M = \text{rank}_q M_\rho$ for each prime $q | N$ (where $\text{rank}_q M$ denotes the rank of M modulo q).
Given $\gamma = \left(\begin{array}{cc} * & * \\ M & N \end{array} \right) \in Sp_n(\mathbb{Z})$, note that we have $\gamma \in \Gamma_\infty \gamma_0 \Gamma_0(\mathcal{N})$ if and only if $(M, I) \in GL_n(\mathbb{Z})(M, N)\Gamma_0(\mathcal{N})$. We proceed algorithmically to first construct a pair $(M', N') \in GL_n(\mathbb{Z})(M, N)\Gamma_0(\mathcal{N})$ with $N' \equiv I (\mathcal{N})$.

Fix a prime q dividing \mathcal{N} with $q^l \parallel \mathcal{N}$. By Lemma ??, we can choose $E_0, G_0 \in SL_n(\mathbb{Z})$ so that $E_0, G_0 \equiv I (\mathcal{N}/q^l)$ and $E_0 N' G_0^{-1} \equiv \left(\begin{array}{cc} N_1 & 0 \\ 0 & 0 \end{array} \right) (q^l)$ where N_1 is $d \times d$ and invertible modulo q (so $d = \text{rank}_q \mathcal{N}$). We can adjust E_0, G_0 so that $N_1 \equiv \left(\begin{array}{cc} a \\ I \end{array} \right) (q^l)$, some a. Similarly, we can choose $\left(\begin{array}{cc} u & v \\ w & x \end{array} \right) \in SL_2(\mathbb{Z})$ so that $\left(\begin{array}{cc} u & v \\ w & x \end{array} \right) \equiv I (\mathcal{N}/q^l)$, $\left(\begin{array}{cc} u & v \\ w & x \end{array} \right) \equiv \left(\begin{array}{cc} a & 0 \\ 0 & \pi \end{array} \right) (q^l)$. Then

$$\gamma_0 = \left(\begin{array}{cc} u & v \\ w & x \end{array} \right) \in \Gamma_0(\mathcal{N})$$
and $E_0 (M, N) \left(G_0 \right. \left. t G_0^{-1} \right) \gamma_0 \equiv \left(\begin{array}{cc} M_1 & M_2 \\ M_3 & M_4 \end{array} \right) \left(\begin{array}{cc} I_d & 0 \\ 0 & 0 \end{array} \right) (q^l)$ with M_1 $d \times d$.

By symmetry, $M_4 \equiv 0 (q^l)$; since $(M, N) = 1$, M_3 is invertible modulo q. Thus we can find $E_1, G_1' \in SL_{n-d}(\mathbb{Z})$ so that $E_1, G_1' \equiv I (\mathcal{N}/q^l)$,

$$M_4 = E_1' M_4 G_1' \equiv \left(\begin{array}{cc} I \\ a' \end{array} \right) (q^l).$$

Take $E_1 = \left(\begin{array}{cc} I_d \\ E_1' \end{array} \right)$, $G_1 = \left(\begin{array}{cc} I_d & G_1' \end{array} \right)$, $W = \left(\begin{array}{cc} 0_d & I_{n-d-1} \\ \pi & \pi \end{array} \right)$ where $\pi a' \equiv 1 (q^l)$; then

LYNNE: CHECK THIS

$$(C \ D) = E_1 E_0 (M, N) \left(G_0 \right. \left. t G_0^{-1} \right) \gamma_0 \left(G_1 \right. \left. t G_1^{-1} \right) \left(I \right. \left. W \right)$$

$$\equiv \left(\begin{array}{cc} M_1 & M_2 \\ M_3 & M_4 \end{array} \right) I (q^l),$$

and $(C \ D) \in GL_n(\mathbb{Z})(M, N)\Gamma_0(\mathcal{N})$ with $(C \ D) \equiv (M, N) (\mathcal{N}/q^l)$ and $D \equiv I (q^l)$.

Next, suppose p is another prime dividing \mathcal{N} with $p^r \parallel \mathcal{N}$. Applying the above process to the pair $(C \ D)$, we obtain a pair $(C', D') \in GL_n(\mathbb{Z})(M, N)\Gamma_0(\mathcal{N})$ with $(C' \ D') \equiv (M, N) (\mathcal{N}/(q^l p^r))$ and $D' \equiv I (q^l p^r)$.

Continuing, we obtain $(M' \ N') \in$
where $(N M' N')$ is a coprime symmetric pair, so there exist K', L' so that $N|L'$ and $(K' \begin{pmatrix} L' & M' \\ N' & \end{pmatrix}) \in Sp_n(\mathbb{Z})$; note that we must have $K' \equiv I (N)$ since $L' \equiv 0 (N)$ and $N' \equiv I (N)$. Since M' is necessarily symmetric modulo N, we can choose a symmetric matrix M'' so that $M'' \equiv M' (N)$; set
\[
\delta = \begin{pmatrix} \gamma^t N' & -t L' \\ -t M' & t K' \end{pmatrix} \begin{pmatrix} I & 0 \\ M'' & I \end{pmatrix}.
\]
Then $\delta \in \Gamma(N)$, and $(M'' I) = (M' N') \delta \in GL_n(\mathbb{Z})(M N)\Gamma_0(N)$.

Now suppose N is square-free and M is an integral symmetric matrix. We show that there is some $(M' N') \in GL_n(\mathbb{Z})(M I)\Gamma_0(N)$ so that $N' \equiv I (N)$ and $M' \equiv M_\rho (N)$ where M_ρ is diagonal and, for each prime q dividing N, $M_\rho \equiv \begin{pmatrix} I_d \\ 0 \end{pmatrix}$ (q) where $d = \text{rank}_q M$. Then the argument of the preceding paragraph gives us $(M_\rho I) \in GL_n(\mathbb{Z})(M I)\Gamma_0(N)$. So it suffices now to show that for each prime $q|N$, there are $E \in SL_n(\mathbb{Z})$, $\gamma \in \Gamma_0(N)$ so that $E, \gamma \equiv I (N/q)$, and $E(M I) \gamma \equiv (C I) (q)$ where $C = \begin{pmatrix} I_d \\ 0 \end{pmatrix}$ with $d = \text{rank}_q M$.

If $\text{rank}_q M = 0$ then there is nothing to do. Suppose not; first consider the case that q is odd. By §92 of [O'M], we know there exists $E' \in SL_n(\mathbb{Z})_q$ so that $E'M^t E'$ is diagonal with $E'M^t E' \equiv \begin{pmatrix} M_1 \\ 0 \end{pmatrix}$ (q), $M_1 = \begin{pmatrix} a & \\ 0 & 1 \end{pmatrix}$ with $q \nmid a$. Thus we can find $E \in SL_n(\mathbb{Z})$ so that $E \equiv I (N/q)$, $E \equiv E' (q)$. Then
\[
E(M I) \begin{pmatrix} \gamma^t E \\ E^{-1} \end{pmatrix} = (M' I)
\]
where $M' \equiv (E'M^t E') (q)$. Take $\begin{pmatrix} u \\ w \\ v \\ x \end{pmatrix} \in SL_2(\mathbb{Z})$ so that $\begin{pmatrix} u \\ w \\ v \\ x \end{pmatrix} \equiv I (N/q), \begin{pmatrix} u \\ w \\ v \\ x \end{pmatrix} \equiv \begin{pmatrix} \bar{\pi} \\ 0 \\ \bar{\pi} - 1 \\ a \end{pmatrix} (q)$. Set
\[
\gamma = \begin{pmatrix} u & v \\ w & I_{n-1} \\ v & 0 \\ x & 0 \\ 0 & I_{n-1} \end{pmatrix}.
\]
Then $\gamma \equiv I (N/q)$ and $(M' I) \gamma \equiv (C I) (q)$ where $C = \begin{pmatrix} I_d \\ 0 \end{pmatrix}$.

Now suppose $q = 2$. By Lemma ?? there is some $E \in SL_n(\mathbb{Z})$ so that $E \equiv I (N/q)$ and $E M^t E \equiv \begin{pmatrix} M_1 \\ 0 \end{pmatrix}$ (q), where either $M_1 = I_d$ or $M_1 = A_1, A_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \perp \cdots \perp \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ (d×d where $d = \text{rank}_q M$). In the first case, we are done.
Otherwise, take $A \in SL_n(\mathbb{Z})$ so that $A \equiv I \pmod{N/q}$ and $A \equiv \begin{pmatrix} A_1 & \ldots & A_d \\ I_{n-d} & \end{pmatrix} \pmod{q}$; set
$\gamma = \begin{pmatrix} tE & E(A-I) \\ E^{-1}A & \end{pmatrix}$. Thus $\gamma \in \Gamma_0(N)$, $\gamma \equiv I \pmod{N/q}$, and $E(M)\gamma \equiv (C I) \pmod{q}$ where $C = \begin{pmatrix} I_d \\ 0 \end{pmatrix}$. \hfill \Box

Proposition 2.3. Suppose N is square-free, χ is a character modulo N so that $\chi(-1) = (1)^k$, and $\rho = C_0 \cdots C_n$ is a multiplicative partition of N (as in Proposition 2.2; so $N_0 \cdots N_n = N$). Then E_ρ is well-defined if and only if $\chi^2 = 1$ for all primes $q|N/(N_0N_n)$.

Proof. Suppose q is a prime dividing N_d where $0 < d < n$. Fix $\alpha \in \mathbb{F}^\times_q$. By Lemma ??, there exist $G = \begin{pmatrix} u & v \\ w & x \end{pmatrix}, G' = \begin{pmatrix} u' & v' \\ w' & x' \end{pmatrix} \in SL_2(\mathbb{Z})$ so that $G, G' \equiv I \pmod{N/q}$,
$G \equiv \begin{pmatrix} \pi & \pi - \alpha \\ 0 & \alpha \end{pmatrix} \pmod{q}, G' \equiv \begin{pmatrix} \pi & 0 \\ 0 & \alpha \end{pmatrix} \pmod{q}$.

Let A, B, C, D, E, W be the $n \times n$ matrices

$A = \begin{pmatrix} u & v \\ w & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & v' \\ w' & 0 \end{pmatrix}, \quad C = \begin{pmatrix} w & 0 \\ 0 & x' \end{pmatrix}$,

$D = \begin{pmatrix} x & 0 \\ 0 & x' \end{pmatrix}, \quad E = \begin{pmatrix} u' & v' \\ w' & x' \end{pmatrix}, \quad W = \begin{pmatrix} x^2 - 1 & 0 \\ 0 & 0 \end{pmatrix}$.

Then $\gamma' = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_0(N), E \in SL_n(\mathbb{Z})$, and

$\delta = \begin{pmatrix} E & tE^{-1} \\ I & 0 \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} \in \Gamma_0^+$.

Further, $\delta \gamma \gamma' \equiv \gamma \pmod{N}$. Set $\gamma'' = (\delta \gamma \gamma')^{-1} \gamma$. So $\gamma'' \in \Gamma(N), \quad \gamma'' \equiv \gamma \hfill \Gamma(N)$, with $\chi(\gamma'' \gamma) = \chi^2(\alpha)$. Thus the condition that $\chi^2 = 1$ for all primes $q|N/(N_0N_n)$ is necessary for E_ρ to be well-defined.

Now suppose $\chi^2 = 1$ for all primes $q|N/(N_0N_n)$, and suppose $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_0^+$. Thus there exist $\delta = \begin{pmatrix} tE & W \\ E & I \end{pmatrix} \in \Gamma_0^+, \gamma' \in \Gamma(N)$ so that $\delta \gamma \gamma' \gamma = \gamma$. Fix a prime $q|N_d, 0 \leq d \leq n$.

When $d = 0$, we have $ED \equiv I \pmod{q}$, so $\det D \equiv \det E \equiv 1 \pmod{q}$ and $\chi_q(\det D) = 1$. When $d = n$, we have $EA \equiv I \equiv A^t D \pmod{q}$, so $\det D \equiv \det E \equiv 1 \pmod{q}$ and $\chi_q(\det D) = 1$.

Now suppose $0 < d < n$. Write

$$A = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}, \quad D = \begin{pmatrix} D_1 & D_2 \\ D_3 & D_4 \end{pmatrix}, \quad E = \begin{pmatrix} E_1 & E_2 \\ E_3 & E_4 \end{pmatrix}$$

where A_1, D_1, E_1 are $d \times d$. Then we have $E_3(A_1 A_2) \equiv 0 \ (q)$; since the rows of $(A_1 A_2)$ are linearly independent modulo q, we must have $E_3 \equiv 0 \ (q)$. Also,

$$E_1(A_1 A_2) \equiv (I_d \ 0) \ (q), \quad E_4(D_3 D_4) \equiv (0 \ I_n-d) \ (q),$$

so $A_2, D_3 \equiv 0 \ (q), \ A_1 \equiv \overline{E}_1 \ (q), \ D_4 \equiv \overline{E}_4 \ (q)$. Since $A^t D \equiv I \ (q)$, we must have $D_1 \equiv t E_1 \ (q)$. Thus we have

$$\det D \equiv \det E_1 \cdot \det \overline{E}_4 \equiv (\det E_1)^2 \ (q)$$

and

$$\chi_q(\det D) = \chi_2^2(\det E_1) = 1.$$

Consequently $\chi(\gamma) = \chi(\det D) = 1$, and hence the condition that $\chi_2 = 1$ for all primes $q|N/(N_0 N_n)$ is sufficient for E_ρ to be well-defined. □

We now give a robust definition of E_ρ.

Definition. Having fixed $n, k, N \in \mathbb{Z}_+$ with $k \geq n + 2$, χ a character modulo N, and $\gamma_\rho \in \text{Sp}_n(\mathbb{Z})$, we define

$$E_\rho = \begin{cases} \frac{1}{2^{|\Gamma_0(N) : \Gamma_\infty \Gamma_\rho^+\Gamma_0(N)|}} E'_{\rho} & \text{if } N > 2, \\ \frac{1}{4^{|\Gamma_0(N) : \Gamma_\infty \Gamma_\rho^+|}} E'_{\rho} & \text{if } N \leq 2. \end{cases}$$

Remark. Suppose that $G_\pm M_\rho = M_\rho G_\pm$. Then for $G \in GL_n(\mathbb{Z})$, $\gamma \in \Gamma_0(N)$, we have $G(M_\rho I) \gamma = G G_\pm (M_\rho I) \gamma_\pm \gamma$. So with $\gamma_\rho = \begin{pmatrix} I & 0 \\ M_\rho & I \end{pmatrix}$, we have $\Gamma_\infty \Gamma(N) \gamma_\rho \gamma = \Gamma_\infty \Gamma(N) \gamma_\rho \gamma_\pm \gamma$ if and only if $N \leq 2$ (since $\gamma_\pm \in \Gamma(N)$ if and only if $N \leq 2$). Thus,

$$E_\rho(\tau) = m_\rho \sum_\gamma \overline{\chi}(\gamma) 1(\tau)|\gamma_\rho \gamma$$

where γ varies so that $\Gamma_\infty^+ \gamma_\rho \Gamma_0(N) = \cup_\gamma \Gamma_\infty^+ \gamma_\rho \gamma$ (disjoint), and

$$m_\rho = \begin{cases} 1 & \text{if } N \leq 2, \\ \frac{1}{2} & \text{otherwise}. \end{cases}$$

Lynne: This next defined earlier?

We let $E_\rho^{(n)}(N, \chi)$ denote the space spanned by these forms.
§3. Defining Hecke operators

For each prime p, we define Hecke operators $T(p)$, $T_j(p^2)$ ($1 \leq j \leq n$) acting on Siegel modular forms; then we describe explicit sets of matrices that give the action of these operators.

Fix a prime p; set $\Gamma = \Gamma_0(N)$ and take $f \in M_k^{(n)}(N, \chi)$. We define

$$f | T(p) = p^{(k-n-1)/2} \sum_\gamma \chi(\gamma) f|_{\delta^{-1} \gamma}$$

where $\delta = \left(\begin{array}{cc} pI_n \\ I_n \end{array} \right)$, γ varies over $(\delta \Gamma \delta^{-1} \cap \Gamma) \Gamma$, and for $\gamma' = \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) \in Sp_n(\mathbb{Z})$,

$$f(\tau)|\gamma' = (\det \gamma')^{k/2} \det(C\tau + D)^{-k} f((A\tau + B)(C\tau + D)^{-1}).$$

We define

$$f | T_j(p^2) = p^{j(k-n-1)} \sum_\gamma \chi(\gamma) f|_{\delta_j^{-1} \gamma}$$

where $\delta_j = \left(\begin{array}{cc} X_j & 0 \\ 0 & X_j^{-1} \end{array} \right)$, $X_j = \left(\begin{array}{cc} pI_j \\ I_{n-j} \end{array} \right)$, and γ varies over $(\delta_j \Gamma \delta_j^{-1} \cap \Gamma) \Gamma$.

Proposition 3.1. Let p be a prime, $f \in M_k^{(n)}(N, \chi)$. For $0 \leq r, n_0 + n_2 \leq n$, let

$$D_r = \left(\begin{array}{cc} pI_r \\ I \end{array} \right), \quad D_{n_0,n_2} = \left(\begin{array}{cc} pI_{n_0} & I \\ \frac{1}{p}I_{n_2} \end{array} \right) (n \times n),$$

and let

$$K_r = D_r SL_n(\mathbb{Z})D_r^{-1} \cap SL_n(\mathbb{Z}),$$

$$K_{n_0,n_2} = D_{n_0,n_2} SL_n(\mathbb{Z})D_{n_0,n_2}^{-1} \cap SL_n(\mathbb{Z}).$$

Then

$$f | T(p) = p^{(k-n-1)/2} \sum_{0 \leq r \leq n} \chi(p^{n-r}) \sum_{G,Y} f| \left(D_r^{-1} \frac{1}{p}D_r \right) \left(G^{-1} \quad Y^tG \right)$$

where G varies over $SL_n(\mathbb{Z})/K_r$ and Y varies over

$$\mathcal{Y}_r = \left\{ \left(\begin{array}{cc} Y_0 \\ 0 \end{array} \right) \in \mathbb{Z}_{sym}^{n \times n} : Y_0 r \times r, \text{ varying modulo } p \right\}.$$

Also,

$$f | T_j(p^2) = p^{j(k-n-1)} \sum_{n_0 + n_2 \leq j} \chi(p^{j-n_0+n_2}) \sum_{G,Y} f| \left(D_{n_0,n_2}^{-1} \right) \left(G^{-1} \quad Y^tG \right)$$
where \(G \) varies over \(SL_n(\mathbb{Z})/\mathcal{K}_{n_0,n_2} \) and \(Y \) varies over \(\mathcal{Y}_{n_0,n_2} \), the set of all integral, symmetric \(n \times n \) matrices

\[
\begin{pmatrix}
Y_0 & Y_2 & Y_3 & 0 \\
Y_2 & Y_1/p & 0 & 0 \\
Y_3 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

with \(Y_0 n_0 \times n_0 \), varying modulo \(p^2 \), \(Y_1 (j-n_0-n_2) \times (j-n_0-n_2) \), varying modulo \(p \) provided \(p \nmid \det Y_1 \), \(Y_2 n_0 \times (j-n_0-n_2) \), varying modulo \(p \) and \(Y_3 n_0 \times (n-j) \), varying modulo \(p \).

Proof. Fix \(\Lambda = \mathbb{Z}x_1 \oplus \cdots \oplus \mathbb{Z}x_n \) (a reference lattice).

By Lemma ??, as \(G \) varies over \(SL_n(\mathbb{Z})/\mathcal{K}_r \), \(\Omega = AGD_r \) varies over all lattices \(\Omega \), \(p\Lambda \subseteq \Omega \subseteq \Lambda \) with \([\Lambda : \Omega] = p^r \). Thus by Proposition 3.1 and (the proof of) Theorem 6.1 in [HW], claim (1) of the proposition follows.

For \(\Omega \) another lattice on \(\mathbb{Q} \), let \(\text{mult}_{\{\Lambda, \Omega\}}(a) \) be the multiplicity of the value of \(a \) among the invariant factors \(\{\Lambda : \Omega\} \). By Lemma ??, as \(G \) varies over \(SL_n(\mathbb{Z})/\mathcal{K}_{n_0,n_2} \) \(\Omega = AGD_{n_0,n_2} \) varies over all lattices \(\Omega \), \(p\Lambda \subseteq \Omega \subseteq \frac{1}{p^2}\Lambda \), with \(\text{mult}_{\{\Lambda, \Omega\}}(1/p) = n_2 \), \(\text{mult}_{\{\Lambda, \Omega\}}(p) = n_0 \). Thus by Proposition 3.1 and (the proofs of) Theorems 4.1 and 6.1 in [HW], claim (2) of the proposition follows. □

Remark. For \(N' \in \mathbb{Z}_+ \), so that \(p \nmid N' \), we can choose \(G, Y \) in the above proposition so that \(G \equiv I \mod{(N')} \) and \(Y \equiv 0 \mod{(N')} \). Also, if \(p \nmid N \), then

\[
f[M](p) = p^{n(k-n-1)/2} \sum_Y \left(\frac{Y}{p} \right) \left(\frac{I}{p} \right)^{n/2} Y
\]

where \(Y \) varies over \(\mathcal{Y}_n \), and

\[
f[M_{\gamma^t}](p^2) = p^{j(k-n-1)} \sum_{G,Y} \left(\frac{G^{-1}}{p} \right) \left(\frac{Y^tG}{p} \right)
\]

where \(G \) varies over \(SL_n(\mathbb{Z})/\mathcal{K}_{j,0} \) and \(Y \) varies over \(\mathcal{Y}_{j,0} \).

LYNNE: CHECK THESE ABOVE SUMS

§4. Hecke operators on Siegel Eisenstein series of square-free level

Throughout this section, we assume \(N \) is square-free, \(\chi \) is a character modulo \(N \) so that \(\chi(-1) = (-1)^k \); further, we assume either \(N > 2 \) or \(k \) is even. Take a multiplicative partition \(\rho = (N_0, \ldots, N_n) \) of \(N \) (so \(N_0 \cdots N_n = N \)), and assume that \(\mathbb{Z}_p \neq 0 \) (so by Proposition 2.3, \(\chi_{q^r} \equiv 1 \) for all primes \(q \nmid (N_0N_n) \)). Take diagonal \(M_\rho \) as in Proposition 2.2, \(\gamma_\rho = \begin{pmatrix} I & 0 \\ M_\rho & I \end{pmatrix} \).

With \(\beta = \begin{pmatrix} * & * \\ M & N \end{pmatrix} \in SL_n(\mathbb{Z}) \) and \(\gamma \in \Gamma_0(N) \) so that \(\Gamma_\infty^+ \beta = \Gamma_\infty^+ \gamma_\rho \gamma \), we can determine how to compute \(\chi(\gamma) \) from \((M, N) \).
Suppose \(\left(\begin{array}{ccc} * & * \\ M & N \end{array} \right) \in \Gamma_\infty \gamma \Gamma_0(N) \); so \((M \ N) = E'(M, I) \gamma \) for some \(E' \in SL_n(\mathbb{Z}) \) and \(\gamma = \left(\begin{array}{cc} A & B \\ \text{C} & D \end{array} \right) \in \Gamma_0(N) \). Fix \(q \) and take \(d = \text{rank}_q M \). Thus \(\text{rank}_q M = d \), so we can find \(E, G \in SL_n(\mathbb{Z}) \) so that \(EGM \equiv \left(\begin{array}{cc} M_1 & 0 \\ 0 & 0 \end{array} \right) \ Qt \). Thus \(\text{rank}_q M = d \), so we can find \(E, G \in SL_n(\mathbb{Z}) \) so that \(EGM \equiv \left(\begin{array}{cc} M_1 & 0 \\ 0 & 0 \end{array} \right) \ Qt \). Hence

\[
EMG \equiv \left(\begin{array}{cc} M_1 & 0 \\ 0 & 0 \end{array} \right) \equiv EE' \left(\begin{array}{cc} I_d & 0 \\ 0 & 0 \end{array} \right) AG \ (q),
\]

\[
\left(\begin{array}{cc} N_1 & N_2 \\ 0 & N_4 \end{array} \right) \equiv EE' \left(\begin{array}{cc} I_d & 0 \\ 0 & 0 \end{array} \right) B + D \ (q). \]

Given the shape of \(EMG \), we must have \(EE' \equiv \left(\begin{array}{cc} E_1 & E_2 \\ E_3 & E_4 \end{array} \right) \ Qt \) where \(E_1 \) is \(d \times d \) and \(E_1, E_4 \) are invertible modulo \(q \), and then \(AG \equiv \left(\begin{array}{cc} A_1 & 0 \\ A_3 & A_4 \end{array} \right) \ Qt \) where \(A_1 \) is \(d \times d \); since \(N|C \), \(A_1, A_4 \) are invertible modulo \(q \). We have \(A\ D \equiv I \ Qt \), so

\[
D \ (q). \]

Further, we must have

\[
A_1 \cdot \text{det} \ M_1 \cdot \text{det} \ N_4 \equiv \text{det} \ E_1 \cdot \text{det} \ E_4 \cdot \text{det} \ A_1 \cdot \text{det} \ D_4 \equiv (\text{det} \ E_1)^2 \cdot \text{det} D \ (q). \]

Note that when \(d = 0 D \equiv N \ Qt \), and when \(d = n, \ A \equiv A \ Qt \). When \(0 < d < n \), we have \(\chi_q = 1 \) so

\[
\chi_q(\text{det} \ M_1 \cdot \text{det} \ N_4) = \chi_q(\text{det} D). \]

Thus we can define \(\chi_q(M, N) = \chi_q(\text{det} \ M_1 \cdot \text{det} \ N_4) \), and

\[
\chi(M, N) = \prod_{q \mid N} \chi_q(M, N). \]

Then we have

\[
E_\rho(\tau) = \frac{1}{2} \sum_{(M \ N)} \chi(M, N) \det(M \tau + N)^{-k} \]

where \((M \ N) \) varies over coprime symmetric pairs so that

\[
SL_n(\mathbb{Z})(M, I) \Gamma_0(N) = \cup (M \ N) SL_n(\mathbb{Z})(M \ N) \ (\text{disjoint}). \]

Now we prove the following.
Theorem 4.1. Fix a prime $q|\mathcal{N}$, and fix a multiplicative partition $\sigma = (N_0', \ldots, N_n')$ of N/q. For $0 \leq d \leq n$, let $E_{\sigma,d}$ denote $E_{\rho'}$ where $\rho' = (N_0, \ldots, N_n)$.

Then

$$E_{\sigma,d}|T(q) = q^{kd - (d+1)/2} \chi_{N/q} \left(\begin{pmatrix} I_d & \frac{1}{q} I_{n-d} \\ \frac{1}{q} I_{n-d} & I_{n-d} \end{pmatrix} \right) M_{\sigma,d} \left(\begin{pmatrix} qI_d & I_{n-d} \\ I_{n-d} & I_{n-d} \end{pmatrix} \right)$$

$$\cdot \sum_{t=0}^{n-d} q^{-dt - (t-1)/2} \beta(d + t, t) \text{sym}_t(t) \prod_{\sigma_{d+t}}^{}$$

where

$$\text{sym}_t(t) = \sum_U \chi_q(detU),$$

U varying over \mathbb{F}_{st}.

Remark. In Lemma ?? we evaluate $\text{sym}_t(t)$.

?? WHAT IF $n - \ell = 0$ and $\chi_1 \neq 0$? Have $E_0 = 0$ for $0 < t < n$. How do we modify this argument to get $E_0|T(q) = E_0 + * E_n$?

Proof.

LYNNE: ?? $n - \ell \mapsto d$??

Write E_d for $E_{\sigma,d}$. We know $E_d(\tau)$ is a sum over representatives for $SL_n(\mathbb{Z})$-equivalence classes of coprime pairs (M, N) with $\text{rank}_q M = d$; we can assume q divides the lower $n - d$ rows of M. By Proposition 3.1,

$$E_d(\tau)|T(q) = q^{-n(n+1)/2} \sum_{M,N,Y} \det(M\tau + MY/q + N)^{-k}$$

$$= q^{kn - n(n+1)/2} \sum_{M,N,Y} \det(M\tau + MY + qN)^{-k}$$

where Y varies over \mathcal{Y}_n. We have

$$\det(M\tau + MY + qN)^{-k} = q^{-(n-d)} \det(M'\tau + N')^{-k}$$

where

$$(M', N') = \left(\begin{pmatrix} I_d & \frac{1}{q} I_{n-d} \\ \frac{1}{q} I_{n-d} & I_{n-d} \end{pmatrix} (M \text{ } MY + qN).$$

We know the upper d rows of M are linearly independent modulo q, as are the lower $n - d$ rows of N. Thus $(M', N') = 1$, and $\text{rank}_q M' \geq d$. Also note that

$$\det(M\tau + MY + qN)^{-k} = q^{-(n-d)k} \det(M'\tau + N')^{-k}.$$
Recall that we can assume $Y \equiv 0 \ (N/q)$. Also, we know E_d is supported on the $\Gamma_0(N)$-orbit of $GL_n(\mathbb{Z})(M, I)$. Take $(M, N) = (M, I) \gamma$ where $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_0(N)$. Take a prime $q' \mid N$ and let $d' = \text{rank}_{q'} M$. Choose $E \in SL_n(\mathbb{Z})$ so that $AE \equiv \begin{pmatrix} A_1 & 0 \\ 0 & \ast \end{pmatrix} (q')$ where A_1 is $d' \times d'$ (possible since we necessarily have rank$_{q'} A = n$ since $q' \mid N$). Then since $A^t D \equiv I (q')$, we have $D^t E - 1 \equiv \begin{pmatrix} D_1 & D_2 \\ 0 & D_4 \end{pmatrix} (q')$ with $D_1 d' \times d'$.

Thus $(M, N) \begin{pmatrix} E & t \end{pmatrix}^{-1} \equiv \begin{pmatrix} A_1 & 0 & \ast & \ast \\ 0 & 0 & 0 & D_4 \end{pmatrix} (q')$, and

$(M', N') \begin{pmatrix} E & t \end{pmatrix}^{-1} \equiv \begin{pmatrix} A_1' & 0 & \ast & \ast \\ 0 & 0 & 0 & D_4' \end{pmatrix} (q')$

where, modulo q',

$A_1' \equiv \begin{cases} A_1 & \text{if } d' \leq d, \\ \left(\frac{q}{d'} \right) A_1 & \text{if } d' \geq d; \end{cases}$

$D_4' \equiv \begin{cases} \left(\frac{q}{d'} \right) I_{n-d} & \text{if } d' \leq d, \\ D_4 & \text{if } d' \geq d. \end{cases}$

Therefore

$\chi_{q'}(M', N') = \chi_{q'}(M'E, N't^{-1}E^{-1}) = \chi_{q'}(\det A_1', \det D_4')$

$= \chi_{q'}(d' - d') \cdot \chi_{q'}(\det A_1 \cdot \det D_4),$

$\chi_{q'}(\det A_1 \cdot \det D_4) = \chi_{q'}(M, N),$

$\chi_{q'}(q^{d' - d'}) = \chi_{q'} \left(\begin{pmatrix} I_d & \frac{1}{q} I_{n-d} \\ \frac{1}{q} I_{n-d} & I_{n-d} \end{pmatrix} M, \begin{pmatrix} qI & 0 \\ 0 & I_{n-d} \end{pmatrix} N \right).$

Hence

$\chi_{q'}(M', N') = \chi_{q'}(M'E, N't^{-1}E^{-1})$

$= \chi_{q'}(\det A_1' \cdot \det D_4')$

$= \chi_{q'} \left(\begin{pmatrix} I & \frac{1}{q} I_{n-d} \\ \frac{1}{q} I_{n-d} & I_{n-d} \end{pmatrix} M, \begin{pmatrix} qI & 0 \\ 0 & I_{n-d} \end{pmatrix} \right) \chi_{q'}(M, N).$

Therefore $\chi_{N'/q}(M, N) = \chi_{N'/q} \left(\begin{pmatrix} I & \frac{1}{q} I_{n-d} \\ \frac{1}{q} I_{n-d} & I_{n-d} \end{pmatrix} M, \begin{pmatrix} qI & 0 \\ 0 & I_{n-d} \end{pmatrix} \right) \chi_{N'/q}(M', N').$
Reversing, take \((M', N')\) a coprime symmetric pair with \(\text{rank}_q M' = d + t\); assume \(E_{\sigma, d + t} \neq 0\). We need to count the equivalence classes \(SL_n(\mathbb{Z})(M, N)\) so that

\[
\begin{pmatrix} \text{Id} & qI_{n-d} \\ \frac{1}{q}I_{n-d} \end{pmatrix} \begin{pmatrix} M & Y \\ qN & q \end{pmatrix} \in SL_n(\mathbb{Z})(M', N').
\]

For any \(E \in SL_n(\mathbb{Z})\), we have \(\begin{pmatrix} \text{Id} & qI_{n-d} \\ qI_{n-d} \end{pmatrix} E \begin{pmatrix} \frac{1}{q}I_{n-d} \\ \text{Id} \end{pmatrix} \in SL_n(\mathbb{Z})\) if and only if \(E \in K_d\). Thus we need to count the number of \(E \in K_d \setminus SL_n(\mathbb{Z})\) and \(Y \in \mathbb{Z}^{n,n}_{\text{sym}}\) (varying modulo \(q\)) so that

\[
(M, N) = \begin{pmatrix} \text{Id} & qI_{n-d} \\ qI_{n-d} \end{pmatrix} E(M' (N' - M'Y)/q)
\]

is a coprime pair. We can assume the top \(d + t\) rows of \(M'\) are linearly independent modulo \(q\), and that \(q\) divides the lower \(n - d - t\) rows of \(M'\). To have \(\text{rank}_q M = d\), we need to choose \(E\) so that the top \(d\) rows of \(EM'\) are linearly independent modulo \(q\); using Lemma ?? there are

\[q^{d(n-d-t)} \beta(d + t, d) = q^{d(n-d-t)} \beta(d + t, t)\]

choices for \(E\). We need to choose \(Y\) so that \(N\) is integral and \((M, N) = 1\); equivalently, for any \(G \in SL_n(\mathbb{Z})\), we need \(N'G^{-1}\) integral and \((MG, N'G^{-1}) = 1\). Using left multiplication by \(K_d\), we can adjust the choice of \(E\) so that the lower \(n - d - t\) rows of \(EM'\) are divisible by \(q\), and then we can choose \(G \in SL_n(\mathbb{Z})\) so that

\[EM'G \equiv \begin{pmatrix} M_1 & 0 & 0 \\ 0 & M_5 & 0 \\ 0 & 0 & 0 \end{pmatrix} (q)\]

where \(M_1\) is \(d \times d\), \(M_5\) is \(t \times t\), and \(M_1, M_5\) are invertible modulo \(q\). Write

\[EN'^t G^{-1} = \begin{pmatrix} N_1 & N_2 & N_3 \\ N_4 & N_5 & N_6 \\ N_7 & N_8 & N_9 \end{pmatrix}, G^{-1} Y' G^{-1} = \begin{pmatrix} Y_1 & Y_2 & Y_3 \\ Y_4 & Y_5 & Y_6 \\ Y_7 & Y_8 & Y_9 \end{pmatrix}\]

where \(N_1, Y_1\) are \(d \times d\) and \(N_5, Y_4\) are \(t \times t\). By symmetry, \(N_7, N_8 \equiv 0 (q)\), and then since \((M', N') = 1\), we must have \(\text{rank}_q N_9 = n - d - t\). Also, as \(Y\) varies over \(F_{\text{sym}}^{n,n}\), so does \(G^{-1} Y' G^{-1}\). To have \(N\) integral, we need \((Y_1 Y_2 Y_3) \equiv M_1 (N_1 N_2 N_3) (q)\). Then by symmetry, we find \(N_4 \equiv M_5 Y_2 (q)\). So to have \((M, N) = 1\), we need \(\text{rank}_q (N_5 - M_5 Y_4) = t\), or equivalently,

\[\text{rank}_q (N_5 - M_5 Y_4)^t M_5 = t.\]

As \(Y_4\) varies over \(F_{\text{sym}}^{t,t}\), so does \(N_5 - M_5 Y_4^t M_5\). We have

\[\chi_q(M, N) = \chi_q(\det M_1 \cdot \det (N_5 - Y_4 M_5) \cdot \det N_9) = \chi_q(\det M_1 \cdot \det M_5 \cdot \det N_9) \cdot \chi_q(\det (N_5 - M_5 Y_4)^t M_5) = \chi_q(M', N') \cdot \chi_q(\det (N_5 - M_5 Y_4)^t M_5).\]
We have no constraints on Y_5 and Y_6, so as we vary Y subject to the above conditions, we get

\[\sum_Y \chi_q(M,N) = \chi_q(M',N') \cdot q^{(n-d-t)(n-d+t+1)/2} \sum_{U \in \mathcal{F}_{\text{sym}}} \chi_q(\det U) \]

\[= \chi_q(M',N') q^{(n-d-t)(n-d+t+1)/2} \text{sym}_q^3(t), \]

as claimed. □

This theorem allows us to diagonalise the space of Eisenstein series. To aid in our description of this, we define a partial ordering on multiplicative partitions of N, as follows.

Definition. For ρ, β multiplicative partitions of N and $\mathcal{Q}|N$, we write $\beta = \rho(\mathcal{Q})$ if, for every prime $q|\mathcal{Q}$, we have $\text{rank}_q M_{\beta} = \text{rank}_q M_{\rho}$. Similarly, we write $\beta > \rho(\mathcal{Q})$ if, for every prime $q|\mathcal{Q}$, we have $\text{rank}_q M_{\beta} > \text{rank}_q M_{\rho}$.

Corollary 4.2. Let q be a prime dividing N. For ρ a partition of N so that $E_\rho \neq 0$, there are $a_{\rho,\alpha}(q) \in \mathbb{C}$ so that $a_{\rho,\rho}(q) = 1$ and

\[\sum_{\alpha \geq \rho(\mathcal{Q})} a_{\rho,\alpha}(q) E_\alpha \]

is an eigenform for $T(q)$ with eigenvalue

\[\lambda_\rho(q) = q^{kd-d(d+1)/2} \chi_{N/q} \left(\begin{pmatrix} I_d \\ \frac{1}{q} I \end{pmatrix} M_\rho, \begin{pmatrix} qI_d \\ I \end{pmatrix} \right) \]

where $d = \text{rank}_q M_\rho$. Further, suppose $\alpha = \rho(N/q)$, $\alpha > \rho(q)$, with $d = \text{rank}_q M_\rho$, $d + t = \text{rank}_q M_\alpha$; then we have $a_{\rho,\alpha}(q) \neq 0$ if and only if either (1) $\chi_q = 1$, or (2) $\chi_q^2 = 1$ and t is even.

Proof. By Lemma ?? sym$_q^3(t) = 0$ if and only if (1) $\chi_q^2 \neq 1$, or (2) $\chi_q \neq 1$ and t is odd. Thus by Theorem 4.1,

\[\text{span}\{ E_\alpha : \alpha = \rho(N/q), \alpha \geq \rho(q), \text{ so that either (1) } \chi_q = 1, \text{ or (2) } \chi_q^2 = 1 \text{ and rank}_q M_\alpha - \text{rank}_q M_\rho \text{ is even } \} \]

is invariant under $T(q)$, and the matrix for $T(q)$ on this basis is upper triangular with nonzero upper triangular entries. Then the standard process of diagonalising an upper triangular matrix yields the result. □

We now prove a multiplicity-one result for the Eisenstein series of square-free level.
Corollary 4.3. Suppose $E_{\rho} \neq 0$. For $\alpha \geq \rho \ (Q)$ and prime $q\mid Q$, set $a_{\rho, \alpha}(q) = a_{\rho, \sigma}(q)$ where $\sigma = \rho \ (N/q)$, $\sigma = \alpha \ (q)$, and set

$$a_{\rho, \alpha}(Q) = \prod_{q\mid Q} a_{\rho, \alpha}(q).$$

Then with

$$\tilde{E}_{\rho} = \sum_{\alpha \geq \rho \ (N)} a_{\rho, \alpha}(N) E_{\alpha},$$

for every prime $q\mid N$ we have

$$\tilde{E}_{\rho} T(q) = \lambda_{\rho}(q) \tilde{E}_{\rho}$$

(where $\lambda_{\rho}(q)$ is defined in Corollary 4.2).

Proof. Fix a prime $q\mid N$. For $\alpha \geq \rho \ (N)$, take $\beta = \alpha \ (N/q)$, $\beta = \rho \ (q)$. Then $a_{\rho, \alpha}(N) = a_{\rho, \beta}(N/q) a_{\rho, \alpha}(q)$. Hence

$$\tilde{E}_{\rho} = \sum_{\beta \geq \rho \ (N/q)} a_{\rho, \beta}(N/q) \sum_{\alpha \geq \rho \ (N/q)} a_{\rho, \alpha}(q) E_{\alpha}.$$

We argue that when $a_{\rho, \beta}(N/q) \neq 0$, we have $a_{\rho, \alpha}(q) = a_{\beta, \alpha}(q)$ and $\lambda_{\rho}(q) = \lambda_{\beta}(q)$.

Fix β so that $\beta \geq \rho \ (N/q)$, $\beta = \rho \ (q)$, and suppose $a_{\rho, \beta}(N/q) \neq 0$. Take $Q|N/q$ so that $\beta = \rho \ (N/Q)$, $\beta > \rho \ (Q)$. Thus $a_{\rho, \beta}(N/q) = a_{\rho, \beta}(Q)$. Since $a_{\rho, \beta}(Q) \neq 0$, for each prime $q'|Q$ we have either (1) $\chi_{q'} = 1$, or (2) $\chi_{q'}^2 = 1$ and rank$_{q'} M_{\beta} = \text{rank}_{q'} M_{\rho}$ is even.

Suppose q' is a prime dividing Q so that $\chi_{q'} \neq 1$. Set $r = \text{rank}_{q'} M_{\rho}$, $r + t = \text{rank}_{q'} M_{\beta}$ (so t is even). Then for $0 \leq d \leq n$,

$$\chi_{q'} \left(\left(\begin{array}{cc} I_d & \frac{1}{q} I \\ \frac{1}{q} I & I \end{array} \right) M_{\rho}, \left(\begin{array}{c} q I_d \\ I \end{array} \right) \right) = \chi_{q'} \left(\left(\begin{array}{cc} I_d & \frac{1}{q} I \\ \frac{1}{q} I & I \end{array} \right) \right) \left(\begin{array}{c} I_r \\ 0 \end{array} \right), \left(\begin{array}{c} q I_d \\ I \end{array} \right) \right)$$

$$= \begin{cases} \chi_{q'}(q^{r-d}) & \text{if } d \leq r, \\
\chi_{q'}(q^{d-r}) & \text{if } d \geq r \\
\chi_{q'}(q^{d-r}) & \text{if } d = r \end{cases}$$

(since $\chi_{q'}^2$). Similarly,

$$\chi_{q'} \left(\left(\begin{array}{cc} I_d & \frac{1}{q} I \\ \frac{1}{q} I & I \end{array} \right) M_{\beta}, \left(\begin{array}{c} q I_d \\ I \end{array} \right) \right) = \chi_{q'}(q^{d-r-t})$$

and $\chi_{q'}(q^{d-r-t}) = \chi_{q'}(q^{d-r})$ since t is even and $\chi_{q'}^2 = 1$.

For each prime $q'|N/Q$, we either have $\beta = \rho \ (q')$ or $\chi_{q'} = 1$. Thus for $0 \leq d \leq n$,

$$\chi_{N/q} \left(\left(\begin{array}{cc} I_d & \frac{1}{q} I \\ \frac{1}{q} I & I \end{array} \right) M_{\rho}, \left(\begin{array}{c} q I_d \\ I \end{array} \right) \right) = \chi_{N/q} \left(\left(\begin{array}{cc} I_d & \frac{1}{q} I \\ \frac{1}{q} I & I \end{array} \right) M_{\beta}, \left(\begin{array}{c} q I_d \\ I \end{array} \right) \right).$$
Hence $\lambda_\beta(q) = \lambda_\mu(q)$. Further, with σ_d, α_d partitions of N so that $\sigma_d = \rho(N/q)$, rank$_qM_{\sigma_d} = d$, $\alpha_d = \beta(N/q)$, rank$_qM_{\alpha_d} = d$, the matrix for $T(q)$ on $^t(E_{\sigma_0}, \ldots, E_{\sigma_n})$ is equal to the matrix for $T(q)$ on $^t(E_{\alpha_0}, \ldots, E_{\alpha_n})$, and hence $a_{\rho,\sigma_d}(q) = a_{\beta,\alpha_d}(q)$, $0 \leq d \leq n$. \square

Now we evaluate the action of $T_j(q^2)$ on E_{ρ}. Note that since the Hecke operators commute, the multiplicity-one result of Corollary 4.3 tells us that each \tilde{E} of λ value a Assume Theorem 4.4.

For $0 \leq j, d \leq n$,
\[
E_{\sigma_d}|T_j(q^2) = \sum_{t=0}^{n-d} A_j(d,t)E_{\sigma_{d+t}};
\]
when $\chi_q = 1$,
\[
A_j(d,t) = q^{(j-t)d-t(t+1)/2}\beta(d+t,t) \cdot \sum_{d_1=0}^{j-d} \sum_{d_2=0}^{d} q^{b_j(d_1,d_2,d_5)} \chi_{N/q}(D_{d_1,t}M_{\sigma_d}D_j^{-1},D_{d_2,t},D_j) \cdot \beta(d_1,d_2) \beta(t,d_5)\beta(n-d-t, d_1 + n - d - j - d_6) \cdot \beta(t-d_5,d_6)\text{sym}_q^\lambda(t-d_5-d_6)\text{sym}_q^\lambda(d_5,d_6),
\]
where $r = j - d_1 - d_5 + d + 8$, and
\[
a_j(d,d_1,d_5,d_8) = (k-d)(2d_1 + d_5 - d_8) + d_1(d_1 - d_8 - j - 1) - d_8(d_5 + t) - d_5(d_5 + 1)/2 + d_8(d_8 + 1)/2
\]

[LYNNE: DEFINE sym$^\lambda(b,c)$]
(Note that sym$^\lambda(t-d_5-d_6)$, sym$^\lambda(d_5,d_8)$ are evaluated in Lemmas ???)

Proof. Fix $d = \text{rank}_qM_{\rho}$; to ease some notation later, set $\ell = n - d$.
\[
E_{n-\ell}|T_j(q^2) = q^{(k-n-1)} \sum_{G,Y} E_{n-\ell} \left(D_j^{-1} \right) \left(G^{-1} \ Y^t G \right)
\]
where $D_j = \left(\begin{array}{cc} qI_j & 0 \\ 0 & I_{n-j} \end{array} \right)$, $G \in SL_n(\mathbb{Z})/\mathcal{K}_j$, $Y \in \mathcal{Y}$ with \mathcal{Y} the set of matrices
\[
\begin{pmatrix}
U & V \\
V^t & 0
\end{pmatrix}
\] so that \(U \in \mathbb{Z}_q^{j,n} \) varies modulo \(q^2 \), \(V \in \mathbb{Z}_q^{n-j} \) varies modulo \(q \). So

\[
\mathbb{E}_{n-\ell}(\tau)|T_j(q^2) = q^{j(n-1)} \sum_{G,Y} \sum_{M,N} \det(M \left(D_j^{-1}G^{-1} + D_j^{-1}Y^tG + N\right)^{-k})
\]

(\text{where } (M,N) \text{ varies over coprime symmetric pairs with rank}_qe^{M,N} = n-\ell).\

Take a coprime symmetric pair \((M,N)\) with rank\(_qM = n-\ell\). Let \(d_1\) be the rank of the first \(j\) columns of \(M\); using row operations, we can assume \(M = \begin{pmatrix} M_1 & M_2 \\ qM_3 & M_4 \end{pmatrix}\) where \(M_1 = d_1 \times j\) (so rank\(_qM_1 = d_1\)), \(M_4 = d_4 \times (n-j)\) with \(\text{rank}_qM_4 = d_4 = n-\ell - d_1\). Correspondingly, write \(N = \begin{pmatrix} N_1 & N_2 \\ N_3 & N_4 \end{pmatrix}\) where \(N_1\) is \(d_1 \times j\) and \(N_4 = d_4 \times (n-j)\). Take \(r\) so that rank\(_q\begin{pmatrix} M_1 & 0 \\ M_5 & N_5 \end{pmatrix}\) = \(n-d_4-r\); so using row operations, we can assume

\[
(qM_5'M_6'N_5'N_6') = \begin{pmatrix} qM_5 & qM_6 & N_5 & N_6 \\ q^2M_7 & qM_8 & N_7 & qN_8 \end{pmatrix}
\]

where \(M_6, N_6\) are \((\ell-r) \times (n-j)\) and rank\(_q\begin{pmatrix} M_1 & 0 \\ M_5 & N_6 \end{pmatrix}\) = \(n-d_4-r\). Note that since \((M,N) = 1\), we must have rank\(_qN_7 = r\). Then with \(D_{d_1,r} = \begin{pmatrix} qI_{d_1} & 1 \\ I & \frac{1}{q}t_r \end{pmatrix}\),

\[
D_{d_1,r}(M,N) \begin{pmatrix} D_j^{-1} & D_j \end{pmatrix} = \begin{pmatrix} M_1 & qM_2 & q^2N_1 & qN_2 \\ M_3 & M_4 & qN_3 & N_4 \\ M_5 & qM_6 & qN_5 & N_6 \\ M_7 & M_8 & N_7 & N_8 \end{pmatrix}
\]

has \(q\)-rank \(n\). Hence for any \(Y \in \mathcal{Y}_j\),

\[
(M'N') = D_{d_1,r}(M,N) \begin{pmatrix} D_j^{-1} & D_j \end{pmatrix} \begin{pmatrix} G^{-1} & Y^tG \\ -1 & tG \end{pmatrix}
\]

is a coprime symmetric pair with rank\(_qM' = n-\ell + t\) for some \(t \geq 0\). Note that

\[
\det(M'\tau + N')^{-k} = q^{k(d_1-r)} \det(MD_j^{-1}G^{-1} + MD_j^{-1}Y^tG + ND_j^{-1}G)^{-k}.
\]

Similar to the computation in the proof of Theorem 4.1, we have

\[
\chi_{N/q}(M,N) = \chi_{N/q}(D_{d_1,r}M_{d_1}D_j^{-1}, D_{d_1,r}D_j)\chi_{N/q}(M',N').
\]
Reversing, take a coprime pair \((M',N')\) with \(\text{rank}_q M' = n - \ell + t\). We need to count the equivalence classes \(SL_n(\mathbb{Z})(M,N)\) so that
\[
D_{d_1,r}(M,N) \left(\begin{array}{c} D_j^{-1} \\ D_j \end{array} \right) \left(\begin{array}{c} G^{-1} \\ t'G \end{array} \right) \in SL_n(\mathbb{Z})(M',N').
\]

For \(E_1, E_2 \in SL_n(\mathbb{Z})\) and
\[
(M_i N_i) = D_{d_1,r}^{-1} E_i (M',N') \left(\begin{array}{c} G \\ G^{-1} \end{array} \right) \left(\begin{array}{c} D_j \\ D_j \end{array} \right),
\]
we have \((M_1 N_1) \in SL_n(\mathbb{Z})(M_2 N_2)\) if and only if \(E_1 \in K_{d_1,r} E_2\). Thus we need to count the number of triples \(E,G,Y\) with \(E \in K_{d_1,r} \setminus SL_n(\mathbb{Z}), G \in SL_n(\mathbb{Z})/K_j, Y \in \mathcal{Y}_j\) so that
\[
(M N) = D_{d_1,r}^{-1} E(M',N') \left(\begin{array}{c} G \\ G^{-1} \end{array} \right) \left(\begin{array}{c} D_j \\ D_j \end{array} \right)
\]
is an integral coprime pair with \(\text{rank}_q M = n - \ell\) (that \(M' \cdot N\) is symmetric is automatic).

For \(E,G \in SL_n(\mathbb{Z})\), let \((M_1 M_2)\) be the top \(d_1\) rows of \(EM'G\) with \(M_1\) size \(d_1 \times j\); similarly, let \((N_1 N_2)\) be the top \(d_1\) rows of \(EN'G^{-1}\) with \(N_1\) size \(d_1 \times j\). To have \(M\) integral we need \(q|M_2\). To have \(N\) integral, we will need to solve
\[
N_1 \equiv M_1 U + M_2 V (q^2), \quad N_2 \equiv M_1 V (q)
\]
Since \((M',N') = 1\) and \(q|M_2\), we must have \(\text{rank}_q (M_1 N_1 N_2) = d_1\); thus we can only solve the above congruences if \(\text{rank}_q M_1 = d_1\). So suppose we have chosen \(E,G\) to meet this condition; write
\[
EM'G = \left(\begin{array}{c} M_1 \\ M_3 M_4 \\ M_5 M_6 \\ M_7 M_8 \end{array} \right), \quad EN'G^{-1} = \left(\begin{array}{c} N_1 \\ N_3 N_4 \\ N_5 N_6 \\ N_7 N_8 \end{array} \right)
\]
where \(M_1, N_1\) are \(d_1 \times j\), \(M_4, N_4\) are \(d_4 \times (n - j)\), \(M_5, N_5\) are \((n - r - d) \times j\) where \(Y = \left(\begin{array}{c} U \\ V \end{array} \right) \mathcal{Y}_j\). To have \(\text{rank}_q M = n - \ell\), we need to have \(\text{rank}_q \left(\begin{array}{c} M_1 \\ 0 \\ M_4 \\ 0 \end{array} \right) = n - \ell\); so suppose we have chosen \(E,G\) to meet this condition as well. Then, using left multiplication from \(K_{d_1,r}\) and right multiplication from \(K_j\), we can assume \(\text{rank}_q M_4 = d_4 = n - \ell - d_1\) and \(M_6 \equiv 0 (q)\). Now write \(M_5 = (A'_i A_i), N_5 = (B'_i B_i)\) where, for \(i\) odd, \(A'_i, B'_i\) have \(d_1\) columns, and for \(i\) even, \(A'_i, B'_i\) have \(d_1\) columns. By adjusting further using \(K_{d_1,r}\) and \(K_j\), we can assume that \(\text{rank}_q A'_i = d_1, \text{rank}_q A'_i = d_4, A'_i \equiv 0 (q^2)\) for \(i \neq 1, 4, A_1, A_3 \equiv 0 (q)\), and with \(d_i = \text{rank}_q A_i\) for \(i = 5, 7, 8\), we can assume
\[
A_5 \equiv \left(\begin{array}{c} \alpha_5 \\ 0 \\ 0 \end{array} \right) (q^2), \quad A_6 \equiv \left(\begin{array}{c} 0 \\ q \alpha_6 \\ 0 \end{array} \right) (q^2),
\]
So to have \(N - \ell \) rows of \(\alpha_7 \equiv 0 \pmod{q} \) and \(\alpha_8 \equiv 0 \pmod{q} \), we need to choose \(U \) so that \(U + \sum A_i \) is integral. Thus we need to choose \(U \) and \(V \) are congruent modulo \(q \). Similarly, we need to choose \(B \), so that \(B + \sum A_i \) is integral. Thus we need to choose \(B \) and \(V \) are congruent modulo \(q \). With these (unique) choices of \(U \) and \(B \), so we automatically get \(B + \sum A_i \equiv 0 \pmod{q} \). With these choices, the lower \(\ell - r - d_5 \) rows of \(B' \) are \(0 \pmod{q} \), and the top \(r - d_7 - d_8 \) rows of \(B' \) are \(0 \pmod{q} \).

Then by symmetry, we have \(\beta_4, \beta_5, \gamma_4, \delta_1, \delta_2, \epsilon_2 \equiv 0 \pmod{q} \), and \(q \) must divide the lower \(\ell - r - d_5 \) rows of \(B' \) and the upper \(r - d_7 - d_8 \) rows of \(B' \).

With \(Y = \begin{pmatrix} U & V \\ t_V & 0 \end{pmatrix} \) (as above), write

\[
U = \begin{pmatrix} U_1 & U_2 \\ tU_3 & U_3 \end{pmatrix}, \quad V = \begin{pmatrix} V_1 & V_2 \\ tV_3 & V_3 \end{pmatrix}
\]

where \(U_1 \) is \(d_1 \times d_1 \) and \(V_1 \) is \(d_1 \times d_4 \). To have \(N \) integral, we need

\[
N_1 \equiv A_1' (U_1 U_2) (q^2), \quad N_2 \equiv A_1' (V_1 V_2) (q), \quad B_2 \equiv A_4' \times V_3 \equiv (q).
\]

With these (unique) choices of \(U_1, U_2, V_1, V_2, V_3 \), the symmetry of \(M' \times N' \) implies that

\[
B_3' \equiv A_1' (q), \quad B_2 \equiv A_4' \times V_3 \equiv (q).
\]

so we automatically get \(B_3' \equiv A_1' (q) \). Hence with these choices of \(U_1, U_2, V_1, V_2, V_3 \), the top \(n - \ell \) rows of \(N \) are integral. We have already ensured the top \(n - \ell \) rows of \(M \) are integral with \(q \)-rank \(n - \ell \), and we know the lower \(\ell \) rows of \(M \) are \(0 \pmod{q} \). So we need to choose \(U_3, V_4 \) so that the lower \(\ell \) rows of \(N \) are integral with \(q \)-rank \(\ell \).

By symmetry, we have

\[
B_3' \equiv A_5' B_1 + A_6' B_2 \equiv A_5' V_2 \times A_1' (q^2), \quad B_6' \equiv A_5' B_3 \equiv A_5 V_3 \times A_4' (q),
\]

so to have \(N \) integral, we need to choose \(E, G \) so that \(\beta_6 \equiv 0 \pmod{q} \), and \(U_3 \equiv A_5 U_3 (q) \). With such choices, the lower \(\ell \) rows of \(N \) are congruent modulo \(q \) to

\[
\begin{pmatrix}
0 & (B_3 - A_5 U_3 - A_6 V_4) / q \\
0 & B_7 - A_7 U_3 - A_8 V_4
\end{pmatrix}.
\]
Also, since \((M', N') = 1\), when \(\beta_0 \equiv 0 (q)\), we will necessarily have \(\text{rank}_q \gamma_3 = \ell - r - d_5\) (recall that \(\beta_3, \beta_5, \gamma_4 \equiv 0 (q)\)). Write

\[
U_3 = \begin{pmatrix}
\mu_1 & \mu_2 & \mu_3 \\
\nu_1 & \nu_2 & \nu_3 \\
\nu_4 & \nu_5 & \nu_6
\end{pmatrix}, \quad V_4 = \begin{pmatrix}
\nu_1 & \nu_2 \\
\nu_3 & \nu_4 \\
\nu_5 & \nu_6
\end{pmatrix}
\]

where \(\mu_1\) is \(d_5 \times d_5\), \(\mu_4\) is \(d_7 \times d_7\), \(\nu_2\) is \(d_5 \times d_6\), and \(\nu_4\) is \(d_7 \times d_8\). Note that

\[
B_7 - A_7 U_3 - A_8 \, ^t V_4 \equiv \begin{pmatrix}
0 & 0 & \delta_3 \\
\delta_4 - \alpha_7^t \mu_2 & \delta_5 - \alpha_7 \mu_4 & \delta_6 - \alpha_7 \mu_5 \\
\delta_7 - \alpha_8^t \nu_2 & \delta_8 - \alpha_8 \nu_4 & \delta_9 - \alpha_8 \nu_6
\end{pmatrix} (q).
\]

So to have

\[
\text{rank}_q \begin{pmatrix}
0 & (B_5 - A_5 U_3 - A_6 \, ^t V_4)/q & 0 & B_6 - A_5 V_4 \\
0 & B_7 - A_7 U_3 - A_8 \, ^t V_4 & 0 & 0
\end{pmatrix},
\]

we need to choose \(E, G\) so that \(\text{rank}_q \delta_3 = r - d_7 - d_8\). We know that \(\gamma_3 = (\ell - r - d_5) \times (n - j - d_4 - d_5)\) and \(\delta_3 = (r - d_7 - d_8) \times (j - d_4 - d_5 - d_7)\). Thus if \(\beta_0 \equiv 0 (q)\) and \(\text{rank}_q \delta_3 = r - d_7 - d_8\), we have

\[
\ell - r - d_5 \leq n - j - d_4 - d_5, \quad r - d_7 - d_8 \leq j - d_4 - d_5 - d_7,
\]

and consequently \(r = j - d_4 - d_5 + d_6\) (recall that \(n - \ell = d_4 + d_5\)). Then we use left multiplication from \(K_j\) to modify \(G\) so that we can assume \(\beta_4 \equiv 0 (q^2)\).

Thus we need to choose \(K_{d_1, r}, E, GK_j\) so that (adjusting the coset representatives \(E, G\)), the top \(d_1\) rows of \(EM'\) have \(q\)-rank \(d_1\), the top \(d_4 + d_5 + d_8\) rows of \(EM'\) have \(q\)-rank \(d_1 + d_4 + d_5\) (where \(0 \leq d_5 \leq j - d_4\)), and \(q\) divides rows \(d_1 + d_4 + d_5 + 1\) through \(n - d_7 - d_8\) of \(EM'\); Lemma? tells us that the number of such \(K_{d_1, r} E\) is

\[
\beta(d', d + d_5) \beta(n - d', n - r - d - d_5) \beta(d + d_5, d_4)
\]

\[
\cdot \gamma^{(d + d_5)(r + d + d_5 - d') + d_4 (n - d - d_5)}
\]

where \(d = \text{rank}_q M, d' = \text{rank}_q M'\) (note that after choosing \(E\) as in the lemma, we can use left multiplication from \(K_{d_1, r}\) to ensure rows \(d_1 + d_4 + d_5 + 1\) through \(n - d_7 - d_8\) are divisible by \(q\)). Then we can choose some \(G_0 \in SL_n(\mathbb{Z})\) so that

\[
EM' G_0 \equiv \begin{pmatrix}
C' & 0 & 0 & 0 \\
0 & C'' & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & C'' & 0
\end{pmatrix} (q)
\]

where \(C\) is \(d_1 \times d_1\) with \(\text{rank}_q C = d_1, C' = (d_4 + d_5) \times (d_4 + d_5)\) with \(\text{rank}_q C' = d_4 + d_5\). As \(GK_j\) varies over \(SL_n(\mathbb{Z})/K_j\), so does \(G_0 GK_j\); Lemma? tells us that the number of \(GK_j\) that meet all the necessary criteria as described above is

\[
\beta(d_4 + d_5, d_4) \beta(d_7 + d_8, d_5) q^{(d_4 + d_5)(j - d_4 - d_5) - d_7 - d_8}.
\]
Having chosen such E,G, we have seen that to have N integral, U_1, U_2, V_1, V_2, V_3 are uniquely determined, and μ_1, μ_2, μ_3 are determined modulo q. To also have $(M,N) = 1$, we need to ensure rank$_q B = \ell$ where

$$
B = \begin{pmatrix}
(\beta_1 - \alpha_5 \mu_1)/q & (\beta_2 - \alpha_5 \mu_2)/q & (\beta_3 - \alpha_5 \mu_3)/q & \gamma_1 - \alpha_5 \nu_1 & \gamma_2 - \alpha_5 \nu_2 \\
0 & * & * & \gamma_3 & 0 \\
0 & 0 & \delta_3 & 0 & 0 \\
\delta_7 - \alpha_8 \nu_2 & \delta_8 - \alpha_8 \nu_4 & \delta_9 - \alpha_8 \nu_6 & 0 & 0 \\
\end{pmatrix}.
$$

We have δ_3 square and invertible modulo q; so we need $\delta_7 - \alpha_7 \mu_4$ (which is square) to be invertible modulo q. By symmetry, we know $(\delta_7 - \alpha_7 \mu_4)^t \alpha_7$ is symmetric; writing $\mu_4 = \mu_4' + q \mu_4''$ where μ_4', μ_4'' vary over symmetric $d_7 \times d_7$ matrices modulo q, $(\delta_7 - \alpha_7 \mu_4)^t \alpha_7$ does as well. (So there are $q^{d_7(2d_7 + 1)/2}$ ways to choose μ_4 so that $\delta_7 - \alpha_7 \mu_4$ is invertible modulo q.) So to have B invertible, we need

$$
\begin{pmatrix}
(\beta_1 - \alpha_5 \mu_1)/q & \gamma_1 - \alpha_5 \nu_1 & \gamma_2 - \alpha_5 \nu_2 \\
0 & \gamma_3 & 0 \\
\delta_7 - \alpha_8 \nu_2 & 0 & 0 \\
\end{pmatrix}
$$

to be invertible modulo q. We previously noted that γ_3 is invertible modulo q, so we need

$$
\begin{pmatrix}
(\beta_1 - \alpha_5 \mu_1)/q & \gamma_2 - \alpha_5 \nu_2 \\
\delta_7 - \alpha_8 \nu_2 & 0 \\
\end{pmatrix}
$$

to be invertible modulo q, or equivalently, we need

$$
\begin{pmatrix}
(\beta_1 - \alpha_5 \mu_1)/q & (\gamma_2 - \alpha_5 \nu_2)^t \alpha_5 \\
(\delta_7 - \alpha_8 \nu_2)^t \alpha_8 & 0 \\
\end{pmatrix}
$$

to be invertible modulo q, and this latter matrix is symmetric modulo q.

Now we compute $\sum_Y \chi_q(M,N)\chi_q(M',N')$. First, we choose a permutation matrix $G_1 \in GL_n(\mathbb{Z})$ so that

$$
EM'GG_1 \equiv \begin{pmatrix}
A_1' & 0 & 0 & 0 \\
0 & A_4' & 0 & 0 \\
0 & 0 & A_5 & 0 \\
0 & 0 & A_7 & A_8 \\
\end{pmatrix} (q),
$$

$$
EN'^t G^{-1} G_1^{-1} = \begin{pmatrix}
B_1 & B_2 & B_3 & B_4 \\
B_5 & B_6 & B_7 & B_8 \\
B'_1 & B'_2 & B'_3 & B'_4 \\
B'_5 & B'_6 & B'_7 & B'_8 \\
\end{pmatrix}
$$
(recall that since G_1 is a permutation matrix, $^tG_1^{-1} = G_1$). Then

$$MG_1 \equiv \begin{pmatrix} A_1' & A_4' \\ & 0 \\ & & 0 \end{pmatrix} (q),$$

$$N^tG_1^{-1} \equiv \begin{pmatrix} * & * & * & * \\ * & * & (B_5 - A_5U_3 - A_6^tV_4)/q & B_6 - A_5V_4 \\ 0 & 0 & B_7 - A_7U_3 - A_8^tV_4 & 0 \end{pmatrix} (q).$$

Then we choose permutation matrices $E_2', G_2' \in GL_{n-d_i-d_{t-4}}(\mathbb{Z})$ so that

$$E_2' \begin{pmatrix} A_5 & 0 \\ A_7 & A_8 \end{pmatrix} G_2' \equiv \begin{pmatrix} \alpha_5 & 0 \\ \alpha_8 & \alpha_7 \\ 0 & \end{pmatrix} (q),$$

$$E_2' \begin{pmatrix} (B_5 - A_5U_3 - A_6^tV_4)/q & B_6 - A_5V_4 \\ B_7 - A_7U_3 - A_8^tV_4 & 0 \end{pmatrix} \equiv \begin{pmatrix} \delta_7 - \alpha_8^t\nu_2 & \gamma_2 - \alpha_8\nu_2 & * & 0 \\ \beta_1 - \alpha_5\mu_1)/q & 0 & 0 & 0 \\ 0 & 0 & \delta_5 - \alpha_7\mu_4 & 0 \\ 0 & 0 & \delta_3 & \end{pmatrix} (q).$$

Set $E_2 = \begin{pmatrix} I_{d_1+d_4} & E_2' \end{pmatrix}$, $G_2 = \begin{pmatrix} I_{d_1+d_4} & G_2' \end{pmatrix}$. Then

$$\chi_q(\det(E_2G_1G_2)) \chi_q(M', N') = \chi_q(E_2EM'GG_1G_2, E_2EN'(GG_1G_2)^{-1})$$

$$= \chi_q(\det A_1' \cdot \det A_4' \cdot \det \alpha_5 \cdot \det \alpha_7 \cdot \det \alpha_8) \chi_q(\det \gamma_3 \cdot \det \delta_3).$$

On the other hand,

$$\chi_q(\det(E_2G_1G_2)) \chi_q(M, N) = \chi_q(E_2MG_1G_2, E_2N'(G_1G_2)^{-1})$$

$$= \chi_q(\det A_1' \cdot \det A_4') \chi_q(\det \gamma_3 \cdot \det \delta_3)$$

$$\cdot \chi_q \left(\det \begin{pmatrix} (\beta_1 - \alpha_5\mu_1)/q & \gamma_2 - \alpha_8\nu_2 \\ \delta_7 - \alpha_8^t\nu_2 & \end{pmatrix} \cdot \det(\delta_5 - \alpha_7\mu_4) \right).$$

Thus

$$\chi_q(M, N) \chi_q(M', N') = \chi_q(\det(\begin{pmatrix} (\beta_1 - \mu_1^t\alpha_5)/q & \gamma_2 - \nu_2^t\alpha_5 \\ \delta_7 - \nu_2^t\alpha_8 & 0 \end{pmatrix} \cdot \det(\delta_5 - \mu_4^t\alpha_7)).$$
are symmetric modulo \(q\). Thus
\[
\sum_{\mu_1, \mu_2} \chi_q \left(\det \left(\frac{\pi \gamma_1 - \mu_1}{\pi \gamma_2 - \mu_2} \right) \det(\pi \delta_5 - \mu_1) \right) = \text{sym}^\chi_q(d_5, d_8),
\]
and
\[
\sum_{\mu_4} \chi_q(\det(\pi \delta_5 - \mu_4)) = \text{sym}^\chi_q(d_7).
\]

We have seen that \(\mu_2, \mu_3\) are determined modulo \(q\), but unconstrained further modulo \(q^2\), \(\mu_5, \mu_6\) are unconstrained modulo \(q^2\), and \(\nu_1, \nu_3, \nu_4, \nu_5, \nu_6\) are unconstrained modulo \(q\). Hence there are \(q(j-d_1)(n-d_1-d_2+1)\) choices for \(Y\) so that \(M, N\) are integral with \((M, N) = 1\). Having fixed \(E, G\) and then summing over those \(Y\) that meet the conditions determined above,
\[
\sum_Y \mathcal{X}(M, N) \chi_q(M', N') = q^{(j-d_1)(n-d_1-d_2+1) - d_5(j-d_1-d_2+1) - d_7(d_5+1)/2} \text{sym}^\chi_q(d_7) \text{sym}^\chi_q(d_5, d_8).
\]

To simplify the formula for \(A_j(d, t)\), we note that \(r = j - d_1 - d_5 + d_8, d = d_1 + d_4 = n - \ell, d' = d + t, t = d_5 + d_7 + d_8, d_1 + d_4 + d_7 \leq j, d_4 + d_8 \leq n - j,\) and \(d_8 \leq d_5\). Using this information yields the formula for \(A_j(\ell; d_1, d_5, d_8)\). Also, we know \(\beta(m, s) = \beta(m, m - s)\), so
\[
\beta(d_1 + d_4 + d_5, d_1) \beta(d_1 + d_4 + d_5, d_4) = \mu(n - \ell + d_5, d_1) \mu(n - \ell + t, t - d_5) \mu(n - \ell - d_1 + d_5, d_5) \mu(t, d_5)
\]
\[
= \mu(n - \ell + d_1 - t, t - d_5) \mu(n - \ell - d_1 + d_5, d_5) \mu(n - d_5, d_5) \mu(t, d_5)
\]
\[
= \beta(d_1 + d_4 + d_5, d_1) \beta(d_1 + d_4 + d_5, d_4).
\]

This gives us the formula for \(A_j(d, t)\), subject to the constraints on the \(d_i\). Taking \(0 \leq d_1 \leq j, 0 \leq d_5 \leq j - d_1,\) and \(0 \leq d_8 \leq d_5,\) the summand in the formula for \(A_j(d, t)\) is 0 if the other constraints on the \(d_i\) are not met. □

As discussed after Theorem ??, we know we have a basis \(\{\overline{E}_p\}_p\) of simultaneous eigenforms for the space of Eisenstein series of degree \(n\), weight \(k\), square-free level \(N\), and character \(\chi\), and these are eigenforms for all Hecke operators \(T(p), T_j(p^2)\) where \(p\) is any prime. Below we compute the eigenvalues for \(T_j(q^2)\) (where, as above, \(q|N\); in later work we compute the eigenvalues for \(T(p), T_j(p^2)\) for \(p\) any prime not dividing \(N\).
Corollary 4.5. Let ρ be a multiplicative partition of N, and suppose \(\mathbb{E}_\rho \neq 0 \). Then with \(d = \text{rank}_q M_\rho \), for a prime \(q|N \) and \(d = \text{rank}_q M_\rho \), we have \(\tilde{\mathbb{E}}_\rho | T_j(q^2) = \lambda_{\rho,j}(q^2) \tilde{\mathbb{E}}_\rho \) where

\[
\lambda_{\rho,j}(q^2) = q^{jd} \sum_{d_1=0}^j q^{d_1(2k-2d-j+d_1-1)} \chi_{\mathcal{N}_0}(q^{2d_1}) \chi_{\mathcal{N}_n}(q^{2(j-d_1)}) \beta(d, d_1) \beta(n-d, j-d_1).
\]

Proof. By Corollary 4.3 and Theorem 4.4, we know that \(\tilde{\mathbb{E}}_\rho \) is an eigenform for \(T_j(q^2) \) with eigenvalue \(A_j(d,0) \). In general, with \(r = j - d_1 - d_5 + d_8 \), and prime \(q'|N/q \) so that \(d' = \text{rank}_{q'} M_\rho \), we know \(\chi_{q'}^2 = 1 \) for \(q' | N/(\mathcal{N}_0 \mathcal{N}_n) \) and thus

\[
\chi_{q'}(D_{d_1,r} M_\rho D_j^{-1}, D_{d_1,r} D_j) = \begin{cases}
\chi_{q'}'(q^{d_5-d_8}) & \text{if } 0 < d' < n, \\
\chi_{q'}^2(q^{d_1}) \chi_{q'}(q^{d_5-d_8}) & \text{if } d' = 0, \\
\chi_{q'}^2(q^{j-d_1}) \chi_{q'}(q^{-d_5+d_8}) & \text{if } d' = n.
\end{cases}
\]

Since in the sum for \(A_j(d,0) \) we have \(d_5, d_8 = 0 \), the corollary follows. \(\square \)