Fibres and soils: a route towards modelling of root-soil systems

D. Muir Wooda,b,c, A. Diambrac, E. Ibraimc

aInstitutionen för Bygg- och miljöteknik, Chalmers tekniska högskola, Göteborg, Sweden
bDivision of Civil Engineering, Fulton Building, University of Dundee, United Kingdom
cDepartment of Civil Engineering, University of Bristol, United Kingdom

Preprint submitted to Elsevier January 24, 2016

Abstract

Addition of flexible fibres to granular, cohesionless soils, has a marked influence on the stress-strain and volumetric response. Experimental observations provide inspiration for the development of continuum models for the mechanical, pre-failure behaviour of such fibre-soil mixtures. Such generic models and the deduced mechanisms of response should be applicable to other combinations of soils and flexible fibres such as plant roots. Two features are particularly important: the distribution of orientations of fibres (no method of preparation produces an isotropic distribution) and the allowance for the volume of void space not only occupied but also influenced by the presence of the fibres.

A simple shear element is used as a quasi-one-dimensional demonstrator platform for the presentation of the continuum constitutive model. Such an element represents a familiar configuration in which phenomena such as dilation and friction can be directly observed. A basic constitutive model for sand is adapted to this simple shear element; the fibres are added as a separate component able to withstand tension but without flexural stiffness. As the soil-fibre mixture deforms, the straining of the soil generates stresses in favourably oriented fibres. The model is used to clarify some aspects of the response of fibre-soil mixtures: the influence of fibres on the volumetric behaviour; the existence and nature of asymptotic states; and the stress-dilatancy relationship.

Keywords: fibres; cohesionless soils; ground improvement; constitutive model

Introduction

It has been known, qualitatively, for many centuries that the presence of vegetation has beneficial effects on the stability and deformations of slopes through the reinforcing effect of the roots on the soil through which they are growing (Wu et al., 1988; Reubens et al., 2007). Roots, subject to the vagaries of nature, present challenges for testing and modelling. The laboratory observations presented here relate to the behaviour of cohesionless soil (sand) mixed with flexible polypropylene fibres which will have some similarity with the behaviour of soils containing actual plant roots. We are concerned only with mechanical and not with hydrological effects. However, provided a model is available to describe the behaviour of the soil (saturated or unsaturated) in the absence of fibres/roots, then the effect of the fibres can be added in a systematic way.

There have been several studies of the influence of flexible fibres on the strength of soils. Failure criteria have been developed using force equilibrium considerations in a localised shear band (Jewell and Wroth, 1987; Maher and Gray, 1990; Ranjan and Charan, 1996); energy based homogenisation approaches (Michałowski and Čermák, 2002); or the discrete superposition of the sand and fibre effects (Zornberg, 2002). Quantitative modelling of the pre-failure behaviour of fibre-soil mixtures has received less attention and proposed models have dealt with elastic behaviour of the material (Ding and Hargrove, 2006) or have been applied to soils reinforced with continuous thread (Texsol) (Villard et al., 1990; di Prisco and Nova, 1993). The two dimensional DEM (Distinct Element Method) has been used to investigate the micromechanical aspects of interaction between grains and fibres and the distribution of the tensile stresses mobilised in the fibres (Ibraim et al., 2006; Ibraim and Maeda, 2007).

Our modelling environment takes the form of an infinitesimal simple shear element (like an element at the centre of a direct shear box) (Fig 1). There are several reasons for taking this elemental approach (Muir Wood, 2009): the direct shear box is a particularly simple pedagogic device which shows students or other users exactly what is happening in terms of linked volumetric and shearing deformations; the simple shear element is directly applicable to the deformation and sliding of a long slope and also to the propagation of shear waves in an earthquake; and there have been a number of developments in constitutive modelling over the past few decades which have endeavoured to include influences of fabric anisotropy and history of loading or deformation by considering the overall response to be the summation of responses of a series of shear elements distributed over all possible orientations. The microstructural model of Calladine (1971) applied to soils a framework suggested by Batdorf and Budiansky (1949) for metals, and this approach has been rediscovered in multilaminate modelling (Pande and Sharma, 1983) and in the models of Chang and Hicher (2005).
The modelling framework has been described by Diambra et al. (2013) and Muir Wood et al. (2014); it will be summarised briefly here and used to illustrate some aspects of response of fibre-soil mixtures: the influence of fibres on the volumetric behaviour; the existence and nature of asymptotic states; and the stress-dilatancy relationship for the mixture.

Experimental observations

Inspiration for the modelling has come from an extensive experimental study of the behaviour of mixtures of Hostun sand ($d_{50} = 0.38\text{mm}, C_{w} = 1.9$) with short flexible polypropylene fibres (length 35mm, diameter 0.1mm) (Ibraim and Fourmont, 2007; Diambra et al., 2010). It is hypothesised that the behaviour of soil containing flexible plant roots will be broadly subject to the same characteristics of mechanical interaction. Fibres can be mixed with the soil in carefully monitored proportions: attention to detail of sample preparation techniques encourages the formation of somewhat repeatable samples. On the other hand roots grow through the soil, feeling their way between the soil particles or packets of particles, and developing bonding by a process of cavity expansion as the root expands within its chosen tortuous void space and develops restraining confinement stresses as it grows. The detailed fabric of soil-root mixtures is expected to be more variable, whether in the laboratory or in the field, so the tests on polypropylene fibre mixtures are consequently more useful for the initial development of constitutive models.

Direct shear tests with constant vertical stress $\sigma_z = 55.3\text{kPa}$ (Fig 2) and with values of specific volume between 1.8 and 2.0 (corresponding to relative densities of approximately 60% and 0%) show increased shear stress and increased dilatancy as a result of addition of flexible fibres (Ibraim and Fourmont, 2007). Figures 2a, b, d, e show the variation of shear stress and vertical displacement or volume change (ΔV) with horizontal displacement u_x. The rate of change of vertical displacement with horizontal displacement, equivalent to an angle of dilation $\psi = -\Delta u_y/\Delta u_x$, is plotted against externally measured values of mobilised friction τ/σ_z in Fig 2c, f. The effect of fibres on dilatancy is confirmed in undrained triaxial compression tests on loose fibre-sand mixtures which show reduced and even negative pore pressures; the presence of fibres produces a significant reduction in liquefaction potential (Ibraim et al., 2010a; Diambra et al., 2011). However, not all published papers report increased dilatancy (Heineck et al., 2005). This apparent contradiction can be linked to the different modelling assumptions implicit in the experimental approach employed for comparison of unreinforced and reinforced sand samples. It will be discussed in a later section of this paper.

Model for fibre/sand mixtures

The soil is seen as the active component and the fibres as the reactive component. A series of hypotheses are introduced to describe the interactive behaviour (Diambra et al., 2013):

- The sand matrix in the presence of fibres can be described by the same model as the unreinforced soil.
- Tensile strains in the soil try to stretch the fibres. Interaction between fibres and soil requires some mechanical bond or anchorage.
• Fibres are treated as forces with orientation and not as a continuous superimposed material. They have tensile stiffness and strength but negligible compression or flexural stiffness or strength.

• Stretched fibres try to resist extension and thus tend to increase the normal stress on the soil but also contribute directly to the shear stress.

• In their interaction with the soil, as the strains increase, the fibres may pull out of the soil or may reach their tensile strength and snap.

• Allowance must be made for the presence of the fibres in calculating the operational specific volume or void ratio of the soil.

The first three hypotheses relate to the two separate materials: soil and fibres. The last three hypotheses relate to the interaction between the fibres and the surrounding soil. This approach to modelling is described as the ‘Discrete framework’ by Li and Zornberg (2013).

1. Severn-Trent sand

The description of the fibre-soil interaction can be combined with any model for the soil itself (Diambra and Ibrahim, 2014). Severn-Trent sand is an extended Mohr-Coulomb frictional model in which the strength and dilatancy vary as a function of the distance of the current state of the soil from asymptotic critical states (Gajo and Muir Wood, 1999a,b). This underpinning model for the sand is built round the interaction of four components (Fig 3). We will need to refer to elements of this model in subsequent discussion.

When subjected to monotonic shearing the sand reaches eventual asymptotic critical states in which shearing can continue with no further change in effective stress or density or fabric (on average) (Fig 3a). In order to ensure that the critical state line does not suggest unreasonable values of void ratio e or specific volume $v = 1 + e$ at very low or very high stresses, a form proposed by Gudehus (1997) has been used:

$$v_c = v_{\text{min}} + \Delta v \exp[-(\sigma_z/\sigma_{\text{ref}})^\beta]$$

(1)

where $\Delta v = v_{\text{max}} - v_{\text{min}}$ defines the range of values of specific volume $v = 1 + e$; σ_{ref} is a reference stress; and β is a soil parameter. A ‘state parameter’, ψ, (Wroth and Bassett, 1965; Been and Jefferies, 1985) can be defined which encapsulates the volumetric distance of the current state of the sand (σ_3 and v) from the critical state condition for the same effective stress. The sand has a rather clear feeling for the change in volumetric packing required to bring it to this asymptotic state.

The current strength of this frictional soil is not a constant but depends on density and stress through the current value of state parameter (Fig 3b). Loose sands, with current specific volume greater than the critical state specific volume ($\psi > 0$), show low current strength; dense sands, with current specific volume below the critical state specific volume ($\psi < 0$), show high current strength.

The plastic hardening of the soil is purely distortional, resulting from rearrangement of soil particles; the plastic stiffness falls steadily as the mobilised friction increases towards the currently available strength (Fig 3c). The plastic hardening is described by a monotonic relationship. The flow rule linking plastic volumetric dilation with plastic distortion (Fig 3d) provides a feedback link.

The operation of the model can be simply described. An increment of (plastic) distortional strain leads to an increase in the mobilisation of currently available strength, (Fig 3c). The flow rule requires there to be plastic volumetric strains accompanying the distortional strains (Fig 3d). The resulting change in volume moves the state of the sand closer to the critical state (from above or below) (Fig 3a). The resulting change in state parameter leads to a change in the available strength (Fig 3b) so that the distortional hardening is moving the state of the soil towards a moving target. The close interlocking of the elements of the model (Fig 3) ensures that, with continuing monotonic shearing, the state of the sand heads for an asymptotic critical state. The combination of these four components produces a satisfyingly rich range of simulated responses with a rather small number of soil parameters.

2. Contribution of fibres

Tensile strains in the soil try to stretch any fibres whose orientation engages with the tensile sector of the Mohr circle of strain increment (Fig 4). The simple shear element has two degrees of strain increment freedom: vertical or volumetric strain and shear strain. The horizontal direction is always inextensional so that the Mohr circle of strain increment must intersect (or, in the limit, touch) the shear strain axis $\delta \epsilon = 0$. This Mohr circle defines the range of orientations within the sample for which the strain increment has a tensile component (Figs 4a, b, d). There will always be some such orientations except when the sample is being subjected to pure (one-dimensional) compression (Fig 4c). For shearing at constant volume, fibres with...
orientations between 0 and π/2 to the horizontal (in the direction opposite to the shearing) will develop tensile strains (Fig 4d).

It is obviously necessary to know the actual distribution of orientation of fibres in the sample that is to be simulated. Typical techniques for preparation of fibre/soil mixtures do not produce random distributions of fibre orientation (Diambra et al., 2007): moist tamping inevitably leaves the fibres in a somewhat sub-horizontal orientation (Michalowski and Čermák, 2003). Information is needed concerning both spatial distribution of fibres and distribution of fibre orientations. A homogeneous spatial distribution is a reasonable experimental goal, whereas the distribution of orientations is an outcome which must be known even if it cannot be precisely controlled.

The same information is required for plant roots: distribution and orientation of the flexible elements which may well have different diameters. Plants can be divided into two groups: ‘oligorhizoid’ dicotyledons have a few rather substantial roots (such as mustard, Fig 5b); monocotyledons such as grasses tend to be more ‘polyrhizoid’ in character (Fig 5a) having more, finer roots which are much more randomly distributed. Such polyrhizoid species are more obviously suited to a continuum approach to modelling. Polyrhizoid plant species forming an interlocking cluster of reinforcement will provide an apparent cohesion in near surface soils for which the frictional strength is very low. They are obvious candidates for improving slope stability through enhancement of the mechanical properties. The topology or architecture of plant roots is more complicated than that of uniform identical flexible fibres. However, there exist compendia of immaculate drawings of roots for different species (Kutschera et al., 1960-2009) which can provide some initial guidance.

The outcome of these direct measurements, or estimates, is a probability density function \(N \alpha \delta \theta \) describing the proportion of the total number \(N \) of fibres (of different diameters for roots) within the angular sector \(\delta \theta \) with orientation \(\theta \) crossing unit area of the simple shear sample (Fig 6a).

A tensile test on a polypropylene fibre is shown in Fig 6c and tensile tests on roots of vetch are shown in Fig 5c. As a first assumption we will assume that the response of the polypropylene fibres is linear elastic until plastic ductile failure is reached at a yield strain \(\epsilon_y \) and subsequent breakage strain \(\epsilon_{yB} \). We assume a Young’s modulus \(E \) to convert fibre strain to an axial force in the elastic region \(\delta \sigma = \delta \epsilon \) along the fibre of cross-sectional area \(A_f \). If \(\epsilon_f > \epsilon_y \) then \(\delta \sigma = 0 \).

Stressed fibres contribute vertical and horizontal components of force to the stress state on the horizontal plane of the simple shear soil element (Fig 6b). Fibres try to resist stretching because they are anchored in the soil by the clamping forces of the soil particles along the length of the fibres. Consequently fibres will increase the normal stress \(\delta \sigma_f \); fibres with orientation \(\theta < \pi/2 \) will also contribute to the shearing resistance of the composite element \(\delta \tau_f \).

\[
\delta \sigma_f = N \alpha_f \epsilon_f \delta \epsilon_f \sin \theta; \quad \delta \tau_f = N \beta \epsilon_f \delta \epsilon_f \cos \theta
\]
(2)

Stretched fibres having orientations \(\theta > \pi/2 \) (with tensile strain increment range \(2 \chi > \pi \) (Fig 4b)) will reduce the shearing resistance slightly while still boosting the normal stress.

Strains develop in the fibres because of the strains that occur in the soil around the fibres. However, the fibre-grain interaction is rather complex. The fibres take an erratic route between the soil grains (Lirer et al., 2011; Heineck et al., 2005; Consoli et al., 2005) and the axial strains usually vary along the length of the fibres. Shear distortions at the interface between the two materials and end-effects occur in fibre reinforced composites (Hull and Clyne, 1996). These phenomena can be included in a continuum modelling approach by simply introducing a mismatch between the strains in the fibre and the soil (Diambra and

Fig. 4: Mohr’s circle of strain increment for simple shear sample: (a) shearing with volumetric compression \(\delta \epsilon > 0 \); (b) shearing with volumetric expansion \(\delta \epsilon < 0 \); (c) one-dimensional compression; (d) constant volume shearing \(\delta \epsilon = 0 \).

Fig. 5: Root architecture for (a) rye grass Lolium mul. Westerwoldicum; (b) mustard Brassica nigra; (c) tensile tests on plant roots of vetch (Vicia sativa) (Liang, 2016).
fibres within angle θ at angle θ to horizontal

additional shear stress

additional normal stress

Fig. 6: (a) Orientation and distribution of fibres and (b) contribution to normal stress and shear stress; (c) tensile test on polypropylene fibre.

Ibraim, 2015):

$$\delta \epsilon_f = f_m \delta \epsilon_m$$ \hspace{1cm} (3)

where $\delta \epsilon_f$ and $\delta \epsilon_m$ are the strain increments in the fibre and the soil matrix respectively and $f_m < 1$ is a strain ‘mismatch’ factor. Using appropriate modification of the shear lag theory for composite materials (Cox, 1952), Diambra and Ibraim (2015) derived a complete expression for f_m which explicitly considered the geometry of fibre and grains, fibre stiffness, global stress level, soil density and the non-linearity of soil behaviour. Here we have used a simpler expression for f_m which accounts for the fundamental effect of the stress level in the soil σ_{zz} which will be greater than the externally applied stress because of the extra stress generated by the stretched fibres:

$$f_m = 1 - \lambda \exp\left(-\frac{\sigma_{zz}}{\sigma_r}\right)$$ \hspace{1cm} (4)

where σ_r is a reference stress, and λ controls the degree of mismatch for a given stress level. The mismatch between the soil and the matrix reduces as the surrounding stress level increases (Diambra and Ibraim, 2015). The incremental force in the fibre is then $\delta P = E_f \alpha_f \delta \epsilon_f$: the strain mismatch reduces the apparent fibre stiffness.

Simulation and discussion

A set of comparisons of simulated and laboratory direct shear tests on fibre-sand mixtures, using a single set of soil parameters, (and with fibre orientations uniformly distributed) is shown in Fig 7. The simulations are described in terms of strains, the direct shear tests are reported in terms of displacements, but the general concordance between the observations and simulations is good.

Volumetric interaction and fibrespace

There are various ways in which the volumetric packing of the sand can be described in the presence of the fibres; and the preparation technique, intending to prepare comparable samples with different fibre contents, will itself make some assumption about what constitutes an appropriate measure of packing.

The fibres have volume V_f, the soil particles have volume V_s and there are voids with volume V_v. Let us suppose that the fibres themselves require some volume of surrounding voids (Diambra et al., 2010) - in other words that they steal some void ratio from the soil in order to create their own fibrespace (Fig 8). The volume of fibrespace might be somehow linked to the surface area of the fibres (Muir Wood, 2012). The total volume of voids is then divided into V_{fs} associated with the fibres and V_{sv} associated with the soil. The specific volume of the fibres in fibrespace is:

$$V_f = \frac{V_{vf} + V_f}{V_f}$$ \hspace{1cm} (5)

The volume proportion for the fibres $\rho = V_f/(V_f + V_v)$ or volume ratio $V_f/V_s = \rho/(1 - \rho)$. Samples will usually be prepared by mass: the proportion of masses $f = M_f/(M_f + M_s)$.

Fig. 7: Direct shear tests on fibre-sand mixtures: (a, b) observation; (c, d) simulation.

Fig. 8: Fibres stealing void from sand to create fibrespace.
With specific gravity G_f and $G_s = G_f / k_f$ for fibres and soil particles:

$$f = \frac{k_g \rho}{1 - \rho(1 - k_f)}$$ \hspace{1cm} (6)

so that, if $k_G \sim 1/3$, and $\rho \ll 1$, $f \sim \rho/3$.

The void ratio is e, the ratio of volume of all voids to the volume of all solids (particles and fibres) (Fig 9a):

$$e = \frac{V_v}{V_f + V_s} = \frac{V_{vs} + V_{vf}}{V_f + V_s} \rightarrow v = 1 + e$$ \hspace{1cm} (7)

The volume of fibres is small and they hardly provide a continuous load bearing phase. A generous void ratio can then be defined, treating everything apart from the soil particles themselves as void space, e_{sf} (Fig 9b):

$$e_{sf} = \frac{V_v + V_f}{V_s} = \frac{e + \rho}{1 - \rho} \rightarrow v_{sf} = \frac{v}{1 - \rho}$$ \hspace{1cm} (8)

If we associate all the voids with the soil particles but leave the volume of fibres with no attached voids, there is an intermediate void ratio e_{sv} (Fig 9c):

$$e_{sv} = \frac{V_v}{V_s} = \frac{e}{1 - \rho} \rightarrow v_{sv} = \frac{v - \rho}{1 - \rho}$$ \hspace{1cm} (9)

If we regard the voids contained in fibrespace as inalienable then we can define a soil void ratio, e_s (Fig 9d):

$$e_s = \frac{V_{vsf}}{V_s} = \frac{e + (1 - v_f)\rho}{1 - \rho} \rightarrow v_s = \frac{v - v_f\rho}{1 - \rho}$$ \hspace{1cm} (10)

These various definitions of void ratio and specific volume are compared in Fig 10a for $v = 1.6$ and $v_f = 3$.

An immediate illustration of the effect of this stolen void ratio or fibrespace is provided by the results of the procedure adopted for preparation of the fibre-sand mixtures (Fig 10b) (Ibraim et al., 2012; Ibraim and Fourmont, 2007). For a given amount of tamping effort, the final density of packing reduces as the fibre content increases. One-dimensional compression linked with tamping produces only compression direct strain increments overall (Fig 4c) so that there is no obvious possibility at the ‘system’ level of fibres being stretched by tensile strain increments in order to influence the compaction. However, at the particle level there may be some mechanical interaction with the fibres because of local fabric changes (Consoli et al., 2005; Ibraim et al., 2006; Diambra and Ibraim, 2015).

If we suppose that the soil always reaches the same density at the conclusion of tamping then we can ascribe the lower overall density to the need to include the fibrespace. Analysis of the compaction produces fibrespace specific volumes of $v_f \sim 5 - 10$. These may seem a little high but with this magnitude the simulations become reasonable.

Is it possible to choose the initial density of the soil-fibre specimens to guarantee direct comparability of response? Two strategies have been adopted for preparation of fibre-soil mixes (Fig 11) (v_o and ρ are the specific volume of the plain sand and the proportion of fibres by volume of fibres plus soil):

1. Some of the volume of soil particles is replaced by fibres so that the specific volume of the mixture matches the specific volume of the plain sand $v = v_o$ (Fig 11b) (Silva dos Santos et al., 2010; Michałowski and Čermák, 2003; Heinckel et al., 2005) $[v = v_o, v_{sf} = v_o/(1 - \rho), v_{sv} = (v_o - v_f\rho)/(1 - \rho)]$.

2. The volume of sand is kept constant and the addition of fibres replaces some of the voids (Fig 11c) so that the specific volume $v_{sf} = v_o$ (Fig 9b) (Diambra et al., 2010; Ibraim et al., 2010a) $[v = v_o(1 - \rho), v_{sf} = v_o, v_{sv}$=...
Asymptotic states and stress-dilatancy

When sheared continuously soils reach an asymptotic state in which all aspects of the definition of state reach stationary values. The classical asymptotic critical state was concerned only with stationary values of stresses and density (void ratio) (Roscoe et al., 1958). However, a properly asymptotic state requires the fabric, particle grading and particle shape also to have reached steady conditions. For the fibre-soil mixtures both the soil and the fibres (in their interaction with the soil) in our infinitesimal simple shear element must have reached a steady state. For the soil the critical state will be the same as that of the soil tested on its own. For the fibre-soil mixtures we can envisage two possible interactive asymptotic states (Fig 13). The limiting tensile force that can be transmitted by the fibre is dependent on the strength of the fibre and on the effectiveness of the anchorage of the ends of the fibre. A perfectly plastic limiting value of fibre stress may be reached either permanently because the fibre is pulling out at constant stress (Fig 13a) or temporarily because the fibre itself has an extended ductile region of extension from a yield strain ϵ_y to a breakage strain $\epsilon_{fb} = \kappa \epsilon_{fj}$. (Fig 6b). The second asymptotic possibility is one in which all the fibres have broken to a length (of the order of typical particle size) at which they have no residual bond length (Fig 13b). Once broken, the fibre force in the infinitesimal element is zero for all subsequent strain increments. However, the fragments of fibre still occupy space in the fibre-soil mixture and thus continue to influence the values of specific volume which recognise the presence of the fibres, with or without their attendant voids, v_{sv} (9) and v_{s} (10).

In principle, infinite strain is needed to reach asymptotic states in which all aspects of fabric and state have stopped changing (Ibraim et al., 2010b). The concept of small strain asymptotic or limiting response is slightly oxymoronic. Typical test apparatus are not capable of applying infinite strains (apart from ring shear (Consoli et al., 2005)): we seek tendencies towards, rather than arrivals at, asymptotic destinations.

Shearing at constant volume implies that the Mohr circle of strain increment is centred on the origin so that all fibres with orientation lying within one sector of $\pi/2$ from the horizontal will be subject to extension stretching strains. The mechanical contribution of the fibres results from the interaction of the fibre orientations with the Mohr’s circles of strain increment (Fig 4). As a simple illustration suppose that the fibres are uniformly distributed across all orientations so that $p_b = 1/\pi$, and that the fibre/soil sample is being sheared at constant volume. Successive Mohr circles (centred on the origin) are shown in Fig 14a. Where the tensile strain is less than the yield strain ϵ_y the fibres are stretched elastically; for tensile strains in the range $\epsilon_y - \epsilon_b$ the fibres generate a constant yield or slipping force (Fig 13a).

Fig. 13: Asymptotic states for fibre-sand mixtures: (a) fibres continuously pulling through soil; (b) fibres breaking.

Table: Initial densities chosen according to different preparation strategies:

<table>
<thead>
<tr>
<th>Preparation Strategy</th>
<th>Fibre Replacement</th>
<th>Void Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibres</td>
<td>Fibres replace void</td>
<td>Fibres replace solid</td>
</tr>
<tr>
<td>No Fibres</td>
<td>Remove fibrespace</td>
<td>Remove fibrespace</td>
</tr>
</tbody>
</table>

![Fig. 12: Simulations of shearing with constant vertical stress $\sigma_z = \sigma_{zo}$; initial densities chosen according to different preparation strategies: fibres replace soil particles or fibres replace voids; fibrespace removed or not removed before calculating effective density; (a) shear stress τ/σ_{zo} and shear strain ϵ_s; (b) vertical strain ϵ_z and shear strain ϵ_s; (c) specific volume v, of soil and vertical stress experienced by soil σ_{zo} ($v_f = 3, \rho = 0.03$).](image)
performed using a division of orientations into 36 sectors of 5°. The orientations of fibres have been uniformly distributed across these orientations. Consequently the integrated contributions of the fibres to increase in shear stress and to decrease in normal stress are of equal magnitude.

With soil-fibre interaction chosen to lead to eventual perfectly plastic pull-through $\epsilon_{1b} \gg \epsilon_{1f}$ (Fig 14b) the stress: strain response and stress path show a sustained benefit from the fibres. With alternative parameters which lead to fibre breakage the benefit is steadily lost - fibres around $\pi/4$ to the horizontal experience the largest strains and break first (Fig 14). Figure 14b indicates the asymptotic responses corresponding to either of these limits. Breakage proceeds round the fibre orientations: the step-wise nature of the curves shown in Fig 15 corresponds to this sequential breakage. With complete breakage the fibre-soil mixture reverts to the response of the sand densified by the removal of fibrespace: even with complete breakage there is some residual benefit compared with the original loose sand (Fig 15).

Shearing in an asymptotic state must be occurring at constant volume - it would otherwise be unsustainable. In the stress-dilatancy plot of Severn-Trent sand (Fig 3d) the soil will reach its critical state as usual with mobilised friction corresponding to the critical state stress ratio M. However, the mobilised friction determined externally $R_{ext} = \tau_{ext}/\sigma_{ext}$ is not the friction mobilised in the soil $R_s = \tau_s/\sigma_s$. The fibres being stretched provide extra normal stress (σ_f) in addition to that externally applied: $\sigma_f = \sigma_{ext} + \sigma_f$. The fibres also provide some increased shear resistance beyond that generated in the soil τ_f. Thus, for the soil the mobilised friction is:

$$R_s = \frac{\tau_s}{\sigma_s} = \frac{\tau_s}{\sigma_{ext} + \sigma_f} = \frac{\tau_s}{\sigma_{cr}}$$

reaching the value M at the critical state. The externally determined mobilised friction is:

$$R_{ext} = \frac{\tau_{ext}}{\sigma_{ext}} = \frac{\tau_s + \tau_f}{\sigma_{ext}} = \frac{\tau_s + \tau_f}{\sigma_s - \sigma_f}$$

More to the point, the routes by which the soil resistance and the contributions of the fibres are generated are quite different. The stress-dilatancy plot (Fig 3d) forms part of the description of the soil based on our experience of elastic-plastic constitutive modelling of soils. The presence of the fibres appears to push the stress-dilatancy plot away from the critical state for the soil alone. But we have two contributions - fibre and soil - which are responding mechanically in quite different ways and the pattern appropriate for one is not relevant for the other.

Roots

Much of our discussion has been generic so far as the nature of the flexible elements within the soil are concerned. For our polypropylene fibres of uniform cross-section and length it is essential to know the distribution and orientation of the fibres. That necessity remains with roots but the variability in dimensions and mechanical properties must be added. Fibre bundle or root bundle models (Pollen and Simon, 2005; Mickovski...
et al., 2009; Schwarz et al., 2010a) provide a structured means of describing such variability. In most models, roots have been considered as very flexible elements, like our fibres, appropriate for the finest roots. ‘Structural roots’ with significant flexural resistance require a different sort of modelling (Reubens et al., 2007) - but also reflect different plant species which may be less appropriate for general soil improvement. Roots may have different failure mechanisms, can break or pull-out, while the length, apparent Young’s modulus, and maximum tensile force are functions of root diameter and age (Schwarz et al., 2010b). Root tortuosity can affect the root stiffness (Schwarz et al., 2011); root topology, branching angle and branching density can significantly change the distribution of stresses and plastic strains within the soil (Stokes et al., 1996; Mickovski et al., 2011); root orientation, dimensions, and mechanical properties if we are to have some hope of being able to produce successful simulations.

Part of the description of the interaction between soil and fibres relates to the appropriate choice of description of packing of the mixture. The concept of strongly held void ratio or fibrespace has been invoked in order to be able to describe the significant changes in dilatancy, which imply a reduction in state parameter, in the presence of the fibres. The consequences of fibrespace require further exploration concerning both the physical justification and the potential for evolution with shearing or increased stress.

There are several different ways in which the volumetric proportions of different constituents in a mixture can be described. Basing an assessment of comparative response on one description rather than another is hardly conclusive. The gathering of completely defined experimental observations can most usefully be fed into the parallel process of model development.

The interaction of soils with flexible fibres - or roots - can be simulated rather satisfactorily with appropriate allowance for the volumes occupied or demanded by the several phases. The test observations and the elements of the modelling for the soil and for the soil-fibre mixtures demonstrate once again the importance of considering volume and density change in soils in parallel with changes in effective stress - reinforcing the underpinning message of critical state soil mechanics.

Conclusion

We have developed a framework for modelling the interaction of soil with flexible fibres. The mechanics of the individual components - soil and fibres - are not changed in their combination but it is their interaction which provides a greater challenge. It is obvious that, whatever the nature of the flexible inclusions, it will be necessary to know their distribution, orientation, dimensions, and mechanical properties if we are to have some hope of being able to produce successful simulations.

References

