
Link to published version (if available):

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
Simple Irreducible Subgroups of Exceptional Algebraic Groups

Adam R. Thomas

February 11, 2016

Abstract

A closed subgroup of a semisimple algebraic group is called irreducible if it lies in no proper parabolic subgroup. In this paper we classify all irreducible subgroups of exceptional algebraic groups \(G \) which are connected, closed and simple of rank at least 2. Consequences are given concerning the representations of such subgroups on various \(G \)-modules: for example, with one exception, the conjugacy classes of irreducible simple connected subgroups of rank at least 2 are determined by their composition factors on the adjoint module of \(G \).

1 Introduction

Let \(G \) be a reductive connected algebraic group. A subgroup \(X \) of \(G \) is called \(G \)-irreducible (or just irreducible if \(G \) is clear from the context) if it is closed and not contained in any proper parabolic subgroup of \(G \). This definition, due to Serre in [27], generalises the standard notion of an irreducible subgroup of \(GL(V) \). Indeed, if \(G = GL(V) \), a subgroup \(X \) is \(G \)-irreducible if and only if \(X \) acts irreducibly on \(V \). Similarly, the notion of complete reducibility can be generalised (see [27]): a subgroup \(X \) of \(G \) is said to be \(G \)-completely reducible (or \(G \)-cr for short) if, whenever it is contained in a parabolic subgroup of \(G \), it is contained in a Levi subgroup of that parabolic.

Now let \(G \) be a connected semisimple group. In [20], Liebeck and Testerman studied connected \(G \)-irreducible subgroups for the first time, showing amongst other things that they are semisimple and only have a finite number of overgroups in \(G \). Connected \(G \)-irreducible subgroups play an important role in determining both the \(G \)-cr and non-\(G \)-cr connected subgroups of \(G \). The \(G \)-cr subgroups of \(G \) are simply the \(L' \)-irreducible subgroups of \(L' \) for each Levi subgroup \(L \) of \(G \) (noting that \(G \) is a Levi subgroup of itself). To determine the non-\(G \)-cr subgroups of \(G \) one strategy is as follows. Let \(P \) be a proper parabolic subgroup with unipotent radical \(Q \) and Levi complement \(L \). Then for each \(L' \)-irreducible subgroup \(X \), determine the complements to \(Q \) in \(XQ \) that are not \(Q \)-conjugate to \(X \) (if any exist). Any non-\(G \)-cr connected subgroup will be of this form for some \(L' \)-irreducible connected subgroup \(X \).

We now restrict our attention further by letting \(G \) be a simple algebraic group of exceptional type over an algebraically closed field \(K \) of characteristic \(p \) (setting \(p = \infty \) for characteristic 0). In this paper we classify the simple, connected \(G \)-irreducible subgroups of rank at least 2. For \(G = G_2 \) this is a trivial consequence of [12, Theorem 1] and for \(G = F_4 \) this has already been done [32, Theorem 4]. We therefore only have to deal with \(G = E_6, E_7 \) and \(E_8 \), for which we prove the following three theorems. The tables referred to in the statements can be found in Section 10 of the paper.
Theorem 1. Suppose X is a simple, connected, irreducible subgroup of E_6 of rank at least 2. Then X is $\text{Aut}(E_6)$-conjugate to exactly one subgroup of Table 9.

Theorem 2. Suppose X is a simple, connected, irreducible subgroup of E_7 of rank at least 2. Then X is E_7-conjugate to exactly one subgroup of Table 10.

Theorem 3. Suppose X is a simple, connected, irreducible subgroup of E_8 of rank at least 2. Then X is E_8-conjugate to exactly one subgroup of Table 11.

We note that Amende [1] covers the G-irreducible subgroups of rank 1 in $G = G_2, F_4, E_6$ and E_7. The semisimple (non-simple) G-irreducible subgroups and the irreducible subgroups of E_8 of rank 1 will be covered in forthcoming work of the author. Also, under various assumptions on the characteristic ($p > 7$ covers all of them), Theorems 1–3 can be deduced from the results in [14]. Our contribution is to remove these characteristic restrictions.

Each subgroup in Tables 9–11 is described by its embedding in some maximal connected subgroup, given in Theorem 3.1. Notation for the embeddings is given in Section 2.

From these results we can prove a number of representation-theoretic corollaries. For the first of these, we need the following definition. Let G be a simple algebraic group (of arbitrary type), V be a module for G and X and Y be subgroups of G. Then we say X and Y share the same composition factors on V if there exists a morphism from X to Y, which is an isomorphism of abstract groups sending the composition factors of X to composition factors of Y.

The first of our corollaries shows that if G is an exceptional algebraic group then, with one exception, conjugacy between G-irreducible subgroups is determined by their composition factors on $L(G)$.

Corollary 1. Let G be a simple exceptional algebraic group and X and Y be simple, connected irreducible subgroups of G of rank at least 2. If X and Y have the same composition factors on $L(G)$ then either:

1. X is conjugate to Y in $\text{Aut}(G)$, or
2. $G = E_8, X \cong Y \cong A_2, p \neq 3, X \hookrightarrow A_2^2 < D_4^2$ via $(10, 10[r])$ and $Y \hookrightarrow A_2^2 < D_4^2$ via $(10, 01[r])$ (or vice versa) where $r \neq 0$ and A_2^2 is irreducibly embedded in D_4^2.

Again, this is proved in [14, Theorem 4] with restrictions on the characteristic p. The notation “$X \hookrightarrow A_2^2$ via $(10, 10[r])$” is explained in Section 2.

The next corollary highlights the interesting subgroups that are M-irreducible but not G-irreducible for some reductive, maximal connected subgroup M. Here “interesting” means that the M-irreducible subgroup is not obviously G-reducible, i.e. M'-reducible for some other reductive, maximal connected subgroup M' or contained in a proper Levi subgroup.

Corollary 2. Let G be an exceptional algebraic group and X be a simple connected subgroup of rank at least 2 of G. Suppose that whenever X is contained in a reductive, maximal connected subgroup M it is M-irreducible and assume that such an overgroup M exists. Assume further that X is not contained in a proper Levi subgroup of G. Then either:

1. X is G-irreducible, or
(2) X is $\text{Aut}(G)$-conjugate to a subgroup in Table 1 below. Such X are non-G-cr and satisfy the hypothesis.

Table 1: Non-G-cr subgroups that are irreducible in every (and at least one) maximal, reductive overgroup

<table>
<thead>
<tr>
<th>G</th>
<th>Max. M</th>
<th>p</th>
<th>M-irreducible subgroup X</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_4</td>
<td>$A_2\tilde{A}_2$</td>
<td>$p = 3$</td>
<td>$A_2 \hookrightarrow A_2\tilde{A}_2$ via $(10, 01)$</td>
</tr>
<tr>
<td>E_6</td>
<td>A_2G_2</td>
<td>$p = 3$</td>
<td>$A_2 \hookrightarrow A_2\tilde{A}_2$ via $(10, 10)$</td>
</tr>
<tr>
<td>E_7</td>
<td>A_2A_5</td>
<td>$p = 3$</td>
<td>$A_2 \hookrightarrow A_2A_5^{[r]} < A_2A_5$ via $(10, 10)$ (see Lemma 6.2)</td>
</tr>
<tr>
<td></td>
<td>A_7</td>
<td>$p = 2$</td>
<td>D_4</td>
</tr>
<tr>
<td></td>
<td>G_2C_3</td>
<td>$p = 2$</td>
<td>$G_2 \hookrightarrow G_2G_2$ via $(10, 10)$</td>
</tr>
<tr>
<td>E_8</td>
<td>D_8</td>
<td>$p = 2$</td>
<td>$B_4(\dagger)$ (see Lemma 7.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$p = 2$</td>
<td>$B_2 \hookrightarrow B_2^r(\dagger)$ via $(10, 10[r]) \ (r \neq 0), (10, 02)$ or $(10, 02[r]) \ (r \neq 0)$ (see Lemma 7.1)</td>
</tr>
<tr>
<td>A_8</td>
<td></td>
<td>$p = 3$</td>
<td>$A_2 \hookrightarrow A_2^2 < A_8$ via $(10, 10[r]) \ (r \neq 0)$ or $(10, 01[r]) \ (r \neq 0)$</td>
</tr>
<tr>
<td>G_2F_4</td>
<td></td>
<td>$p = 7$</td>
<td>$G_2 \hookrightarrow G_2G_2 < G_2F_4$ via $(10, 10)$</td>
</tr>
</tbody>
</table>

Again, the notation in the table is explained in Section 2.

A natural question to ask is whether G-irreducible subgroups of a certain type exist, especially in small characteristics. When G is a simple exceptional algebraic group [20, Theorem 2] (corrected in [1, Theorem 7.4]) shows that G-irreducible A_1 subgroups exist, except for $G = E_6$ when $p = 2$. The following corollary shows that G-irreducible A_2 subgroups almost always exist.

Corollary 3. Let G be an exceptional algebraic group. Then G contains a G-irreducible A_2 subgroup, unless $G = E_7$ and $p = 2$.

Given the existence of irreducible A_2 subgroups, we study their overgroups. In many cases there exists a unique reductive maximal connected subgroup M containing a representative of each conjugacy class of G-irreducible A_2 subgroups.

Corollary 4. Let G be an exceptional algebraic group. Then there exists a reductive, maximal connected subgroup M containing representatives of every $\text{Aut}(G)$-conjugacy class of G-irreducible A_2 subgroups, unless (G, p) is one of the following: $(G_2, 3)$, $(E_6, p \neq 2)$, $(E_7, p \geq 5)$ or $(E_8, p \neq 3)$, in which cases either two or three reductive, maximal connected subgroups are required. Table 2 lists such overgroups M.

Table 2: Maximal connected overgroups for G-irreducible A_2 subgroups.

<table>
<thead>
<tr>
<th>G</th>
<th>$p \geq 5$</th>
<th>$p = 3$</th>
<th>$p = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_2</td>
<td>A_2</td>
<td>A_2 and \tilde{A}_2</td>
<td>A_2</td>
</tr>
<tr>
<td>F_4</td>
<td>$A_2\tilde{A}_2$</td>
<td>$A_2\tilde{A}_2$</td>
<td>$A_2\tilde{A}_2$</td>
</tr>
<tr>
<td>E_6</td>
<td>A_2^2 and A_2</td>
<td>A_2^2, A_2G_2 and G_2</td>
<td>A_2^2</td>
</tr>
<tr>
<td>E_7</td>
<td>A_2A_5 and A_2</td>
<td>A_2A_5</td>
<td>—</td>
</tr>
<tr>
<td>E_8</td>
<td>A_2E_6 and D_8</td>
<td>A_2E_6</td>
<td>A_2E_6 and D_8</td>
</tr>
</tbody>
</table>
We require the following definition before discussing the final set of corollaries. As before, let G be a simple exceptional algebraic group.

Definition [17, p. 263] A simple, simply connected subgroup X of G is restricted if all composition factors of $L(G) \downarrow X$ are restricted if $X \neq A_1$, and are of high weight at most $2p-2$ if $X = A_1$.

In Section 9 we prove a set of corollaries which extend [17, Corollary 1]. This states that when p is a good prime for G, any simple G-cr subgroup X is contained in a uniquely determined commuting product $Y_1 \ldots Y_k$ such that each Y_i is a simple restricted subgroup of the same type as X and each of the projections $X \to Y_i/Z(Y_i)$ is non-trivial and involves a different field twist. For each G, we extend this to all characteristics for each simple, connected G-irreducible subgroup of rank at least 2. In each case, we obtain a small number of counterexamples in bad characteristic.

We briefly describe the strategy for the proofs of Theorems 1–3 (see Section 4 for further details). Theorem 3.1 lists all the maximal connected subgroups that are reductive and have no A_1 simple factor. For each of these maximal subgroups M, we find all simple M-irreducible subgroups of rank at least 2 and call these “candidate” subgroups. It then remains to investigate which of the candidate subgroups are G-irreducible, and to solve the conjugacy problem for the candidates.

The proofs of Theorems 2 and 3, as well as Corollary 2, have some interesting features, notably when proving an M-irreducible subgroup is not G-irreducible. These include non-abelian cohomology (applied to the unipotent radicals of parabolic subgroups), finite subgroups and computations in Magma [4]. See Lemmas 6.3, 7.4, 7.9 and 7.13 for examples.

2 Notation

Let G be a simple algebraic group over an algebraically closed field K. Let Φ be the root system of G and Φ^+ be the set of positive roots in Φ. Write $\Pi = \{\alpha_1, \ldots, \alpha_l\}$ for the simple roots of G and $\lambda_1, \ldots, \lambda_l$ for the fundamental dominant weights of G, both with respect to the ordering of the Dynkin diagram as given in [5, p. 250]. We sometimes use $a_1a_2\ldots a_l$ to denote a dominant weight $a_1\lambda_1 + a_2\lambda_2 + \cdots + a_l\lambda_l$. We denote by $V_G(\lambda)$ (or just λ) the irreducible G-module of dominant high weight λ. The Weyl module of high weight λ is denoted $W_G(\lambda)$ (or just $W(\lambda)$). Another module we refer to frequently is the adjoint module for G, which we denote $L(G)$. We let $V_7 := W_{G_2}(10)$, $V_{26} := W_{F_4}(0001)$, $V_{27} := W_{E_6}(\lambda_1)$ and $V_{56} := W_{E_7}(\lambda_7)$. For a G-module V, we let V^* denote the dual module of V. If $Y = Y_1Y_2\ldots Y_k$, a commuting product of simple algebraic groups, then (V_1, \ldots, V_k) denotes the Y-module $V_1 \otimes \cdots \otimes V_k$ where each V_i is an irreducible Y_i-module. The notation \hat{X} denotes a subgroup of Y that is generated by long root subgroups of Y. If Y has short root elements then \hat{X} means X is generated by short root subgroups.

Suppose $\text{char}(K) = p < \infty$ (recalling that characteristic 0 is denoted $p = \infty$). Let $F : G \to G$ be the standard Frobenius endomorphism (acting on root groups $U_\alpha = \{u_\alpha(c)|c \in K\}$ by $u_\alpha(c) \mapsto u_\alpha(c^p)$) and V be a G-module afforded by a representation $\rho : G \to GL(V)$. Then $V^{[r]}$ denotes the module afforded by the representation $\rho^{[r]} := \rho \circ F^r$. Let M_1, \ldots, M_k be G-modules and n_1, \ldots, n_k be positive integers. Then $M_1^{n_1}/\ldots/M_k^{n_k}$ denotes a G-module having the same composition factors as $M_1^{n_1} \oplus \cdots \oplus M_k^{n_k}$. Furthermore, $V = M_1|\ldots|M_k$ denotes a G-module with a socle series as follows: $\text{Soc}(V) \cong M_k$ and $\text{Soc}(V/M_i) \cong M_{i-1}$ for $k \geq i > 1$. Sometimes, to make things clearer, we will
use a tower of modules

\[
\begin{array}{c}
M_1 \\
M_2 \\
M_3
\end{array}
\]

to mean the same as \(M_1|M_2|M_3\).

We need a notation for diagonal subgroups of \(Y = H_1H_2 \cdots H_k\), a commuting product, where all of the subgroups \(H_i\) are simple and of the same type; call the simply connected group of this type \(H\). Let \(\hat{Y} = H \times H \times \cdots \times H\), the direct product of \(k\) copies of \(H\). Then we may regard \(Y\) as \(\hat{Y}/Z\) where \(Z\) is a subgroup of the centre of \(\hat{Y}\). A diagonal subgroup of \(\hat{Y}\) is a subgroup \(X\) of the following form: \(\hat{X} = \{(\phi_1(h), \ldots, \phi_k(h))|h \in H\}\) where each \(\phi_i\) is a homomorphism of \(H\). A diagonal subgroup \(X\) of \(Y\) is the image of a diagonal subgroup of \(\hat{Y}\) under the natural map \(\hat{Y} \to Y\). To describe such a subgroup it therefore suffices to give an endomorphism, \(\phi_i\), of \(H\) for each \(i\). By [29, Chapter 12], \(\phi_i = \alpha \theta_i F^{r_i}\) where \(\alpha\) is an inner automorphism, \(\theta_i\) is a graph morphism and \(F^{r_i}\) is a power of the standard Frobenius endomorphism.

We only wish to distinguish these diagonal subgroups up to conjugacy and therefore assume \(\alpha\) is trivial. For each \(1 \leq i \leq k\) we must give a (possibly trivial) graph automorphism \(\theta_i\) of \(H\), and a non-negative integer \(r_i\).

Such a diagonal subgroup \(X\) is denoted \(X \hookrightarrow H_1H_2 \cdots H_k\) via \((\lambda_1^{[r_1]}, \lambda_1^{[r_2]}, \ldots, \lambda_1^{[r_k]})\). We often abbreviate this to \(X\) via \((\lambda_1^{[r_1]}, \ldots, \lambda_1^{[r_k]})\) if the group \(Y\) is clear. Unless \(X\) is of type \(D_n\) \((n \geq 4)\), a graph automorphism is uniquely determined by the image of \(\lambda_1\) (including the special isogeny from \(B_n\) to \(C_n\) which takes \(\lambda_1\) to \(2\lambda_1\)). In these cases, instead of writing \(\lambda_1^{[r_1]}\) we write \(\mu^{[r_i]}\) where \(\mu\) is the image of \(\lambda_1\) under \(\theta_i\). The only time we need a diagonal subgroup of a product of type \(D_n\) subgroups is when dealing with \(D_4^2\). We give a notation for the graph automorphisms of \(D_4\): denote an order 3 automorphism by \(\tau\) and an involutory automorphism by \(\iota\). We usually use the letters \(r, s, t, u, \ldots\) to be the field twists and they are always assumed to be distinct.

Let \(J = \{\alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_r}\} \subseteq \Pi\) and define \(\Phi_J = \Phi \cap \mathbb{Z}J\). Then the standard parabolic subgroup corresponding to \(J\) is the subgroup \(P = \langle T, U_\alpha : \alpha \in \Phi_J \cup \Phi^+ \rangle\). The Levi decomposition of \(P\) is \(P = QL\) where \(Q = R_u(P) = \langle U_\alpha : \alpha \in \Phi^+ \setminus \Phi_J \rangle\), and \(L = (T, U_\alpha | \alpha \in \Phi_J\rangle\). For \(i \geq 1\) we define

\[
Q(i) = \left\langle U_\alpha \left| \alpha = \sum_{j \in \Pi} c_j \alpha_j \text{ where } \sum_{j \in \Pi \setminus J} c_j \geq i \right. \right\rangle,
\]

which is a subgroup of \(Q\). The \(i\)-th level of \(Q\) is \(Q(i)/Q(i + 1)\), and this is central in \(Q/Q(i + 1)\). Moreover, by [2, Theorem 2] each level of \(Q\) has the structure of a completely reducible \(L\)-module.

3 Preliminaries

Before proving Theorems 1–3 we present some of the results needed in the proofs. Let \(G\) be a simple algebraic group over an algebraically closed field of characteristic \(p\). The first of these results gives us a starting point for our strategy, which is described in Section 4. When we say
a reductive, maximal closed connected subgroup we mean a subgroup that is maximal among all closed connected subgroups and is reductive.

Theorem 3.1. [18, Corollary 2] The following tables give the reductive, maximal closed connected subgroups M of $G = E_6$, E_7, and E_8 with each simple component having rank at least 2. We also give the composition factors of the restrictions to M of V_{27}, V_{56} and $L(G)$.

$G = E_6$

<table>
<thead>
<tr>
<th>M</th>
<th>Comp. factors of $V_{27} \downarrow M$</th>
<th>Comp. factors of $L(E_6) \downarrow M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_4</td>
<td>$W(0001)/0000$</td>
<td>$W(1000)/W(0001)$</td>
</tr>
<tr>
<td>$C_4 (p \neq 2)$</td>
<td>0100</td>
<td>$2000/0001$</td>
</tr>
<tr>
<td>A_2^p</td>
<td>$(10,01,00)/(00,10,01)/(01,00,10)$</td>
<td>$(W(11),00,00)/(00,W(11),00)/(00,00,W(11))/(10,10,10)/(01,01,01)$</td>
</tr>
<tr>
<td>$A_2 G_2$</td>
<td>$(10,W(10))/(W(02),00)$</td>
<td>$(W(11),W(10))/(W(11),00)/(00,W(01))$</td>
</tr>
<tr>
<td>$G_2 (p \neq 7)$</td>
<td>$W(20)$</td>
<td>$W(01)/W(11)$</td>
</tr>
<tr>
<td>$A_2 (p \geq 5)$</td>
<td>$W(22)$</td>
<td>$11/41/14$</td>
</tr>
</tbody>
</table>

$G = E_7$

<table>
<thead>
<tr>
<th>M</th>
<th>Comp. factors of $V_{56} \downarrow M$</th>
<th>Comp. factors of $L(E_7) \downarrow M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_7</td>
<td>$01000000/0000010$</td>
<td>$W(10000001)/000100$</td>
</tr>
<tr>
<td>$A_2 A_5$</td>
<td>$(10,10000)/(01,00001)/(00,00100)$</td>
<td>$(W(11),00000)/(00,W(10001))/(10,00010)/(01,01000)$</td>
</tr>
<tr>
<td>$G_2 C_3$</td>
<td>$(W(10),100)/(00,W(001))$</td>
<td>$(W(10),W(010))/(W(01),000)/(00,W(200))$</td>
</tr>
<tr>
<td>$A_2 (p \geq 5)$</td>
<td>$W(60)/W(06)$</td>
<td>$W(44)/11$</td>
</tr>
</tbody>
</table>

$G = E_8$

<table>
<thead>
<tr>
<th>M</th>
<th>Comp. factors of $L(E_8) \downarrow M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_8</td>
<td>$W(01000000)/0000010$</td>
</tr>
<tr>
<td>A_8</td>
<td>$W(10000001)/00100000/00000100$</td>
</tr>
<tr>
<td>$A_2 E_6$</td>
<td>$(W(11),000000)/(00,W(010000))/(10,000001)/(01,100000)$</td>
</tr>
<tr>
<td>A_4^p</td>
<td>$(W(1001),0000)/(0000,W(1001))/(1000,0100)/(0001,0010)/(0100,0001)/(0010,1000)$</td>
</tr>
<tr>
<td>$G_2 F_4$</td>
<td>$(W(10),W(0001))/(W(01),0000)/(00,W(1000))$</td>
</tr>
<tr>
<td>$B_2 (p \geq 5)$</td>
<td>$02/W(06)/W(32)$</td>
</tr>
</tbody>
</table>

Note that in the cases in Theorem 3.1 where M is of maximal rank, the composition factors are not given in [18] but are straightforward to calculate; moreover, for $(G, M) = (E_6, A_3^3)$, $(E_7, A_2 A_5)$, (E_8, D_8) and (E_8, A_4^3) we have made a choice of simple system within each factor.

Next we state some results which allow us to find the M-irreducible subgroups of each M in Theorem 3.1. If M is a classical simple group we can use the following.
Lemma 3.2. [20, Lemma 2.2] Suppose G is a classical simple algebraic group, with natural module $V = V_G(\lambda_1)$. Let X be a semisimple connected closed subgroup of G. If X is G-irreducible then one of the following holds:

(i) $G = A_n$ and X is irreducible on V;
(ii) $G = B_n, C_n$ or D_n and $V \downarrow X = V_1 \perp \ldots \perp V_k$ with the V_i all non-degenerate, irreducible and inequivalent as X-modules;
(iii) $G = D_n$, $p = 2$, X fixes a non-singular vector $v \in V$, and X is a G_v-irreducible subgroup of $G_v = B_{n-1}$.

The next two results give us an explicit list of G-irreducible subgroups of rank at least 2, for G_2 and F_4. The first is clear: the only reductive maximal connected subgroups without rank 1 factors are isomorphic to A_2 and therefore there are no further subgroups to consider. The composition factors of $V_{G_2}(10)$ and $L(G)$ can be found by considering $G_2 < D_4$.

Lemma 3.3. Suppose X is a simple, connected irreducible subgroup of G_2 of rank at least 2. Then X is G_2-conjugate to exactly one subgroup of Table 7.

Theorem 3.4. [32, Theorem 4] Suppose X is a simple, connected irreducible subgroup of F_4 of rank at least 2. Then X is F_4-conjugate to exactly one subgroup of Table 8.

We now describe some elementary results about G-irreducible subgroups.

Lemma 3.5. [20, Lemma 2.1] If X is a connected G-irreducible subgroup of G, then X is semisimple and $C_G(X)$ is finite.

Lemma 3.6. Suppose a G-irreducible subgroup X is contained in $K_1 K_2$, a commuting product of connected non-trivial subgroups K_1, K_2 of G. Then X must have a non-trivial projection to both K_1 and K_2. Moreover, each projection must be a K_i-irreducible subgroup.

Proof. The first assertion is clear by Lemma 3.5. For the second statement, suppose the projection to K_1 is contained in a parabolic, P, of K_1. Then $X < PK_2$ which is a parabolic subgroup of $K_1 K_2$ and therefore by the Borel-Tits Theorem [3], X is contained in a parabolic subgroup of G, a contradiction.

For the next two results, recall the definition from the introduction of two algebraic groups having the same composition factors.

Lemma 3.7 ([32, Lemma 3.4.3]). Let H be a reductive algebraic group, Q be a unipotent group on which H acts on algebraically, and X be a complement to Q in the semidirect product HQ. Suppose V is a rational HQ-module. Then the composition factors of H on V are the same as the composition factors of X on V.

Lemma 3.8. Suppose $X < G$ is semisimple and V is a G-module. Assume the composition factors of $V \downarrow X$ are not the same as those of $V \downarrow H$ for any group H such that

(i) H is of the same type as X, or $p = 2$ and $X \cong B_n$, $H \cong C_n$, and
(ii) $H \leq L'$ and is L'-irreducible, for some Levi subgroup L.

Then X is G-irreducible.
Proof. Suppose \(X < P \) for some parabolic subgroup of \(G \), minimal with respect to containing \(X \). Let \(P = QL \) be the Levi decomposition, so \(X < QL' \). Hence, there exists some subgroup \(H \leq L' \), with \(QH = QX \). Furthermore, \(H \) is \(L' \)-irreducible (by minimality) and \([31, \text{Lemma 3.6.1}]\) shows \(H \) is of the same type as \(X \), or if \(p = 2 \), \(X \cong B_n \) and \(H \cong C_n \). This is a contradiction because Lemma 3.7 shows that the composition factors of \(V \downarrow X \) and \(V \downarrow H \) are the same. \(\square \)

Corollary 3.9. Suppose \(X < G \) is semisimple and \(L(G) \downarrow X \) has no trivial composition factors. Then \(X \) is \(G \)-irreducible.

Proof. Suppose \(X \) is \(G \)-reducible. Then by Lemma 3.8 (with \(V = L(G) \)) there exists a subgroup \(H \) of some Levi subgroup \(L \) such that the composition factors of \(L(G) \downarrow H \) are the same as \(L(G) \downarrow X \). But \(H < L \), so \(L(G) \downarrow H \) has trivial composition factors coming from \(L(Z(L)) \), a contradiction. \(\square \)

Lemma 3.10. \([26, \text{Lemma 1.3}]\) Let \(0 \neq l \in L(G) \) and \(C = C_G(l) \). Then:

(i) if \(l \) is semisimple, then \(C \) contains a maximal torus of \(G \);

(ii) if \(l \) is nilpotent, then \(R_u(C) \neq 1 \) and hence \(C \) is contained in a proper parabolic subgroup of \(G \).

The next result is \([15, \text{Prop. 1.4}]\) with \(X \) allowed to be semisimple rather than simple; the proof is the same.

Lemma 3.11. \([15, \text{Prop. 1.4}]\) Let \(X \) be a semisimple, connected algebraic group over \(K \) and let \(S \) be a finite subgroup of \(X \). Suppose \(V \) is a finite-dimensional \(X \)-module satisfying the following conditions:

(i) every \(X \)-composition factor of \(V \) is an irreducible \(S \)-module;

(ii) for any \(X \)-composition factors \(M, N \) of \(V \), the restriction map \(\text{Ext}^1_X(M,N) \rightarrow \text{Ext}^1_S(M,N) \) is injective;

(iii) for any \(X \)-composition factors \(M, N \) of \(V \), if \(M \downarrow S \cong N \downarrow S \), then \(M \cong N \) as \(X \)-modules.

Then \(X \) and \(S \) fix precisely the same subspaces of \(V \).

The following result is a slight generalisation of \([11, \text{Lemma 1.2 (ii)}]\), proved with a small modification of the proof of \([21, \text{Prop. 3.6(iii)}]\).

Lemma 3.12. Let \(X \) be a semisimple algebraic group and \(M \) a finite-dimensional \(X \)-module. Let \(W_1, \ldots, W_r \) be the composition factors of \(M \), of which \(m \) are trivial, and set \(n = \sum \dim H^1(X,W_i) \).

Assume that \(H^1(X,K) = 0 \) and for each \(i \) we have

\[
H^1(X,W_i) = \{0\} \iff H^1(X,W_i^*) = \{0\}.
\]

If \(m \geq n > 0 \), then \(M \) has either a trivial submodule or a trivial quotient. In particular, if \(M \) is self-dual then it contains a trivial submodule.

Lemma 3.13. Let \(X = B_4 \) and \(p = 2 \). Then the following Weyl modules for \(X \) have the given socle series and are uniserial.

(i) \(W(\lambda_1) = \lambda_1|0 \).

(ii) \(W(\lambda_2) = \lambda_2|0|\lambda_1|0 \).
(iii) $W(\lambda_3) = \lambda_3|\lambda_2|0|\lambda_1|0$.

Furthermore, letting M be the uniserial module $0|\lambda_2|0$, we have the following cohomology groups.

1. $H^1(X, \lambda_1) = K$.
2. $H^1(X, M) = H^1(X, \lambda_3) = 0$.
3. $H^2(X, \lambda_1) = H^2(X, M) = 0$.

Proof. The structure of the Weyl modules is given by [18, Lemma 7.2.2]. The assertions for $H^1(X, \lambda_1)$ and $H^1(X, \lambda_3)$ follow from these. Now, consider the short exact sequence of modules $0 \to A \to B \to C \to 0$. This gives us a long exact sequence of cohomology groups:

$$0 \to H^0(X, A) \to H^0(X, B) \to H^1(X, C) \to H^1(X, A) \to H^1(X, B) \to H^1(X, C) \to \cdots$$

We can apply this to the short exact sequence $0 \to K \to M \to M/K \to 0$ (where we use K for the 1-dimensional trivial module and M/K is the uniserial module $0|\lambda_2$). We obtain the long exact sequence

$$0 \to K \to K \to 0 \to 0 \to H^1(X, M) \to 0 \to 0 \to H^2(X, M) \to H^2(X, M/K) \to 0 \to \cdots$$

Immediately $H^1(X, M)$ must be 0 by exactness and $H^2(X, M) \cong H^2(X, M/K)$. Similarly, considering the short exact sequence $0 \to V_B(\lambda_2) \to M/K \to K \to 0$, we find $H^2(X, M/K) \cong H^2(X, \lambda_2)$. Using the dimension-shifting identity [10, II. 4.14], $H^2(X, \lambda_2) = H^1(X, 0|\lambda_1|0)$ and since $0|\lambda_1|0$ is tilting, it follows from [10, II. 4.13] that $H^1(X, 0|\lambda_1|0) = 0$. Hence $H^2(X, M) \cong H^2(X, \lambda_2) = 0$.

Finally, using the dimension-shifting identity again, $H^2(X, \lambda_1) = H^1(X, K) = 0$.

Lemma 3.14. Let $X = A_2$ and $p = 3$. Then the following hold:

1. $\text{Ext}_X^1(22, 00) \cong \text{Ext}_X^1(22, 11) \cong \text{Ext}_X^1(22, 30) \cong \text{Ext}_X^1(22, 03) = 0$;
2. $\text{Ext}_X^1(1[1^i], 00) \cong K$ for all $i \geq 0$;
3. $\text{Ext}_X^1(3[0^i], 11) \cong \text{Ext}_X^1(3[0^i], 11) \cong \text{Ext}_X^1(03[0^i], 11) \cong \text{Ext}_X^1(03[0^i], 11) \cong K$ for all $i \geq 0$;
4. $\text{Ext}_X^1(3[0^i], 00) \cong \text{Ext}_X^1(03[0^i], 00) = 0$ for all $i \geq 0$;
5. $\text{Ext}_X^1(1 \otimes 11[1^j], 11) \cong \text{Ext}_X^1(1 \otimes 11[1^j], 11) \cong K$ for all $j > 0$;
6. $\text{Ext}_X^1(11 \otimes 11[1^j], 00) \cong \text{Ext}_X^1(11 \otimes 11[1^j], 30) \cong \text{Ext}_X^1(11 \otimes 11[1^j], 30) \cong \text{Ext}_X^1(11 \otimes 11[1^j], 03) \cong \text{Ext}_X^1(11 \otimes 11[1^j], 03) = 0$ for all $j > 0$.

Proof. All of these can be directly deduced from [30, Lemma 2.7].

Lemma 3.15. Let $X = A_2$, $p = 3$ and M be a self-dual X-module. Suppose the composition factors of M are isomorphic to 11 or 00, with at least one trivial composition factor. Then M has a trivial submodule.

Proof. Suppose M has no trivial submodule. Then since $\text{Ext}_X^1(11, 11) = 0$, there must exist an indecomposable submodule, N with structure $00|11$. If N is a direct summand of M then so is $N^* = 11|00$ and M has a trivial submodule, a contradiction. So N is not a direct summand of M. Since $\text{Ext}_X^1(11, 00) \cong \text{Ext}_X^1(00, 11) \cong K$ (using Lemma 3.14(ii)), it follows that M must have a
submodule isomorphic to $11|00|11$. But [18, Lemma 4.2.4(i)] shows there is no module with socle series $11|00|11$ (it must split as $(11|00) + 11$), a contradiction.

4 Strategy for the proofs of Theorems 1–3

We describe the strategy used to prove Theorems 1–3. It relies on the following lemma.

Lemma 4.1. Let G be a simple exceptional algebraic group. Suppose X is a simple, connected G-irreducible subgroup of rank at least 2. Then there exists a reductive, maximal connected closed subgroup M of G each of whose simple components has rank at least 2, such that $X \leq M$ and X is M-irreducible.

Proof. Let M be a maximal connected subgroup of G containing X. As X is G-irreducible, M must be reductive. Moreover, X is M-irreducible, as any non-trivial parabolic subgroup of M is contained in a parabolic of G by [3]. Finally, by Lemma 3.6, M can have no rank 1 simple components.

Theorem 3.1 gives us all reductive, maximal connected closed subgroups of G with no rank 1 simple components for $G = E_6, E_7$ and E_8. For each such M we must find all simple, connected M-irreducible subgroups of rank at least 2. To avoid repeating the term “simple, connected subgroup of rank at least 2” we introduce the following definition.

Definition Let G be E_6, E_7 or E_8. We call a subgroup X of G a G-candidate (or just a candidate) if the following hold:

1. X is connected and simple of rank at least 2;
2. there exists a reductive, maximal connected subgroup M of G containing X such that X is M-irreducible.

In Theorems 1–3 we are aiming to find the irreducible subgroups up to G-conjugacy. The strategy is as follows: for each reductive, maximal connected subgroup M (from Theorem 3.1) we find all G-candidate subgroups, up to M-conjugacy, contained in M. To do this we use Lemma 3.2 and [23] for classical simple components of M, and Lemma 3.3 and Theorem 3.4 for exceptional simple components of M when $G = E_6$, as well as Theorems 1 and 2 when $G = E_8$ for $M = A_2E_6$ and A_1E_7, respectively. We then find all G-conjugacies between the candidate subgroups contained in the different reductive, maximal connected subgroups.

The last step is to check whether each G-conjugacy class of candidate subgroups is G-irreducible or not. To do this we heavily use Lemma 3.8 and Corollary 3.9. To apply these results we must find the composition factors of the action of the G-candidate on the minimal or adjoint module. These can be found by restricting the composition factors of M. This can be done for all G-candidate subgroups and the composition factors for the G-irreducible subgroups can be found in Section 10, Tables 9–11. To apply Lemma 3.8 we also need the composition factors for the action of the Levi subgroups of G on the minimal and adjoint modules. These can be found in Appendix A, Tables 12–14. In most cases, a G-candidate subgroup is G-irreducible. Corollary
2 lists the interesting examples of candidate subgroups which are irreducible in every reductive, maximal connected overgroup yet are G-reducible.

To prove a candidate subgroup is G-reducible can be difficult. For example, in Lemmas 6.3 and 7.4 we use non-abelian cohomology (applied to the unipotent radical of a parabolic subgroup) to show an A_2 subgroup of A_2A_5 is E_7-reducible and a B_4 subgroup of D_8 is E_8-reducible, respectively.

5 Proof of Theorem 1: E_6-irreducible subgroups

We start by considering each of the reductive, maximal connected subgroups of E_6 that do not have an A_1 factor, as listed in Theorem 3.1. They are F_4, $C_4 (p \neq 2)$, A_2^3, A_2G_2, $G_2 (p \neq 7)$ and $A_2 (p \geq 5)$. For each maximal subgroup we determine all E_6-candidate subgroups (definition in Section 4) up to E_6-conjugacy. To check we have found all such conjugacies is straightforward; no two subgroups listed in Table 9 have the same composition factors on $L(E_6)$. We then prove those and only those listed in Table 9 are E_6-irreducible.

5.1 Maximal $M = F_4$

We use Theorem 3.4 to find all E_6-candidate subgroups contained in F_4. This maximal F_4 in E_6 can be obtained as the fixed points of the standard graph automorphism of E_6. This allows us to make a number of observations. Suppose $X \leq B_4 < F_4$. Then we must have that $X < D_5$ and therefore X is not E_6-irreducible (since D_5 is a Levi subgroup of E_6). Therefore B_4, D_4 and any $B_2 \to B_2^2 (p = 2)$ are not E_6-irreducible. Now suppose $X < \tilde{A}_2 \tilde{A}_2 < F_4$. The long \tilde{A}_2 subgroup inside F_4 is generated by root subgroups of E_6 and therefore $X < \tilde{A}_2C_{E_6}(\tilde{A}_2) = \tilde{A}_2^3$. We will study the candidate subgroups of \tilde{A}_2^3 later. We are left with the following E_6-candidate subgroups (from Table 8) to consider: $C_4 (p = 2)$, $\tilde{D}_4 (p = 2)$, $G_2 (p = 7)$.

Lemma 5.1. The subgroups $C_4 (p = 2)$, $\tilde{D}_4 (p = 2)$ and $G_2 (p = 7)$ are all E_6-irreducible.

Proof. Each of the candidate subgroups has a 26-dimensional composition factor on V_{27}. Therefore we can use Lemma 3.8 on V_{27}, since Table 12 shows that no Levi subgroup has a composition factor of dimension at least 26.

5.2 Maximal $M = C_4 (p \neq 2)$

Using Lemma 3.2 and [23] we see the only reductive maximal connected subgroup of C_4 without an A_1 simple factor is C_2^2 when $p \neq 2$. We note that this C_4 is generated by root subgroups of E_6 and therefore the C_2^2 is generated by root subgroups. However, $C_{E_6}(C_2) = C_2T_1$ from [13, Table 3]. Therefore any subgroup of $C_2^2 < C_4$ centralises T_1 and is therefore not E_6-irreducible.
5.3 Maximal $M = A_2^3$

All A_2 diagonal subgroups that have a non-trivial projection onto each factor are A_2^3-irreducible and form all of the candidate subgroups. The conjugacy classes of these diagonal subgroups are found in [14, Table 8.3] (noting that finding the conjugacy classes is unaffected by the restriction imposed on the characteristic there), up to Aut(E_6)-conjugacy. Note that we fix a copy of A_2^3 in Theorem 3.1 by giving its composition factors on V_{27} and $L(E_6)$. The following lemma shows all but one candidate subgroup is E_6-irreducible.

Lemma 5.2. The subgroup $X = A_2 \hookrightarrow A_2^3$ via $(10,10,10)$ is not E_6-irreducible. Every other A_2 candidate subgroup contained in A_2^3 is E_6-irreducible.

Proof. Suppose $p \neq 3$. Consider $Y = A_2 < D_4$ (the Levi D_4 in E_6) embedded via $V_{A_2}(11)$. We claim Y is conjugate to X. Indeed, [14, Table 8.3] shows that this is the case for $p > 3$ and the argument given in [14, p. 64] extends to $p = 2$. Therefore X is contained in a parabolic subgroup when $p \neq 3$. When $p = 3$, we show that $X < F_4$ and is not F_4-irreducible. Indeed, in subsection 5.1 we showed $A_2A_2 < A_2^3$ and by comparing composition factors we see X is conjugate to $A_2 \hookrightarrow A_2A_2$ via $(10,01)$, which Theorem 3.4 shows is contained in a parabolic subgroup of F_4.

Now consider the other candidate subgroups in A_2^3. If $p \neq 3$ then we can apply Corollary 3.9 (the restrictions are in Table 9). Now suppose $p = 3$. We apply Lemma 3.8. Let Z be any of the candidate subgroups other than X. Then we have to check whether the composition factors of Z match those of an L'-irreducible subgroup of type A_2 for some Levi subgroup L. The possibilities for L' are D_5, D_4, A_5, A_4, A_3, A_2^3 and A_2. The subgroups D_5 and A_5 contain every subgroup in that list between them. So if we show Z does not match the composition factors of any A_2 subgroup of D_5 or A_5 (not necessarily irreducible) on V_{27} then that is enough.

From Table 12, $V_{27} \downarrow D_5 = \lambda_1/\lambda_4/0$ and $V_{27} \downarrow A_5 = \lambda_1^3/\lambda_4$. The dimensions for the composition factors are $16,10,1$ for D_5 and $15,6,6$ for A_5. Depending on which embedding we take into A_2^3, the list of dimensions of composition factors of $V_{27} \downarrow Z$ is one of the following: $7,6,6,3,1,1$ or $9,9,7,1,1$ or $9,9,6,3$ or $9,9,9$ (from Table 9). We need to show it is not possible for any of these to correspond with an A_2 subgroup of D_5 or A_5. The latter two, $9,9,6,3$ and $9,9,9$ cannot match; they have no 1-dimensional composition factor, ruling out D_5 and have two composition factors of dimension 9, ruling out A_5. Now suppose Z has composition factors of dimensions $9,9,7,1,1$. Then A_5 is ruled out by the previous reasoning. The only way for an A_2 to be contained in D_5 with matching composition factors is if $V_{D_5}(\lambda_1) \downarrow A_2$ has a 9-dimensional and a trivial composition factor. This is a contradiction because none of the 9-dimensional composition factors of Z is self-dual. Finally, suppose Z has the list $7,6,6,3,1,1$ for its dimensions of composition factors, so $V_{27} \downarrow Z = 10/01/20/02/11/00^2$. If Z is contained in A_5 then $V_{A_5}(\lambda_1) \downarrow Z$ must be $V_{A_2}(20)$ or $V_{A_2}(02)$. But then $V_{A_5}(\lambda_4) \downarrow Z = V_{A_5}(12)$ or $V_{A_5}(21)$ ([14, Prop. 2.10]) which is impossible. Similarly, any A_2 contained in D_5, with the same composition factors as Z, has composition factors of $V_{D_5}(\lambda_1) \downarrow A_2$ of dimensions $7,3$ or $6,3,1$. But such an A_2 does not preserve an orthogonal form, a contradiction. Hence Z is E_6-irreducible.

\[\square\]
5.4 Maximal $M = A_2G_2$

The only possible candidate subgroups are of type A_2, so we need to consider G_2-irreducible subgroups of type A_2. The factor G_3 of M is contained in a Levi D_4, hence the maximal A_2 generated by long root subgroups of G_2 is in fact generated by root subgroups of E_6. So for any candidate subgroup $X < A_2\bar{A}_2$, we will have $X < A_2C_{E_6}(A_2) = \bar{A}_2^3$. We have already considered these in the previous section. By Lemma 3.3 we are left to consider the maximal A_2 when $p = 3$, generated by short root subgroups of G_2. As $N_{G_2}(\bar{A}_2) = \bar{A}_2\bar{A}_2$ a diagonal subgroup of $A_2\bar{A}_2$ with a graph automorphism applied to the second factor is conjugate to one without. Therefore the following two lemmas finish the case of $M = A_2G_2$.

Lemma 5.3. The subgroup $X = A_2 \hookrightarrow A_2\bar{A}_2 < A_2G_2$ via $(10, 10)$ when $p = 3$ is not E_6-irreducible.

Proof. Firstly we note that when $p = 3$, $L(E_6)'$ is irreducible of dimension 77 for an adjoint E_6. We need to consider the restriction of $L(E_6)'$ to $M = A_2G_2$, given in [18, Table 10.1]:

$$(00, 10)$$

where the tower of modules is a socle series. The restrictions of the G_2-modules $V_{G_2}(10)$ and $V_{G_2}(01)$ to \bar{A}_2 are as follows (from Table 7): $V_{G_2}(10) \downarrow \bar{A}_2 = V_{A_2}(11)$ and $V_{G_2}(01) \downarrow \bar{A}_2 = V_{A_2}(30)+V_{A_2}(03)+V_{A_2}(00)$. We also note that $V_{A_2}(11) \otimes V_{A_2}(11)$ has a trivial submodule. Therefore, the tower of modules restricted to X has a submodule $00^2[11]$. But $\text{Ext}^1_{A_2}(11, 00)$ is 1-dimensional so at least one of those trivial modules must actually occur as a submodule in $L(E_6)' \downarrow X$. Therefore X fixes a non-zero vector of $L(E_6)'$ and we may apply Lemma 3.10. The stabiliser of this vector in $L(E_6)'$ is contained in either a parabolic subgroup or maximal rank subgroup. Then, assuming X is E_6-irreducible, it must be contained in A_2^3. However, no subgroup of A_2^3 has a composition factor $V_{A_2}(22)$ on $L(E_6)'$ (the restriction $L(E_6) \downarrow A_2^3$ is given in Theorem 3.1). Therefore X is not contained in A_2^3 and is not E_6-irreducible. \qed

In the next result, recall that r and s are assumed to be distinct non-negative integers and therefore $(10^r, 10^s)$ is not equal to $(10, 10)$.

Lemma 5.4. The subgroups $A_2 \hookrightarrow A_2\bar{A}_2 < A_2G_2$ via $(10^r, 10^s)$ $(rs = 0)$ when $p = 3$ are all E_6-irreducible.

Proof. To see this we can apply Lemma 3.8 to V_{27}. Let X be one of the subgroups in the statement. As X is of type A_2 we just need to show it does not have the same composition factors on V_{27} as any A_2 subgroup of D_5 or A_5. But $V_{27} \downarrow X = 10^r \otimes 11^s/02^r$ (from Table 9) so the dimensions of the composition factors are 21,6. This is incompatible with any subgroup of either D_5 or A_5 as neither has a composition factor of dimension at least 21 on V_{27}. \qed

5.5 Maximal $M = G_2$ $(p \neq 7)$

The only possible candidate subgroups which are proper in M are of type A_2. First we consider the A_2 generated by long root subgroups of the G_2 (but not of the E_6).
Lemma 5.5. Let X be the A_2 subgroup generated by long root subgroups of a maximal G_2 ($p \neq 7$). Then X is conjugate to $Y = A_2 \hookrightarrow A_3^3$ via $(10, 10, 01)$. (So X is E_6-irreducible by Lemma 5.2.)

Proof. If $p \neq 3$ this is straightforward because X is an SL_3 inside G_2 and has a centre of order 3. The full connected centraliser in E_6 of a generator of this centre is A_3^3. Therefore $X < A_3^3$ and must be conjugate to Y as it is the only conjugacy class with those composition factors on V_{27}.

Now suppose $p = 3$. The composition factors of X and Y agree on $L(E_6)$. Therefore, the proof of Lemma 5.2 shows that both X and Y must be E_6-irreducible. From [18, p. 215] we have that $L(E_6)' \downarrow G_2 = 10|01|11|01|10$, a uniserial module and from Table 7, $V_{G_2}(10) \downarrow X = 10 + 01 + 00$. This implies that X fixes a non-zero vector in $L(E_6)'$ and we can apply Lemma 3.10. As X is E_6-irreducible, it must be contained in a maximal rank subgroup of E_6, which must be A_3^3. Comparing composition factors shows that X must be conjugate to Y.

Finally, we must consider \tilde{A}_2 when $p = 3$.

Lemma 5.6. Let $Z = \tilde{A}_2 < G_2$ when $p = 3$. Then Z is E_6-irreducible.

Proof. We can apply Lemma 3.8 to V_{27}. From Table 9, $V_{27} \downarrow G_2 = 20$ and we therefore deduce that $V_{27} \downarrow Z = V_{A_2}(22)$. No Levi subgroup has just one composition factor on V_{27}, hence Z is E_6-irreducible.

5.6 Maximal $M = A_2$ ($p \geq 5$)

Here there is nothing to prove as any proper simple subgroup of A_2 has rank 1 and so the only candidate subgroup is M itself, which is G-irreducible by maximality.

This completes the proof of Theorem 1.

6 Proof of Theorem 2: E_7-irreducible subgroups

We use the same approach as in Section 5 to prove Theorem 2. We start by listing the reductive, maximal connected subgroups of E_7 (with no A_1 simple factor) from Theorem 3.1. These are A_7, A_2A_5, G_2C_3 and A_2 ($p \geq 5$). We must consider the E_7-candidates contained in each of them in the following subsections.

6.1 Maximal $M = A_7$

First, applying Lemma 3.2 and [23] we find all candidate subgroups of M. These are A_7, C_4, D_4, B_3 embedded irreducibly via $V_{B_3}(001)$ and A_2 ($p \neq 3$) embedded irreducibly via $V_{A_2}(11)$. The following lemma handles all of these subgroups.

Lemma 6.1. The only E_7-candidates contained in A_7 that are E_7-irreducible are A_7, D_4 ($p > 2$) and A_2 ($p > 3$). Furthermore, $X = A_2$ ($p > 3$) is conjugate to $Y = A_2 \hookrightarrow \tilde{A}_2A_2^{(*)} < \tilde{A}_2A_5$ via $(10, 10)$ (where $A_2^{(*)}$ is embedded in A_5 via $V_{A_2}(20)$).
Assume there is no trivial submodule. We use the proof and notation of [18, Lemma 4.2.6].

Proof. First consider C_4. This C_4 is generated by long root subgroups of A_7, hence of E_7. Therefore, the connected centraliser of this C_4 is T_1 ($p \neq 2$) or a 1-dimensional connected unipotent subgroup ($p = 2$) by [13, Lemma 4.9]. As the centraliser is infinite it follows from Lemma 3.5 that this candidate C_4 is not E_7-irreducible.

Now consider D_4. When $p = 2$ this is contained in the C_4 and therefore is E_7-reducible. When $p \neq 2$, Corollary 3.9 shows it is E_7-irreducible (the restrictions are in Table 10).

There are no E_7-irreducible subgroups isomorphic to B_3 however. This is because the A_7-irreducible B_3 is embedded via $V_{B_3}(001)$ and is therefore contained in D_4. The normaliser in E_7 of D_4 induces a triality automorphism on this D_4 ([9, Lemma 2.15]), which means this B_3 is E_7-conjugate to the B_3 embedded in A_7 via $V_{A_7}(\lambda_1) \downarrow B_3 = W_{B_3}(100)/V_{B_3}(000)$ which is contained in a parabolic subgroup of A_7.

Finally, consider A_2 ($p \neq 3$) embedded in A_7 via $V_{A_2}(11)$. This is contained in D_4. When $p = 2$, the D_4 is contained in a parabolic subgroup of E_7 and hence the candidate A_2 is not E_7-irreducible. When $p > 3$, $X = A_2$ is the group of fixed points of a triality automorphism of D_4 induced by an element $t \in E_7$ of order 3. To find the full centraliser of t in E_7 we calculate the dimension of $C_{L(E_7)}(t)$. By restricting from $L(E_7) \downarrow A_7$, it follows that $L(E_7) \downarrow D_4 = 2000 + 0020 + 0002 + 0100$. The triality element t fixes a subgroup A_2 of D_4 hence fixes a dimension 8 subspace of $L(D_4) = \lambda_2$. It fixes a diagonal submodule of $2000 + 0020 + 0002$ of dimension 35. It follows that $\dim(C_{L(E_7)}(t)) = 43$. Therefore, using [16, Prop. 1.2], the full centraliser of t in E_7 is A_2A_5. Hence X is conjugate to a subgroup of A_2A_5 and comparing composition factors shows X is conjugate to Y. Corollary 3.9 shows that X is E_7-irreducible.

\[\Box\]

6.2 Maximal $M = A_2A_5$

We need to find all A_5-irreducible subgroups of A_5 that are isomorphic to A_2. This is straightforward from Lemma 3.2. There is just one A_5-conjugacy class of irreducible A_2 subgroups when $p \neq 2$, with $V_{A_5}(\lambda_1) \downarrow A_2 = 20$ and none if $p = 2$. Let $A_2^{(x)}$ be the A_2 embedded in A_5 via $V_{A_5}(\lambda_1) \downarrow A_2^{(x)} = V_{A_2}(20)$. The normaliser in E_7 of M is M_2 where the involution on top acts as a graph automorphism on both simple factors, by [6, Table 10]. A graph automorphism of A_5 induces a graph automorphism of $A_2^{(x)}$. Therefore $N_{E_7}(\hat{A}_2A_2^{(x)})/C_{E_7}(\hat{A}_2A_2^{(x)}) \geq \mathbb{Z}_2$ where the involution acts as a graph automorphism on both of the A_2 factors. Considering the composition factors of $L(E_7) \downarrow \hat{A}_2A_2^{(x)}$ shows this is in fact an equality. Therefore the conjugacy classes of candidate subgroups are $A_2 \rightarrow \hat{A}_2A_2^{(x)}$ ($p \neq 2$) via $(10,10), (10^{[1]},10^{[1]}) (rs = 0), (10,01), (10^{[1]},01^{[1]}) (rs = 0)$. We require a technical lemma, before considering which candidate subgroups are E_7-irreducible.

Lemma 6.2. Let $p = 3$. Then any subgroup $X \cong A_2$ of E_7 with $L(E_7) \downarrow X = 22^3/11^6/30/03/00^4$ has a trivial submodule on $L(E_7)$.

Proof. Assume there is no trivial submodule. We use the proof and notation of [18, Lemma 4.2.6]. Define $C = C_{L(E_7)}(L(X))$, an X-submodule of $L(E_7)$. Suppose C is non-zero. Then it can only contain the totally twisted X-composition factors on $L(E_7)$ (and trivial ones). So $C = 30^2/03^0/00^2$. The module $V_{A_2}(22)$ does not extend any of the other composition factors by Lemma 3.14(i) and
hence the 22^3 forms a direct summand of $L(E_7)$. So we consider its complement, call it M_1. Now M_1 is self-dual and has composition factors $30/03/11^6/00^4$. Suppose $z \neq 0$. Then the trivial composition factors of C are direct summands of C because neither 30 nor 03 extends the trivial module by Lemma 3.14(iv). Therefore C has a trivial submodule, a contradiction. Hence $z = 0$.

Now suppose $x = 1$ and $y = 2$ (or vice versa). There must be an indecomposable direct summand M_2 of M_1 of the form $03[(11^6-a)/00^4-b])30$, which is self-dual. Therefore, the complement to M_2, call it M_3, is self-dual and has composition factors $11^a/00^b$. Lemma 3.15 shows that if $b \neq 0$ then M_3 has a trivial submodule, a contradiction. Hence $b = 0$. We can apply Lemma 3.15 again to show that the module in the middle of the indecomposable M_2 must contain a trivial submodule. But 30 does not extend the trivial module so we have a trivial submodule, a contradiction. Finally, suppose $x = y = 1$. Then by self-duality C must split off as a direct summand and again we apply Lemma 3.15 to the complement to show there is a trivial submodule.

So we have shown that $C = 0$. Now we can apply [18, Lemma 4.2.6]. This shows that the multiplicities of composition factors of $L(E_7) \downarrow X$ force X to have a trivial submodule, a final contradiction.

Before the next lemma, we require the following definition. Suppose Q is a unipotent subgroup of G and X is a reductive algebraic group which acts algebraically on Q. Then we say a complement Y to Q in the semidirect product QX is non-standard if Y is not Q-conjugate to X.

In the proofs of Lemmas 6.3 and 7.4 we use a result from non-abelian cohomology ([32, Lemma 3.2.11]). This allows us to deduce results on complements to a non-abelian unipotent radical Q of a parabolic subgroup. To do this, we consider the filtration of Q by levels and then calculate certain abelian cohomology groups for each level. This method is introduced by Stewart in [32, 3.2] and is subsequently used throughout. Also, in [22] Litterick and the author use these methods to classify the non-G-cr subgroups of exceptional algebraic groups in good characteristic, with an introduction given in Section 3 there.

Lemma 6.3. The E_7-candidate subgroups contained in A_2A_5 that are E_7-irreducible are: $A_2 \hookrightarrow \tilde{A}_2A_5$ via $(10,10) \ (p > 3) \ (10,01) \ (p > 2) \ (10^{s},10^{d}) \ (rs = 0, p > 2)$ and $(10^{r},01^{s}) \ (rs = 0, p > 2)$.

Proof. The only possible candidate subgroups are the diagonal subgroups of $\tilde{A}_2A_5^{(s)}$ ($p \neq 2$) by the discussion before Lemma 6.2. We must prove they are all E_7-irreducible except $A_2 \hookrightarrow \tilde{A}_2A_5^{(s)}$ via $(10,10)$ when $p = 3$. If $p \geq 5$ it suffices to use Corollary 3.9, with the restrictions given in Table 10. Now assume $p = 3$. First we will use Lemma 3.8 to show $A_2 \hookrightarrow \tilde{A}_2A_5^{(s)}$ via $(10^{s},10^{d}), \ (10^{r},01^{s}), \ (10,01)$ are E_7-irreducible. Take Z to be any one of these subgroups. Then Z has only two trivial composition factors on $L(E_7)$. Therefore if Z is contained in a parabolic subgroup it has to match the composition factors of an irreducible A_2 subgroup of E_6, A_6 or A_2A_4 (using Table 13). We immediately rule out A_2A_4, since there is no A_4-irreducible A_2 subgroup. Since E_6 has two trivial composition factors on V_{66} and Z has none, we rule out E_6 and so we are left with just A_6 as a possibility. There is only one A_6-irreducible A_2 subgroup. Call it Y, where $V_{66}(11) \downarrow Y = V_{A_2}(11)$. The composition factors of $L(E_7) \downarrow Y$ are $22^3/11^6/30/00^4$. Therefore Y has more trivial composition factors on $L(E_7)$ than Z, and so Z is not a conjugate of Y and hence does not lie in an A_6-parabolic.
Now we must consider $X = A_2 \hookrightarrow A_2 A_2$ via $(10, 10)$ (still with $p = 3$). Then $L(E_7) \downarrow X = 22^1/11^6/30/03/00^4$, which matches the restriction of Y. The composition factors of X and Y match on V_{56} also, both being $30^2/03^2/11^6/00^2$. This suggests X could be contained in an A_6-parabolic, which we now prove. Let $P = QA_6 T_1$, a standard A_6-parabolic. Then [2, Theorem 2] shows that A_6 acts on the levels of Q and that each level is a direct sum of irreducible A_6-modules (see Section 2 for the definition of a level). Furthermore, Q has two levels, each level being just a single irreducible A_6-module. The high weights of these irreducible modules are given below.

\begin{align*}
Q/Q(2) & \downarrow A_6 = \lambda_4, \\
Q(2) & \downarrow A_6 = \lambda_1.
\end{align*}

If we write L for the Levi subgroup of P and restrict each level to $Y < L' = A_6$ we obtain the following.

\begin{align*}
Q/Q(2) & \downarrow Y = 22/11/00, \\
Q(2) & \downarrow Y = 11.
\end{align*}

We need to know the structure of level 1 more precisely. To do this we note that A_2 is contained in G_2 in L'. We have $\wedge^3 V_{G_2}(10) = V_{G_2}(20)/V_{G_2}(10)/V_{G_2}(00)$ by [14, Prop. 2.10]. Moreover, this module must be completely reducible as there are no non-trivial extensions between any of the composition factors ($W_{G_2}(20)$ and $W_{G_2}(10)$ are irreducible when $p = 3$). Therefore level 1 is completely reducible when restricted to Y. Since $W_{A_2}(22) = V_{A_2}(22)$ and $W_{A_2}(11) = V_{A_2}(11)/V_{A_2}(00)$ it follows that $H^1(A_2, 22) = 0$ and $H^1(A_2, 11) = K$. Therefore $\dim(H^1(A_2, Q(i)/Q(i + 1))) = 1$ for $i = 1, 2$. By [30, Theorem 1], $H^2(A_2, M_1) = 0$ for each direct summand M_1 of level 1 and 2. Therefore we can apply [32, Lemma 3.2.11]. This shows that every complement to $Q(Q(i + 1)$ in $YQ/Q(i + 1)$ lifts to a complement to Q in YQ for $i = 1, 2$.

All complements have the same composition factors on $L(E_7)$, namely those of Y (by Lemma 3.7). Therefore Lemma 6.2 shows that each complement fixes some non-zero vector $l \in L(E_7)$. By Lemma 3.10, if l is semisimple then $C_{E_7}(l)$ contains a maximal torus and if it is nilpotent then $R_u(C_{E_7}(l)) \neq 1$. Suppose we have a non-standard A_2 complement to Q in YQ which fixes a non-zero nilpotent vector l_1 of $L(E_7)$, call it Z_1, and let $C := C_{E_7}(l_1)$. We use [19, Table 22.1.2], which lists all centralisers of nilpotent elements in $L(E_7)$, to show that C is equal to the centraliser of an element in the nilpotent class $A_2 A_2^1$. To show this, we consider each centraliser in [19, Table 22.1.2] and check whether it contains a subgroup A_2 with the same composition factors as Y. We find that there is only one possibility, the centraliser of an element in the nilpotent class $A_2 A_2^1$, which lies in an A_6-parabolic subgroup of E_7. From [19, Table 22.1.2] we also have that $C/R_u(C) = G_2$ and the dimension of $R_u(C)$ is 35.

We now show that C must lie in P and $R_u(C) < Q$. Suppose $C < P^g$ for some $g \in E_7$. Since $Z_1 < C$, we have $Z_1 < P \cap P^g$. As P is a maximal parabolic subgroup we can deduce from [7, 2.8.7, 2.8.8] that $P \cap P^g = P$ or L. But Z_1 was chosen to not be Q-conjugate to Y and $YQ \cap L = Y$. Hence Z_1 is not contained in L, and therefore $P = P^g$ and C must lie in P. The projection of $R_u(C)$ to $P/Q \cong A_6 T_1$ is a closed unipotent subgroup. By the Borel-Tits Theorem [3], its normaliser is contained in a parabolic subgroup of $A_6 T_1$; as it contains G_2 which is A_6-irreducible, this parabolic subgroup must be the whole of $A_6 T_1$. Since the projection of $R_u(C)$ is contained in the unipotent radical of this parabolic, which is trivial, we conclude that $R_u(C) < Q$.

17
Suppose Z_2 is another non-standard complement to Q in YQ fixing a non-zero nilpotent vector l_2 of $L(E_7)$. Then from the arguments in the previous two paragraphs, we have that $C_{E_7}(l_2) < P$ and $C_{E_7}(l_2) = C^g$ for some $g \in E_7$. Moreover, since $C^g < P^g \cap P = P$ it follows that $g \in N_{E_7}(P) = P$. Therefore, we conclude that Z_2 is contained in C^g for some $g \in P$.

We now prove that there exists a non-standard complement to Q in YQ not contained in any P-conjugate of C and hence fixing a non-zero semisimple vector of $L(E_7)$. Let Z_3 be any non-standard complement to Q in YQ and suppose $Z_3 < C^g$ where $g \in P$. We saw above that the levels of Q restrict to G_2 as the following.

$$Q/Q(2) \downarrow G_2 = 20 + 10 + 00,$$

$$Q(2) \downarrow G_2 = 10.$$

We now claim that $Q(2)$ is contained in $R_u(C^g)$. We know that $R_u(C^g)$ is a 35-dimensional G_2-invariant subgroup of Q and therefore has a filtration by G_2-modules which contains all of the above factors bar one copy of $V_{G_2}(10)$. Suppose $R_u(C^g) \cap Q(2) = 1$. Then $R_u(C^g)$ is isomorphic to $Q/Q(2)$ and hence abelian. Thus $R_u(C^g)/Q(2)$ is an abelian 42-dimensional subgroup of Q. This implies that Q is abelian, a contradiction. Therefore, $R_u(C^g) \cap Q(2) \neq 1$ and so $R_u(C^g) \cap Q(2) = Q(2)$, proving the claim. We may now consider $R_u(C^g)/Q(2)$. Since the composition factors of $R_u(C^g)/Q(2) \downarrow Y$ are 22/00, we have $H^1(Z_3Q(2)/Q(2), R_u(C^g)/Q(2)) = 0$ and so $Z_3Q(2)/Q(2)$ is $R_u(C^g)/Q(2)$-conjugate to $YQ(2)/Q(2)$. Therefore, Z_3 is contained in $YQ(2)$. It remains to show that there exists a non-standard complement to Q in YQ that is not contained in $YQ(2)$. Let \tilde{W} be a non-standard A_2 complement to $Q/Q(2)$ in $YQ/Q(2)$ and let W be such that $Q(2) < W < YQ$ and $\tilde{W} = W/Q(2)$. The definition of \tilde{W} being non-standard means that \tilde{W} is not $Q/Q(2)$-conjugate to $YQ(2)/Q(2)$. Now, as shown above, we can lift \tilde{W} to a non-standard complement to Q in Y. Let V be such a lift, so $W = VQ(2)$. Suppose V is Q-conjugate to a subgroup of $YQ(2)$. Then $V^g < YQ(2)$ for some $g \in Q$ and so $W^g = (VQ(2))^g = V^gQ(2) = YQ(2)$. However, $\tilde{W}^g = W^g/Q(2) = YQ(2)/Q(2)$, contradicting the fact that \tilde{W} was non-standard.

By the previous paragraph, there exists a non-standard complement to Q in YQ fixing a semisimple non-zero vector l. Let Z be such a complement. Then $C_{E_7}(l)$ contains a maximal torus. We claim that $C_{E_7}(l) = A_2A_5$. Indeed, the only centralisers of semisimple elements that contain an A_2 with the same composition factors as Z are A_2A_5 and A_4T_1. Suppose $Z < A_4T_1$. Then $Z < L'$ for some $g \in E_7$ and we may assume $Z = Y^g$. Therefore $Z < C^g$ and so Z fixes a non-zero nilpotent vector of $L(E_7)$, a contradiction. Hence $Z < A_2A_5$ and by comparing composition factors we see that Z must be conjugate to X. Therefore X is contained in a parabolic subgroup of E_7.

6.3 Maximal $M = G_2C_3$

The only subgroups of rank at least 2 contained in G_2 are G_2 and A_2 (2 classes if $p = 3$). However, there are no C_3-irreducible subgroups of type A_2 and only if $p = 2$ is there one conjugacy class of G_2 subgroups in C_3.

Lemma 6.4. The E_7-irreducible candidate subgroups contained in G_2C_3 are $G_2 \rightarrow G_2G_2 < G_2C_3$ via $(10^r, 10^s)$ ($rs = 0$) with $p = 2$.
Proof. To see the subgroups listed in the statement of the lemma are all E_7-irreducible we use Lemma 3.8 on $L(E_7)$. All of the subgroups in the lemma have an 84-dimensional composition factor on $L(E_7)$ (see Table 10) but no Levi subgroup has a composition factor of dimension 84 or higher, by Table 13.

The only candidate subgroup we are claiming is not E_7-irreducible is the $G_2 \hookrightarrow G_2$ via $(10, 10)$. Call this X. To prove X is contained in a parabolic subgroup of E_7 we show $V_{56} \downarrow X$ has a trivial submodule. This is sufficient because the full centraliser of a non-zero vector in V_{56} has dimension at least 77, hence is either E_6 or contained in a parabolic subgroup. So this implies X is contained in a parabolic because E_6 is a Levi subgroup. From [18, Table 10.2] we get the exact structure of V_{56} restricted to $G_2 C_3$:

$$V_{56} \downarrow G_2 C_3 = (00, 100) + (00, 001).$$

Also, $V_{C_3}(100) \downarrow G_2 = 10$ and $V_{C_3}(001) \downarrow G_2 = 20/00^2$, with a trivial submodule by self-duality. There is a trivial submodule in $V_{G_2}(10) \otimes V_{G_2}(10)$ as well. So the restriction of $(00, 100) + (00, 001)$ to X has a trivial submodule of dimension at least 2. Since $(00, 100)$ restricted to X is $V_{G_2}(10)$ and $\text{Ext}^1_{G_2}(10, 00)$ is 1-dimensional, it follows that $(00, 100)$ can only block a 1-dimensional trivial module. Therefore there is a trivial submodule for X on V_{56}, as required.

6.4 Maximal $M = A_2 \ (p \geq 5)$

The maximal A_2 is the only E_7-irreducible subgroup from this maximal subgroup.

This completes the proof of Theorem 2.

7 Proof of Theorem 3: E_8-irreducible subgroups

We now move on to the proof of Theorem 3, finding the conjugacy classes of simple, connected irreducible subgroups of E_8 of rank at least 2. As before, we use Theorem 3.1 which lists the reductive, maximal connected subgroups (with no simple A_1 factor) of E_8. These are D_8, A_8, $A_2 E_6$, A_5^2, $G_2 F_4$ and $B_2 \ (p \geq 5)$. We take each maximal subgroup in turn, finding all E_8-irreducible subgroups up to E_8-conjugacy.

7.1 Maximal $M = D_8$

We start by finding all E_8-candidate subgroups contained in D_8.

Lemma 7.1. The simple, connected D_8-irreducible subgroups of D_8 of rank at least 2 are listed in the following table (each E_8-conjugacy class is listed exactly once).
<table>
<thead>
<tr>
<th>Irreducible subgroup</th>
<th>p</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_8</td>
<td>any</td>
<td></td>
</tr>
<tr>
<td>B_7</td>
<td>any</td>
<td>Maximal subgroup of D_8.</td>
</tr>
<tr>
<td>$B_4(\dagger)$</td>
<td>any</td>
<td>Maximal with $V_{D_4}(\lambda_1) \downarrow B_4(\dagger) = W(0001)$ and $V_{D_4}(\lambda_7) \downarrow B_4(\dagger) = W(1001)$.</td>
</tr>
<tr>
<td>$B_4(\ddagger)$</td>
<td>any</td>
<td>Maximal with $V_{D_4}(\lambda_1) \downarrow B_4(\ddagger) = W(0001)$ and $V_{D_4}(\lambda_7) \downarrow B_4(\ddagger) = W(2000)/W(0010)$.</td>
</tr>
<tr>
<td>A_3</td>
<td>$p > 2$</td>
<td>$A_3 < B_7$ with $V_{D_4}(\lambda_1) \downarrow A_3 = 101 + 000$.</td>
</tr>
</tbody>
</table>

$D_4 \hookrightarrow D_4^2$ via:

- $(1000, 1000^{[r]})$ ($r \neq 0$) any
- $(1000, 0010)$ any
- $(1000, 0010^{[r]})$ ($r \neq 0$) any
- $(1000, 1000^{[r]})$ ($r \neq 0$) any

$B_3 \hookrightarrow B_3^2$ via:

- $(100, 100^{[r]})$ ($r \neq 0$) any $B_3^2 < D_4^2$ with $V_{D_3}(\lambda_1) \downarrow B_3^2 = (100, 000) + (000, 001) + (000, 000)^2$. |

$A_2 \hookrightarrow A_2^2$ via:

- $(10, 10^{[r]})$ ($r \neq 0$) $p \neq 3$
- $(10, 01^{[r]})$ ($r \neq 0$) $p \neq 3$

$B_2 \hookrightarrow B_2^2(\dagger)$ via:

- $(10, 10^{[r]})$ ($r \neq 0$) any $B_2^2(\dagger)$ is maximal if $p \neq 2$, while $B_2^2(\dagger) < B_4(\dagger)$ if $p = 2$. In both cases $V_{D_4}(\lambda_1) \downarrow B_2^2(\dagger) = (01, 01)$ and $V_{D_4}(\lambda_7) \downarrow B_2^2(\dagger) = (01, W(11))/W(11), 01)$. |

$B_2 \hookrightarrow B_2^2(\ddagger)$ via:

- $(10, 10^{[r]})$ ($r \neq 0$) any $B_2^2(\ddagger)$ is maximal if $p \neq 2$, while $B_2^2(\ddagger) < B_4(\ddagger)$ if $p = 2$. In both cases $V_{D_4}(\lambda_1) \downarrow B_2^2(\ddagger) = (01, 01)$ and $V_{D_4}(\lambda_7) \downarrow B_2^2(\ddagger) = (W(20), 00)/W(20)/W(20))/(W(02), W(02))$. |

$B_2 \hookrightarrow B_2B_2$ via:

- $(10, 10)$ $p > 2$ $(00, 02) + (00, 00)$. |

$B_2 \hookrightarrow B_3^2$ via:

- $(10, 10^{[r]}, 10^{[s]})$ ($rs = 0$) $p > 2$ $(00, 10, 00) + (00, 00, 10) + (00, 00, 00)$. |

Proof. This is a mainly routine task of using Lemma 3.2 and the tables in [23] to calculate the possibilities for $V_{D_4}(\lambda_1) \downarrow X$, with X irreducible. We note a few technical details. Firstly, there are two conjugacy classes of B_4 in D_8 embedded via $V_{B_4}(0001)$ that are interchanged by the graph automorphism of D_8. We distinguish between them by using $B_4(\dagger)$ and $B_4(\ddagger)$, which have different composition factors on $V_{D_4}(\lambda_7)$ (as given in [14, Prop. 2.12]). Similarly there are two conjugacy classes of B_2^2 embedded via $V_{B_2}(01) \otimes V_{B_2}(01)$ and we use $B_2^2(\dagger)$ and $B_2^2(\ddagger)$ to represent the two classes. If $p = 2$ then $B_2^2(\dagger)$ is contained in $B_4(\dagger)$ and $B_2^2(\ddagger)$ is contained in $B_4(\ddagger)$. Indeed, the action of the B_2^2 subgroup of B_4 on $V_{B_4}(0001)$ is $01 \otimes 01$. There are only two conjugacy classes in D_8 of stabilisers of the tensor product decomposition of $V_{16} = V_4 \otimes V_4$, namely $B_2^2(\dagger)$ and $B_2^2(\ddagger)$.

20
By checking the composition factors on \(L(E_8) \) we see that the \(B_2^2 \) subgroup of \(B_4(\dagger) \) is conjugate to \(B_2^2(\dagger) \) and similarly \(B_2^2(\dagger) < B_4(\dagger) \).

For \(p > 2 \), the module \(V_{A_5}(101) \) is 15-dimensional and self-dual, therefore \(A_3 \) embeds into \(B_7 \) and is \(D_8 \)-irreducible. When \(p = 2 \), the module \(V_{A_5}(101) \) is 14-dimensional and [25, Table 1] shows \(A_3 \) embeds into \(D_7 \). Therefore there is no \(D_8 \)-irreducible \(A_3 \) when \(p = 2 \).

Finally, consider \(D_4^2 \). The \(E_8 \)-conjugacy classes of diagonal \(D_4 \) subgroups are found in [14, p. 59] and only those conjugacy classes of \(D_8 \)-irreducible subgroups are given in the conclusion of the lemma.

Now we take each candidate subgroup in Lemma 7.1 which is proper in \(M \) and either show it is \(E_8 \)-irreducible or prove it lies in a parabolic subgroup of \(E_8 \).

Lemma 7.2. The candidate subgroups \(B_7 \) and \(A_3 \) \((p \neq 2) \) are \(E_8 \)-irreducible.

Proof. The \(B_7 \) is \(E_8 \)-irreducible since no Levi subgroup has a subgroup of type \(B_7 \) (or \(C_7 \) if \(p = 2 \)). The composition factors in Table 11 show Corollary 3.9 applies to prove that \(A_3 \) \((p \neq 2) \) is \(E_8 \)-irreducible.

The following technical lemma is required to prove \(B_4(\dagger) \) is not \(E_8 \)-irreducible when \(p = 2 \).

Lemma 7.3. Suppose \(p = 2 \), \(X \cong B_4 \) and \(L(E_8) \downarrow X = 2000/1000^4/0100^4/0010^2/0000^8 \). Then \(L(E_8) \downarrow X \) has a trivial submodule.

Proof. We use the proof of [18, Lemma 7.2.3]. In the hypothesis of the lemma it is assumed that there is a subgroup isomorphic to \(B_4 \) with the same composition factors on \(L(E_8) \) as \(X \). Let \(C = C_{L(E_8)}(L(X)) \). If \(C = 0 \) then the proof of [18, Lemma 7.2.3] shows that \(L(E_8) \downarrow X \) has a trivial submodule. So we may assume \(C \neq 0 \) and that \(X \) has no trivial submodule on \(L(E_8) \). The composition factors of \(C \) are among the totally twisted composition factors of \(L(E_8) \downarrow X \) so \(C \) must have \(V_X(2000) \) as a submodule (we are assuming no trivial submodules of \(L(E_8) \) and therefore of \(C \)). This submodule of \(C \) must be a submodule of \(L(E_8) \), but \(L(E_8) \) is self-dual and has only one composition factor isomorphic to \(V_X(2000) \). Therefore \(C \) splits off as a direct summand of \(L(E_8) \). Hence \(L(E_8) \downarrow X = 2000 \oplus M_1 \) where \(M_1 \) has composition factors \(1000^4/0100^4/0010^2/0000^8 \). We claim that \(M_1 \) has a trivial submodule. To prove the claim we use Lemma 3.12. The conditions of the lemma hold because only \(V_X(1000) \) and \(V_X(0100) \) extend the trivial module, as shown in Lemma 3.13(i)-(iii). Because \(M_1 \) is self-dual it therefore has a trivial submodule. This is a contradiction, completing the proof.

Lemma 7.4. Suppose \(p = 2 \). Let \(B_4(\dagger) < D_8 \) be as in Lemma 7.1. Then \(B_4(\dagger) \) is contained in an \(A_7 \)-parabolic of \(E_8 \).

Proof. We use the same method as in the proof of Lemma 6.3. We find a \(B_4 \) in an \(A_7 \)-parabolic and show it is contained in \(D_8 \) and conjugate to \(B_4(\dagger) \).

Let \(P = QA_7T_1 \) be a standard \(A_7 \)-parabolic. The centraliser of the standard graph automorphism of \(A_7 \) is a \(C_4 \). So \(C_4 \) acts on \(Q \) and we may look for complements to \(Q \) in \(QC_4 \). However, as \(p = 2 \), the group \(B_4 \) can also act on \(Q \). This is due to the special isogeny from \(B_4 \) to \(C_4 \). We want to find a \(B_4 \) complement to \(Q \) in \(QC_4 \) and need to use the same tools as in the proof of Lemma 6.3. We
first find the structure of the levels of Q under the action of B_4. Using [2, Theorem 2] (and the notation defined in Section 2) we find Q has three levels and that under the action of $L' = A_7\)$ they have the following A_7-module structure.

\[
\begin{align*}
Q/Q(2) &\downarrow A_7 = \lambda_5, \\
Q(2)/Q(3) &\downarrow A_7 = \lambda_2, \\
Q(3) &\downarrow A_7 = \lambda_7.
\end{align*}
\]

Now under the action of B_4 we find the levels of Q have the following structure.

\[
\begin{align*}
Q/Q(2) &\downarrow B_4 = \lambda_1 \oplus \lambda_3, \\
Q(2)/Q(3) &\downarrow B_4 = 0|\lambda_2|0, \\
Q(3) &\downarrow B_4 = \lambda_1.
\end{align*}
\]

By Lemma 3.13, $H^1(B_4, \lambda_1)$ is 1-dimensional and $H^1(B_4, 0|\lambda_2|0)$, $H^1(B_4, \lambda_3)$ are both 0. Also, $H^2(B_4, 0|\lambda_2|0) = H^2(B_4, \lambda_1) = 0$. Therefore [32, Lemma 3.2.11] applies. This shows that every B_4 complement to $Q/Q(i + 1)$ in $C_4 Q/Q(i + 1)$ lifts to a B_4 complement to Q in QC_4 for $i = 1, 2, 3$.

We know that any B_4 complement to Q has the composition factors $L(E_8) \downarrow B_4 = 2000/1000^4/0100^4/0010^2/0000^8$ (these are images of the composition factors of the $C_4 < A_7$ unlike the special isogeny). Therefore, Lemma 7.3 shows that any B_4 complement to Q has a trivial submodule on $L(E_8)$. Let $0 \neq l \in L(E_8)$ be one such fixed vector. Lemma 3.10 shows $C_{E_8}(l)$ either contains a maximal torus of E_8 or has non-trivial unipotent radical.

Assume we have a non-standard B_4 complement to Q, call it X, which fixes l_1, a non-zero nilpotent vector of $L(E_8)$. Then using [19, Table 22.1.1], which gives all possible centralisers in E_8 of nilpotent elements of $L(E_8)$, and an argument analogous to that given in the proof of Lemma 6.3, we conclude that $C_{E_8}(l_1)$ is in fact P-conjugate to C where C is the centraliser of an element of the nilpotent class A_4^4. Moreover, $C/R_u(C) = C_4$, the dimension of $R_u(C)$ is 84 and $C < P$ with $R_u(C) < Q$.

It similarly follows as in the proof of Lemma 6.3 that any non-standard B_4 complement contained in a P-conjugate of C is contained in $Q(3)C_4$ and that there exists a non-standard B_4 complement to Q in QC_4 that is not contained in any P-conjugate of C. Let Y be such a complement. Then Y fixes a non-zero semisimple element l_2 and $D := C_{E_8}(l_2)$ contains a maximal torus. It follows, from considering the composition factors of Y, that $D = A_7T_1, A_8$ or D_8. We rule out the first possibility as A_7T_1 does not contain a B_4 subgroup. By Theorem 3.1, we know that A_8 does not fix a non-zero vector on $L(E_8)$ when $p = 2$ and so $D = D_8$. Therefore Y is contained in D_8 and has the same composition factors as $B_4(\bar{t})$ by construction. To prove Y is conjugate to $B_4(\bar{t})$ we need to show it is not conjugate to any other B_4 subgroup in D_8. The only other possibility for a B_4 subgroup in D_8 with the same composition factors as Y is a B_4 in the A_7-parabolic of D_8 (whose Levi factor is a Levi subgroup of E_8). Let this parabolic be $Q_1A_7T_1 < D_8$. Then $Q_1 \downarrow A_7 = \lambda_2$. Therefore under the action of B_4 the structure of Q_1 is $Q_1 \downarrow B_4 = 0|\lambda_2|0$. Since $H^1(B_4, 0|\lambda_2|0) = 0$ there are no B_4 complements to Q_1 in Q_1C_4 in such an A_7-parabolic of D_8. Hence Y is conjugate to $B_4(\bar{t})$ and $B_4(\bar{t})$ is contained in an A_7-parabolic of E_8.

Lemma 7.5. The candidate subgroups in Lemma 7.1 isomorphic to B_4 are E_8-irreducible, except for $B_4(\bar{t})$ when $p = 2$.

22
Proof. If $p \neq 2$ then the results of [14, p. 97] apply, showing $B_4(\ddagger)$ and $B_3(\ddagger)$ are E_8-irreducible. Now suppose $p = 2$. Lemma 7.4 shows $B_4(\ddagger)$ is contained in an A_7-parabolic. We claim $B_4(\ddagger)$ is E_8-irreducible. We have $L(E_8) \downarrow B_4(\ddagger) = 0100^2/1000^2/0010/1001/0000^4$. The module $V_{B_4}(1001)$ is 128-dimensional. Therefore the only possible Levi subgroup that could contain an irreducible B_4 with the same composition factors is E_7. But E_7 has no irreducible subgroups of type B_4 by Theorem 2. Therefore $B_4(\ddagger)$ is E_8-irreducible.

Lemma 7.6. All of the candidate subgroups in Lemma 7.1 isomorphic to A_2 are E_8-irreducible.

Proof. If $p > 3$ then Corollary 3.9 shows they are all E_8-irreducible. When $p = 3$ there are no A_2 candidate subgroups from Lemma 7.1, so let $p = 2$ and X be a candidate A_2. Then $L(E_8) \downarrow X = 11/11^{[r]}/30/03^{[r]}/03^{[r]}/(11 \otimes 11^{[r]})^3/00^4$ with $r \neq 0$. As before, we use Lemma 3.8. By considering the number of trivial composition factors, the only possible Levi subgroups containing an irreducible A_2 with the same composition factors as X are $L' = E_7, D_7, A_7$ or A_6. We can rule out all but D_7 because X has three 64-dimensional composition factors. There is no D_7-irreducible A_2 that shares the composition factors of X because there is no way of making a 14-dimensional self-dual module out of the composition factors of X (let alone two: $V_{D_7}(\lambda_1)$ occurs twice in $L(E_8) \downarrow D_7$). Therefore X is E_8-irreducible as claimed.

Lemma 7.7. All of the candidate subgroups in Lemma 7.1 isomorphic to D_4 or B_3 are E_8-irreducible.

Proof. If $p \neq 2$ then Corollary 3.9 shows each D_4 and B_3 candidate subgroup is E_8-irreducible. So suppose $p = 2$. First consider candidate subgroup isomorphic to D_4. If the embedding of D_4 has a non-zero field twist then it contains an E_8-irreducible A_2 (by Lemma 7.6) and must be E_8-irreducible itself. So consider $X = D_4 \rightarrow D_4^2$ via $(1000, 0010)$. We will use Lemma 3.8 and therefore need to do the usual analysis for X, where $L(E_8) \downarrow X = 1000^2/0100^2/0010^2/0001^2/1010/1001/0011/0000^4$, from Table 11. Using Table 14, the only possible Levi subgroups containing a D_4 with the same composition factors as X are $L' = E_7, D_7$ or A_7. We use Theorem 2 to rule out E_7, as it has no irreducible subgroup D_4 when $p = 2$. There are no D_7-irreducible D_4 subgroups in D_7. That leaves just $L' = A_7$. If $D \cong D_4 < A_7$ then $V_{A_7}(\lambda_1) \downarrow D = V_{D_4}(\lambda_1)$. But $L(E_8) \downarrow D$ has $V_{D_4}(2\lambda_1)$ as a composition factor, which means D does not have the same composition factors as X. Hence X is E_8-irreducible.

Now consider (still with $p = 2$) a candidate B_3 as in Lemma 7.1, call it Y. Then $L(E_8) \downarrow Y = 010/100^2/(100^{[r]})^2/010^{[r]}/001^2/(001^{[r]})^2/100 \otimes 001^{[r]}/001 \otimes 100^{[r]}/001 \otimes 001^{[r]}/000^4$ with $r \neq 0$ (from Table 11). As there are four trivial composition factors, the only possible Levi subgroups containing an irreducible B_3 with the same composition factors are $L' = E_7, D_7, A_7$ and A_6. We know from Theorem 2 that E_7 has no irreducible B_3 subgroups. Both A_6 and A_7 have no composition factors of dimension at least 64 so they are ruled out. Therefore $L' = D_7$ is the only remaining possibility. Suppose $B_3 \cong Z < D_7$ has the same composition factors as Y on $L(E_8)$. Since $V_{D_7}(\lambda_6)^* = V_{D_7}(\lambda_7)$ it follows that the only 64-dimensional composition factor of $L(E_8) \downarrow Y$, namely $001 \otimes 001^{[r]}$, is contained in $V_{D_7}(\lambda_2) \downarrow Z$. But then $V_{D_7}(\lambda_6) \downarrow Z$ must contain $100 \otimes 001^{[r]}$ and $V_{D_7}(\lambda_7) \downarrow Z$ must contain $001 \otimes 100^{[r]}$ (or vice versa). This implies that $V_{D_7}(\lambda_6) \downarrow Z$ is not the dual of $V_{D_7}(\lambda_7) \downarrow Z$, which is a contradiction. So no such Z exists and Y is E_8-irreducible.
Lemma 7.8. Suppose X is a candidate subgroup in Lemma 7.1 isomorphic to B_2. Then X is E_8-irreducible unless $p = 2$ and X is contained in $B^2_2(\dagger) < D_8$.

Proof. If $p \neq 2$ then Corollary 3.9 is enough for most of the candidate B_2 subgroups. There are two exceptions, both occurring when $p = 5$, namely $X = B_2 \hookrightarrow B_2B_2$ via $(10, 10)$ and $Y = B_2 \hookrightarrow B^2_2(\dagger)$ via $(10, 10^r)$ ($r \neq 0$). We show both are E_8-irreducible using Lemma 3.8. From Table 11, $L(E_8) \downarrow X = 02^6/10^4/20^2/12^4/00^2$. There are only two trivial composition factors which means only $L' = D_7$ or A_7 could possibly contain a B_2 with the same composition factors as X. There is no way of making an 8-dimensional module from the composition factors of $L(E_8) \downarrow X$ which rules out A_7. Similarly there is no way to make two copies of the same 14-dimensional module without using both trivial composition factors, but $L(E_8) \downarrow D_7 = \lambda_2/\lambda_2^2/\lambda_6/\lambda_7/0$, from Table 14. So $V_{D_7}(\lambda_1)^2$ cannot contain any trivial composition factors in a restriction to a B_2 sharing the composition factors of X. This proves X is E_8-irreducible.

Now consider Y, still with $p = 5$. Again, from Table 11,

$$L(E_8) \downarrow Y = 02/02^r/20/20^r/(10 \otimes 02^r)^2/(10^r \otimes 02)^2/00^2.$$

Therefore the only Levi subgroup that could contain an L'-irreducible B_2 with the same composition factors as Y is D_7. But $L(E_8) \downarrow Y$ has four 50-dimensional composition factors which, using Table 14, rules out D_7. Hence Y is E_8-irreducible.

If $p = 2$ then the only candidate subgroups are diagonal subgroups of $B^2_2(\dagger)$ and $B^2_2(\ddagger)$. Any subgroup of $B^2_2(\dagger)$ will not be E_8-irreducible. This is because $B^2_2(\ddagger) < B_4(\dagger)$ and Lemma 7.4 shows $B_4(\dagger)$ is contained in a parabolic subgroup of E_8 when $p = 2$. Now we consider diagonal subgroups of $B^2_2(\ddagger)$ with $p = 2$.

First, let $Z_1 = B_2 \hookrightarrow B^2_2(\dagger)$ via $(10, 10^r)$ ($r \neq 0$). Then

$$L(E_8) \downarrow Z_1 = 02^2/(02^r)^2/10^4/(10^r)^4/10 \otimes 02^r/(10 \otimes 10^r)^2/10^r \otimes 02/01 \otimes 11^r/01^r \otimes 11/00^8.$$

Since there are two 64-dimensional composition factors it follows (from Table 14) that the only Levi subgroups that could contain an irreducible B_2 with these composition factors are E_7 and D_7. Theorem 2 rules out E_7, so assume there is a B_2 contained D_7-irreducibly in D_7 with the same composition factors as Z_1. The 14-dimensional $V_{D_7}(\lambda_1)$ occurs in $L(E_8) \downarrow D_7$ and so $V_{D_7}(\lambda_1) \downarrow B_2$ includes two trivial composition factors because that is the only way to make a 14-dimensional module from the composition factors of $L(E_8) \downarrow Z_1$. The only possibility for a D_7-irreducible B_2 with two trivial composition factors is one contained irreducibly in B_6. From [14, Table 8.1],

$$L(E_8) \downarrow B_6 = \lambda_1^2/\lambda_2/\lambda_2^2/00^8.$$

This means the two, non-isomorphic, 64-dimensional composition factors of $L(E_8) \downarrow Z_1$ are contained in $V_{B_6}(\lambda_6)^2$ (note $V_{B_6}(\lambda_2)$ is 64-dimensional but on restricting to B_2 it cannot be equal to $01 \otimes 11^r$ or $01^r \otimes 11$). Clearly this cannot happen, which proves Z_1 is E_8-irreducible.

The same argument works for $B_2 \hookrightarrow B^2_2(\ddagger)$ via $(10, 02^r)$ ($r \neq 0$). It remains to consider $Z_2 = B_2 \hookrightarrow B^2_2(\ddagger)$ via $(10, 02)$. From Table 11,

$$L(E_8) \downarrow Z_2 = 10^4/01^4/20^4/02^6/21/12^2/30/03/13/04/00^12.$$

Using Table 14 (noting we have one 64-dimensional and 12 trivial composition factors), the possible Levi subgroups that could contain an irreducible B_2 with the same composition factors as Z_2
are D_7, E_7 and E_6. Theorems 1 and 2 rule out E_6 and E_7. As in the previous argument, it follows that such an irreducible B_2 contained in D_7 is contained in B_6. The one 64-dimensional composition factor, $V_{B_2}(13)$, is then equal to $V_{B_6}(\lambda_2) \downarrow B_2$. But there is no possible B_2 in B_6 that has $V_{B_6}(\lambda_2) \downarrow B_2 = V_{B_2}(13)$. Hence Z_2 is E_8-irreducible.

\[\square \]

7.2 Maximal $M = A_8$

We need to find all simple subgroups, of rank at least 2, that have an irreducible 9-dimensional module. By [23] we see that these are A_8, $B_4 (p \neq 2)$ embedded via $V_{B_4}(1000)$ and $A_2 < A_2^{\text{2}}$ where $V_{A_8} \downarrow A_2^{\text{2}} = (10, 10)$. It is shown in [14, p. 58] that $B_4 < A_8$ is conjugate to $B_4(\xi) < D_8$. Similarly, if $p \neq 3$, then A_2^{2} is conjugate to $A_2^{\text{2}} < D_8^{\text{2}} < D_8$ (each factor A_2 irreducibly embedded) [14, pp. 66-67]. The following lemma shows that when $p = 3$, the subgroup A_2^{2} is contained in a parabolic subgroup of E_8. Therefore all diagonal subgroups of A_2^{2} are contained in a parabolic subgroup of E_8. The proof is different in flavour from all of the arguments so far. We use finite subgroups and computations in Magma [4] to show A_2^{2} is contained in a D_7-parabolic.

Lemma 7.9. Let $p = 3$. The subgroup $X = A_2^{\text{2}} < A_8$, embedded via $V_{A_8}(\lambda_1) \downarrow A_2^{\text{2}} = (10, 10)$, is contained in a D_7-parabolic of E_8.

Proof. Lemma 3.8, along with Table 14 shows the only parabolic subgroup X can be contained in is a D_7-parabolic subgroup. To prove X is contained in a parabolic subgroup we first use Lemma 3.11 to show that the finite group $S = A_2(3) \times A_2(3) < X$ fixes the same subspaces as X on $L(E_8)$. To show Lemma 3.11 applies we have to check the three conditions. We have $L(E_8) \downarrow X = (11, 11)^3 / (00, 11)^6 / (00, 00)^3 / (00, 00) / (00, 00) / (00, 00)^5$ and hence conditions (i) and (iii) hold. Condition (ii) holds for all pairs of composition factors for which there are no non-trivial extensions between them. Using the Klineth formula [24, 10.85] we see that the only pairs of composition factors that have a non-trivial extension between them are $\{M_1, M_2\} = \{(11, 11), (11, 00)\}$, $\{(11, 00), (00, 00)\}$ and $\{(30, 00), (11, 00)\}$ up to duals and swaps. For all but the last pair, [8, Theorem 7.4] shows immediately that $\text{Ext}^1_X(M_1, M_2) \to \text{Ext}^1_X(M_1, M_2)$ is injective. To show the restriction map $\text{Ext}^1_{X}(30, 00), (11, 00)) \to \text{Ext}^1_{X}(10, 00), (11, 00))$ is injective it suffices to show $\text{Ext}^1_A(30, 11) \to \text{Ext}^1_A(30, 11)$ is injective. We know $\text{Ext}^1_A(30, 11)$ is 1-dimensional and the tilting module $T(30) = 11 |(30 + 00)| 11$ is indecomposable. We construct $T(30)$ as a direct summand of $10 \otimes 10 \otimes 10$. Therefore, if we show a direct summand of $10 \otimes 10 \otimes 10$ for $A_2(3)$ contains a non-trivial extension of 10 by 11, the restriction map must be injective. This last check is easily done using Magma [4].

We now show that S fixes a 14-dimensional abelian subalgebra of $L(E_8)$ that is ad-nilpotent of exponent 3 i.e. $(ad a)^3 = 0$ for all a. To do this we construct S as a normal subgroup of the maximal subgroup $(SL(3, 3) \otimes SL(3, 3)):2$ in $SL(9, 3)$. Doing this in Magma gives 11 generators for S, as 9×9 matrices over GF(3). We then write these 11 generators as words in the Magma generators of A_8. Finally, we write the words of A_8 generators in terms of the generators of E_8. This allows us to use Magma to find all 14-dimensional S-submodules of $L(E_8)$. There is a unique such S-submodule that is an abelian subalgebra, and it is ad-nilpotent of exponent 3.

So S and therefore X fixes a 14-dimensional abelian subalgebra of $L(E_8)$ that is ad-nilpotent of exponent 3. Exponentiating this subalgebra yields a 14-dimensional unipotent subgroup of E_8,
normalised by X. Therefore X is contained in a parabolic subgroup of E_8, as required.

7.3 Maximal $M = A_2E_6$

From Theorem 1, we have all of the E_6-irreducible subgroups of type A_2. They are diagonal subgroups of A_3^2, diagonal subgroups of $A_2\tilde{A}_2 < A_2G_2$ when $p = 3$ or conjugates of $A_2 \cong Y$, where Y acts on V_{27} as $W(22)$ with $p \neq 2$. Therefore all candidate subgroups contained in A_2E_6 are diagonal subgroups of A_2^4, $A_2A_2\tilde{A}_2$ or \tilde{A}_2Y. We consider these separately in the next three lemmas.

We fix the composition factors of $L(E_8) \downarrow A_2^4$ as follows (which is consistent with the restriction of $L(E_8)$ to A_2E_6 and of V_{27} and $L(E_6)$ to A_2^2 in Theorem 3.1):

$$L(E_8) \downarrow A_2^4 = (W(11), 00, 00, 00)/(00, W(11), 00, 00)/(00, 00, W(11))/\n(00, 00, W(11))/\n(00, 01, 01, 01)/(10, 01, 00, 00)/(10, 01, 00, 00)/(10, 00, 00, 00)/\n(01, 01, 00)/(01, 00, 00, 01)/(01, 00, 10, 01)/(00, 01, 01, 01)/(00, 00, 00, 00).$$

Lemma 7.10. Suppose $X \cong A_2$ is a diagonal subgroup of A_2^4 (with non-trivial projection to each simple factor). Then X is E_8-irreducible unless X is conjugate to $A_2 \hookrightarrow A_2^4$ via $(10, 10, 10, 10)$, $(10^r, 10, 10, 10)$ or $(10, 10^r, 10^r, 10^r)$.

Proof. Firstly, note that $A_2 \hookrightarrow A_2^4$ via $(10, 10, 10, 10)$, $(10^r, 10, 10, 10)$ or $(10, 10^r, 10^r, 10^r)$ is contained in a parabolic subgroup of A_2E_6. This follows from Theorem 1. It remains for us to show all other diagonal subgroups are indeed E_8-irreducible. The conjugacy classes are determined in [14, pp. 64-65]. If $p \neq 3$, we apply Corollary 3.9 (the composition factors are listed in Table 11). Now let $p = 3$. Then any $X \hookrightarrow A_2^4$ (except those we already know to be E_8-reducible) has four trivial composition factors on $L(E_8)$. Therefore the possible Levi subgroups that can contain an irreducible A_2 subgroup sharing the same composition factors are E_7, D_7, A_6 and D_4A_2 (using Table 14, Lemma 3.2 and Theorem 2). We use Table 10 to see that any E_7-irreducible A_2 does not have the same composition factors as X. The only D_7-irreducible A_2 subgroup is embedded via $V_{A_2}(11) + V_{A_2}(11)^{\tau}$ ($\tau \neq 0$). But this does not have the same composition factors as X either. Similarly, the only A_6-irreducible A_2 is embedded via $V_{A_2}(11)$ and this has six 7-dimensional composition factors, which is more than X has. Finally, the only D_4-irreducible A_2 subgroup is embedded via $V_{A_2}(11) + 00$. Therefore any D_4A_2-irreducible A_2 subgroup of D_4A_2 has nine trivial composition factors (using the restriction of $L(E_8) \downarrow D_4A_2$ in Table 14), which is more than X has. Hence X is E_8-irreducible.

Lemma 7.11. Suppose $X \cong A_2$ is a diagonal subgroup of $A_2A_2\tilde{A}_2 < A_2A_2G_2 < \tilde{A}_2E_6$ ($p = 3$). Then X is E_8-irreducible if and only if it is conjugate to one of the subgroups in Table 11.

Proof. First we must find the conjugacy classes of $A_2 \hookrightarrow A_2A_2\tilde{A}_2$. We have $C_{E_8}(G_2) = F_4$, hence $A_2A_2 < F_4$. It follows that there is an involution acting on A_2A_2, inducing a graph automorphism on both factors. We also have that $A_2 \cong G_2$. Therefore all of the conjugacy classes can be represented by $(10^a, 10^b, 10^c)$ or $(10^d, 01^e, 10^f)$ (with a, b, c and d, e, f not necessarily distinct for the moment). For X to be E_8-irreducible it must be both A_2E_6-irreducible and G_2F_4-irreducible. To satisfy the first of these conditions we must have $b \neq c$ and $e \neq f$ (from Theorem 1). To satisfy
the second condition we must have \(a \neq b \) (there is only one \(F_4 \)-reducible \(A_2 \) contained diagonally in \(A_2 A_2 \) when \(p = 3 \), and by considering composition factors we see it forces \(a \neq b \) rather than \(d \neq e \). Therefore, the subgroups in Table 11 represent all of the conjugacy classes of candidate subgroups which might be \(E_8 \)-irreducible. By considering their composition factors on \(L(E_8) \) we see there are no more conjugacies between them. It remains to show they are all \(E_8 \)-irreducible.

Suppose \(X \) is in one of the conjugacy classes of \(A_2 \) subgroups in Table 11. Then \(L(E_8) \downarrow X \) has only three trivial composition factors. Therefore among Levi subgroups, only \(E_7 \) and \(D_7 \) can contain an irreducible \(A_2 \) subgroup having the same composition factors as \(X \) (the proof of the previous lemma shows an irreducible \(A_2 \) subgroup of \(A_2 D_4 \) has more than three trivial composition factors). Theorem 2 rules out \(E_7 \). Any \(D_7 \)-irreducible \(A_2 \) does not have the same composition factors as \(X \) (in fact it has the same composition factors as \(A_2 \hookrightarrow \tilde{A}_2 \tilde{A}_2 \tilde{A}_2 \) via \((10, 10, 10[r]) \) \((r \neq 0) \) which was \(G_2 F_4 \)-reducible). Hence \(X \) is \(E_8 \)-irreducible.

Lemma 7.12. Suppose \(X \cong A_2 \) is a diagonal subgroup of \(\tilde{A}_2 Y < \tilde{A}_2 E_6 \) (where \(Y \cong A_2 \) acts on \(V_{27} \) via \(W_{A_2}(22) \), \(p > 2 \)). Then \(X \) is \(E_8 \)-irreducible.

Proof. The conjugacy classes in Table 11 follow from [14, p. 67] (noting that even when \(p = 3 \), \(E_6 \) contains \(Y.2 \) because \(Y < G_2 \) and \(Y.2 < G_2 \)). If \(p > 3 \), the \(E_8 \)-irreducibility follows from Corollary 3.9. So suppose \(p = 3 \) and let \(X \hookrightarrow \tilde{A}_2 Y \). Then \(L(E_8) \downarrow X \) has four trivial composition factors. Therefore the possible Levi subgroups that could contain an irreducible \(A_2 \) having the same composition factors as \(X \) are \(E_7, D_7, A_6 \) and \(D_4 A_2 \) (from the proof of Lemma 7.10). We may rule all of these out, using the same ideas as in the proof of Lemma 7.10, by considering the irreducible \(A_2 \) subgroups in each Levi subgroup and noting that they do not have the same composition factors as \(X \) on \(L(E_8) \).

Using the composition factors listed in Table 11 we see that there are no conjugacies between any of the \(E_8 \)-irreducible subgroups in the three different overgroups \(A_2^4, \tilde{A}_2 A_2 \tilde{A}_2 \) and \(\tilde{A}_2 Y \).

7.4 Maximal \(M = A_4^2 \)

By considering which simple groups have an irreducible 5-dimensional module we see that the only \(A_4 \)-irreducible simple subgroups (of rank at least 2) are \(A_4 \) and \(B_2 \) \((p \neq 2) \). So the candidate subgroups contained in \(A_4^2 \) are diagonal subgroups of type \(A_4 \) and \(B_2 \) \((p \neq 2) \). There is no prime restriction on \(A_4 \) subgroups in \(E_8 \) in [14] so we immediately use [14, Table 8.1] to see that all \(A_4 \) diagonal subgroups (with a non-trivial projection to both \(A_4 \) factors) are \(E_8 \)-irreducible, and the conjugacy classes of such subgroups are as in Table 11. For the \(B_2 \) subgroups we note that \(B_2^2 < A_4^2 \) is actually conjugate to \(B_2^2(1) < D_8 \) \((p \neq 2) \), as is shown in [14, p. 63]. Therefore, we have already considered them in Lemma 7.8.

7.5 Maximal \(M = G_2 F_4 \)

The only possible candidate subgroups contained in \(G_2 F_4 \) are of type \(A_2 \) and \(G_2 \). Theorem 3.4 lists all \(F_4 \)-irreducible subgroups of type \(A_2 \) and \(G_2 \). All such subgroups of type \(A_2 \) are contained
in \(\tilde{A}_2 A_2 \) in \(F_4 \). Therefore any \(A_2 \) candidate subgroup contained in \(G_2 F_4 \) will be conjugate to one in \(\tilde{A}_2 C_{E_8} (\tilde{A}_2) = \tilde{A}_2 E_6 \). Therefore we have already considered them in Section 7.3.

There is only one \(F_4 \)-irreducible subgroup of type \(G_2 \), namely the maximal \(G_2 \) when \(p = 7 \). Therefore we finish this section by proving the following lemma.

Lemma 7.13. Suppose \(X \cong G_2 \) is a candidate subgroup contained in \(G_2 F_4 \). Then \(X \) is conjugate to \(G_2 G_2 < G_2 F_4 \) (\(p = 7 \)) via \((10^6, 10^1)\) or \((10, 10)\). All such candidate subgroups are \(E_8 \)-irreducible except for \(G_2 \rightarrow G_2 G_2 \) (\(p = 7 \)) via \((10, 10)\).

Proof. The previous discussion shows that a candidate subgroup must be conjugate to a diagonal subgroup of \(G_2 G_2 \). Corollary 3.9 shows that the subgroups \(G_2 \rightarrow G_2 G_2 < G_2 F_4 \) (\(p = 7 \)) via \((10^6, 10^1)\) or \((10, 10)\) is contained in a parabolic subgroup of \(E_8 \). We use the same approach as in the proof of Lemma 7.9. First, let \(S = G_2(7) < X \). We show Lemma 3.11 applies to \(S < X \) acting on \(L(E_8) \). We have \(L(E_8) \downarrow X = 30/11^2/20^2/10^3/100 \), so conditions (i) and (iii) of the lemma hold. Condition (ii) holds directly from \([8, \text{Theorem 7.4]}\).

We now show that \(S \) fixes a 14-dimensional, abelian subalgebra of \(L(E_8) \) that is ad-nilpotent of exponent 3. We use Magma [4] to check this. First we need to write down generators of \(S \) in terms of root group elements. We will use the notation \(a_1 \ldots a_8 \) for the root \(a_1 + \cdots + a_8 a_8 \) in \(E_8 \). Consider \(\tilde{A}_2 E_6 < E_8 \). The generators for \(\tilde{A}_2 \) are \(x_{\pm a_8} (t) \) and \(x_{\pm (23465432)} (t) \), where \(t \in K \). The generators for \(E_6 \) are \(x_{\pm a_1} (t), \ldots, x_{\pm a_6} (t) \) and the generators for \(F_4 \) are \(x_{a_1} (t) x_{a_6} (t), x_{-a_1} (t) x_{-a_6} (t), x_{a_3} (t) x_{a_5} (t), x_{-a_3} (t) x_{-a_5} (t) \) and \(x_{a_4} (t) \) and \(x_{a_4} (t) \). Let \(AB = G_2(7) G_2(7) < G_2 F_4 \). The following elements are a set of generators for \(A \):

\[
\begin{align*}
x_{\gamma_1} &= x_{22343221}(1) x_{12343221}(6) x_{12244321}(1), \\
x_{-\gamma_1} &= x_{-(22343221)}(1) x_{-(12343221)}(6) x_{-(12244321)}(1), \\
x_{\gamma_2} &= x_{23465432}(1), \\
x_{-\gamma_2} &= x_{-(23465432)}(1).
\end{align*}
\]

From [33, Prop. G.1], the following elements are a set of generators for \(B \):

\[
\begin{align*}
x_{\gamma_1'} &= x_{a_1}(1) x_{a_3}(1) x_{a_1+a_3}(3) x_{a_2}(1) x_{a_5}(1) x_{a_6}(1) x_{a_5+a_6}(3), \\
x_{-\gamma_1'} &= x_{-a_1}(2) x_{-a_3}(2) x_{-a_1-a_3}(2) x_{-a_2}(1) x_{-a_5}(2) x_{-a_6}(2) x_{-a_5-a_6}(2), \\
x_{\gamma_2'} &= x_{a_3+a_4}(1) x_{a_2+a_4}(3) x_{a_4+a_5}(6), \\
x_{-\gamma_2'} &= x_{-a_3-a_4}(1) x_{a_2-a_4}(5) x_{a_4-a_5}(6).
\end{align*}
\]

The map \(x_{\pm \gamma_1} \rightarrow x_{\pm \gamma_1'} \) gives an isomorphism \(A \rightarrow B \). Therefore

\[
S = \langle x_{\gamma_1} x_{-\gamma_1'}, x_{-\gamma_1} x_{-\gamma_1'}, x_{\gamma_2} x_{-\gamma_2'}, x_{-\gamma_2} x_{-\gamma_2'} \rangle.
\]

We check that \(S \cong G_2(7) \) and that there is a unique 14-dimensional abelian subalgebra of \(L(E_8) \) that is ad-nilpotent of exponent 3, which is fixed by \(S \). Therefore, by Lemma 3.11 \(X \) fixes this subalgebra and exponentiating gives a unipotent group normalised by \(X \). Hence \(X \) is contained in a parabolic subgroup of \(E_8 \). \(\square \)
7.6 Maximal $M = B_2$ ($p \geq 5$)

The maximal B_2 is the only candidate subgroup and is E_8-irreducible by maximality.

This completes the proof of Theorem 3.

8 Corollaries

Corollary 1 follows from Tables 7–11, noting that all G-irreducible conjugacy class representatives have a unique set of composition factors on $L(G)$, apart from the one exception in the statement. Corollary 3 also follows immediately from Tables 7–11. Corollary 4 follows from the proofs of Lemma 3.3, Theorem 3.4 and Theorems 1–3.

Corollary 2 requires more work. First we need a technical lemma for A_2 subgroups when $p = 3$.

Lemma 8.1. Let $p = 3$ and $A_2^p < A_8$ be embedded via $V_{A_8}(\lambda) \downarrow A_2^p = (10, 10)$. If $Y_1 = A_2 \hookrightarrow A_2^p$ via $(10, 10^{[r]})$ and $Y_2 = A_2 \twoheadrightarrow A_2^p$ via $(10, 01^{[r]})$ (with $r \neq 0$ in both) then the following modules have the indicated socle series:

1. $V_{A_8}(\lambda_1 + \lambda_8) \downarrow Y_1 \cong V_{A_8}(\lambda_1 + \lambda_8) \downarrow Y_2 = (11 + 11^{[r]})(11 \otimes 11^{[r]} + 00^2)(11 + 11^{[r]})$,
2. $V_{A_8}(\lambda_3) \downarrow Y_1 = ((11 + 11^{[r]})(11 \otimes 11^{[r]} + 30 + 30^{[r]} + 00^3)(11 + 11^{[r]})) + 00^{1-i}$ with $i = 0$ or 1,
3. $V_{A_8}(\lambda_3) \downarrow Y_2 = ((11 + 11^{[r]})(11 \otimes 11^{[r]} + 30 + 30^{[r]} + 00^3)(11 + 11^{[r]})) + 00^{1-i}$ with $i = 0$ or 1.

Proof. For part (1) note that $V_{A_8}(\lambda_1) \otimes V_{A_8}(\lambda_8) = V_{A_8}(0)|V_{A_8}(\lambda_1 + \lambda_8)|V_{A_8}(0)$ and $(V_{A_8}(\lambda_1) \downarrow Y_1) \otimes (V_{A_8}(\lambda_8) \downarrow Y_1) \cong (V_{A_8}(\lambda_1) \downarrow Y_2) \otimes (V_{A_8}(\lambda_8) \downarrow Y_2) = 10 \otimes 10^{[r]} \otimes 01 \otimes 01^{[r]}$. It is therefore enough to prove for an A_2 that the self-dual module $M := 10 \otimes 10^{[r]} \otimes 01 \otimes 01^{[r]}$ has socle series $00|(11 + 11^{[r]})(11 \otimes 11^{[r]} + 00^2)(11 + 11^{[r]})|00$. The composition factors are as indicated, so we need to show the structure of the module is as claimed. Firstly, $M = (10 \otimes 01) \otimes (10^{[r]} \otimes 01^{[r]}) = (00|11|00) \otimes (00|11^{[r]}|00)$ and hence M only has a 1-dimensional trivial submodule and a 1-dimensional trivial quotient. If there is a trivial direct summand then M does not have enough composition factors that extend the trivial module (see Lemma 3.14) to block all of the other three trivial composition factors, leading to a trivial submodule or quotient of larger dimension. Hence M has no trivial direct summands. Furthermore, the composition factor $11 \otimes 11^{[r]}$ does not occur as a submodule or quotient of M. This is because if we restrict to $S \cong SL(3, 3)$ inside Y_1 acting as $10 \otimes 10$ on $V_{A_8}(\lambda_1)$ then $V_S(11) \otimes V_S(11)$ does not occur as a submodule or quotient of $(V_S(00)|V_S(11)|V_S(00)) \otimes (V_S(00)|V_S(11)|V_S(00))$ (checked using Magma [4]). Therefore Socle(M) = $11^a + (11^{[r]}b + 00$, and since M is self-dual it follows that a and b are at most 1. Moreover, swapping the field twists 0 and r in M does not change M since it is also symmetrical, hence $a = b$. Suppose $a = b = 1$. Then $M = (11 + 11^{[r]} + 00)(11 \otimes 11^{[r]} + 00^2)(11 + 11^{[r]} + 00)$ since $11 \otimes 11^{[r]}$ does not extend the trivial module. But no such M exists since the module in the middle of M does not extend the trivial module, hence there are three trivial modules for the socle to block. This is impossible because $\text{Ext}^3_{A_2}(11, 00) \cong K \cong \text{Ext}^3_{A_2}(11^{[r]}, 00)$ by Lemma 3.14. Hence $a = b = 0$ and the socle is 00. Now consider the socle of $M/00$. Since $11 \otimes 11^{[r]}$ is not in the socle of M and does not extend the trivial module it is not in the socle of $M/00$. Similarly, the socle does not have a composition.
factor isomorphic to 00. Hence the socle must be $11 + 11^{[r]}$, again by self-duality and symmetry. It therefore follows that M has the required socle series, since there are no non-trivial extensions between $11 \otimes 11^{[r]}$ and 00.2

For part (2) we need to prove that $M := \bigwedge^3(10 \otimes 10^{[r]})$ has one of the two indicated socle series $(i = 0$ or 1). The composition factors are easily checked to be correct and we again consider $S \cong SL(3,3)$ inside Y_1, acting as $10 \otimes 10$ on $V_A(x\lambda_1)$. Using Magma, we check that $\bigwedge^3(10 \otimes 10) \downarrow S = 22 + 00 + (11)(30 + 03)(11)((30 + 00)(11)^2$ and $11 \otimes 11 \downarrow S = 22 + 00 + (11)(30 + 03 + 00)(11)$. Hence we see that none of $11 \otimes 11^{[r]}$, 30 or $30^{[r]}$ are submodules or quotients of the Y_1-module M. Lemma 3.14 shows that only 11 and $11^{[r]}$ extend these three Y_1-modules and so M must have the structure $((11 + 11^{[r]}))(11 \otimes 11^{[r]} + 30 + 03^{[r]})((11 + 11^{[r]}))+00$ or $(11 + 11^{[r]}))(11 \otimes 11^{[r]} + 30 + 03 + 00)((11 + 11^{[r]}))$.

The last part is similar to the previous one. Let $M := \bigwedge^3(10 \otimes 01^{[r]})$. In this case we consider the subgroup $S' \cong SL(3,3)$ of Y_2 acting as $10 \otimes 01$ on $V_A(x\lambda_1)$. Then $\bigwedge^3(10 \otimes 01) \downarrow S' = 22 + 00 + ((11 + 11)(30 + 03 + 11)(11) + (11)(30 + 03 + 11)((11 + 11))(11)$. It follows that $11 \otimes 11^{[r]}$ could occur as a submodule or a quotient but not a direct summand of the Y_2-module M. Furthermore, 30 and $03^{[r]}$ cannot occur as submodules or quotients of the Y_2-module M. Using Lemma 3.14 again, we conclude that M must have one of the structures indicated, completing the proof.

Lemma 8.2. Let $G = E_7$, $p = 2$ and $X = G_2 \rightarrow G_2G_2 < G_2C_3$ via $(10,10)$. Then $V_{56} \downarrow X$ is indecomposable.

Proof. It is enough to prove that $V_{56} \downarrow S$ is indecomposable where $S = G_2(2) < X$. By [18, Table 10.2], $V_{56} \downarrow G_2C_3 = (00,100)((10,100) + (00,001))((00,100))$. This module is constructed from $M_1 := (00,100)((10,100))((00,100))$ and $M_2 := \bigwedge^3((00,100))((00,001))((00,100)$ as follows: take a maximal submodule of M_1 and M_2, call it M_3 and then quotient M_3 by a diagonal submodule of $\text{soc}(M_3) = (00,100) + (00,100)$. We construct such a module for $G_2(2) \times C_3(2)$ in Magma. This module is still indecomposable when restricted to S and in fact has socle series $(00 + 10 + 01)((20 + 00)(20 + 00)(10 + 01 + 00)$.

Proof of Corollary 2 The strategy for the proof is as follows. For each exceptional algebraic group G and each reductive, maximal connected subgroup M of G we find all simple M-irreducible connected subgroups of rank at least 2 that are not G-irreducible from the proofs of Lemma 3.3, Theorem 3.4 and Theorems 1–3. Given such a subgroup X we then check whether it satisfies the hypothesis of Corollary 2. That is to say, we check whether X is contained reducibly in another reductive, maximal connected subgroup M'.

The result is trivial for $G = G_2$.

For $G = F_4$, we follow the proof of Theorem 3.4 in [32] noting that the only subgroup that is M-irreducible for some M, but not F_4-irreducible is $X = A_2 \hookrightarrow A_2\tilde{A}_2$ via $(10,01)$ when $p = 3$. Suppose X is contained reducibly in another reductive, maximal connected subgroup M' or contained in a Levi subgroup. Consideration of the composition factors of X on V_{26} shows that the only possibility is $M' = B_4$ (which contains a Levi subgroup B_3T_1). The possibilities for a subgroup A_2 with the same composition factors as X contained in B_4 are $V_{B_3}(1000) \downarrow A_2 = 11 + 00^2$ or $00[11]00$. By [32, Prop 4.2.2], neither of these subgroups is conjugate to X. Hence X is not contained in B_4 and satisfies the hypothesis of the corollary. It is therefore listed in Table 1.

Now let $G = E_6$. The only simple connected subgroups which are M-irreducible for some M but
not G-irreducible can immediately be found from the proof of Theorem 1. Most are contained in a D_5 Levi subgroup because they are contained in a maximal subgroup B_4 of F_4. These subgroups do not satisfy the hypothesis of Corollary 2. The remaining possibilities are $A_2 \hookrightarrow A_2^2$ via $(10, 10, 10)$ and $A_2 \hookrightarrow A_2 A_2 < A_2 G_2 (p = 3)$ via $(10, 10)$. By the proof of Lemma 5.2, the first subgroup is contained in a D_4 Levi subgroup when $p \neq 3$ and is contained F_4-reducibly in F_4 when $p = 3$. Therefore it does not satisfy the hypothesis. Now let $p = 3$ and consider $X = A_2 \hookrightarrow A_2 A_2 < A_2 G_2$ via $(10, 10)$. Suppose X is contained reducibly in another reductive, maximal connected subgroup or contained in a Levi subgroup. Consideration of the composition factors of X on V_{27} shows that X is contained in a Levi A_3. We have $L(E_6) \downarrow A_3 = V_{A_3}(\lambda_1 + \lambda_5) + V_{A_3}(\lambda_3)^2 + 0^3$ (when $p = 3$ the centres of E_6 and A_3 coincide). By considering the finite subgroup $A_2(9) < X$ and using the same method as in the proof of Lemma 8.2, we see that X has two direct summands of dimension 21 on $L(E_6) \downarrow$ (and only one trivial direct summand). Therefore X is not contained in a Levi A_3 and satisfies the hypothesis of Corollary 2. Therefore X is listed in Table 1.

For $G = E_7$ the result is checked in the same way as for E_6. By Lemmas 6.1, 6.3 and 6.4 the only subgroups which are M-irreducible for some M but not E_7-irreducible are $X_1 = C_4 < A_7$, $X_2 = D_4 < A_7 (p = 2)$, $X_3 = A_2 < A_7 (p = 2)$, $Y = A_2 \hookrightarrow A_2 A_2^\prime < A_2 A_5 (p = 3)$ via $(10, 10)$ and $Z = G_2 \hookrightarrow G_2 G_2 < G_2 C_3 (p = 2)$ via $(10, 10)$.

First consider X_1. When $p \neq 2$, X_1 is contained in a Levi E_6 subgroup since its centraliser in E_7 contains a torus (see the proof of Lemma 6.1) and hence X_1 does not satisfy the hypothesis of the corollary. Now let $p = 2$. Suppose X_1 is contained in another reductive, maximal connected subgroup or contained in a Levi subgroup. Consideration of the composition factors of X_1 on V_{56} shows that the only possibilities are that X_1 is contained in E_6 or $A_1 F_4$. The connected component of the centraliser in E_7 of X_1 is a 1-dimensional connected unipotent subgroup (see the proof of Lemma 6.1). Therefore, X_1 is not contained in E_6 or $A_1 F_4$ since the connected component of the centraliser of X_1 would contain T_1 or an A_1, respectively. Hence X_1 satisfies the hypothesis of Corollary 2 and is listed in Table 1.

Now consider X_2. Suppose X_2 is contained in another reductive, maximal connected subgroup or contained in a Levi subgroup. As with X_1, consideration of the composition factors of X_2 on V_{56} shows that the only possibilities are that X_2 is contained in E_6 or $A_1 F_4$. By [14, Table 8.6], $V_{56} \downarrow A_7 = \lambda_2 + \lambda_6$, and therefore $V_{56} \downarrow X_2 = (0|\lambda_2|0)^2$. The restrictions of V_{56} to E_6 and $A_1 F_4$ are as follows: $V_{56} \downarrow E_6 = \lambda_1 + \lambda_6 + 0^2$, by [14, Table 8.6] and $V_{56} \downarrow A_1 F_4 = (1, 0001) + (3, 0000)$, by [18, Table 10.2]. Therefore, X_2 is not contained in E_6 or $A_1 F_4$ and hence X_2 satisfies the hypothesis of Corollary 2.

The last subgroup of A_7 to consider is X_3. This A_2 subgroup is contained in D_4 and is the group of fixed points of a triality automorphism of D_4 induced by an element t of E_7. By [16, Prop. 1.2], the full centraliser of t is either a Levi subgroup or $A_2 A_5$. Since there are no $A_2 A_5$-irreducible A_2 subgroups when $p = 2$, it follows that X_3 is contained either in a Levi subgroup or M'-reducibly in a reductive, maximal connected subgroup M'. Hence X_3 does not satisfy the hypothesis of Corollary 2.

Next consider Y. Suppose Y is contained in another reductive, maximal connected subgroup or contained in a Levi subgroup. Consideration of the composition factors of Y on V_{56} shows that Y is contained in A_7. The proof of Lemma 6.3 shows Y is not contained in A_7 and so Y satisfies the hypothesis of the corollary and is in Table 1.
Finally, consider Z. If Z does not satisfy the hypothesis of the corollary then Z is contained in an E_8 Levi subgroup. From Table 13 it follows that $V_{56} \downarrow E_6 = \lambda_1 + \lambda_6 + 0^2$. Lemma 8.2 shows that Z does not have any trivial direct summands on V_{56} and hence Z is not contained in E_6. Therefore, Z satisfies the hypothesis and is listed in Table 1.

Finally, let $G = E_8$. The proof of Theorem 3 yields the candidate subgroups that are not G-irreducible. They are those listed in Table 1. It remains to prove that they satisfy the hypothesis of Corollary 2, that is that they are not contained reducibly in another reductive, maximal connected subgroup or contained in a Levi subgroup.

First, consider $X = B_4(\xi) < D_8$, with $p = 2$. The proof of Lemma 7.4 shows X is only contained in D_8 and not A_8 or a Levi A_7, hence it satisfies the hypothesis of the corollary.

Next, consider the diagonal subgroups of $B_2^2(\xi) \ (p = 2)$. Consideration of their composition factors on $L(E_8)$ shows that the only possibilities for another maximal subgroup or Levi subgroup containing them are A_8 or A_4 (or a Levi A_7, A_3A_4 or A_3A_3 but they are contained in A_8 or A_4^2). First, let $X_1 = B_2 \hookrightarrow B_2^2(\xi)$ via $(10, 10[1])$ with $r \neq 0$. Then X_1 contains a subgroup $S_1 \cong Sp(4, 2)$ embedded in D_8 via $01 \otimes 01$. Using Magma [4], we check that $\Lambda^2(V_{S_1}(01 \otimes V_{S_1}(01))$ has an indecomposable direct summand of dimension 88. Therefore X_1 has an indecomposable direct summand of $L(E_8)$ of dimension at least 88. But the largest dimension of a direct summand of $L(E_8) \downarrow A_8^2$ is 50 and of $L(E_8) \downarrow A_8$ is 84, hence X_1 is not a subgroup of A_8^2 or A_8. To prove $X_2 = B_2 \hookrightarrow B_2^2(\xi)$ via $(10, 01[1]) \ (r = 0)$ is not contained in A_8^2 we consider the parity of r. If r is even then X_2 contains a subgroup $S_2 \cong Sp(4, 4)$ embedded in D_8 via $01 \otimes 10 = 11$. If r is odd then X_2 contains a subgroup $S_3 \cong Sp(4, 4)$ embedded in D_8 via $01 \otimes 20 = 21$. Again using Magma, we find that both $\Lambda^2(V_{S_2}(11))$ and $\Lambda^2(V_{S_3}(21))$ are indecomposable (of dimension 120). Therefore, for all r, the subgroup X_2 has a 120-dimensional indecomposable direct summand on $L(E_8)$ and is not a subgroup of A_8^2 or A_8. Hence both X_1 and X_2 satisfy the hypothesis of Corollary 2.

Now let $p = 3$ and consider $Y_1 = A_2 \hookrightarrow A_2^2$ via $(10, 10[1])$ and $Y_2 = A_2 \hookrightarrow A_2^2$ via $(10, 01[1]) \ (r \neq 0$ in both cases). Consideration of their composition factors on $L(E_8)$ shows that the only reductive, maximal connected subgroup that can contain Y_1 or Y_2 (other than A_8) is D_8 and the only Levi subgroup is D_7. So it suffices to show that Y_1 and Y_2 are not contained in D_8. By Theorem 3.1, we have $L(E_8) \downarrow D_8 = V_{D_8}(\lambda_2) + V_{D_8}(\lambda_7)$ where $V_{D_8}(\lambda_2)$ is 120-dimensional and $V_{D_8}(\lambda_7)$ is 128-dimensional. But Lemma 8.1 shows Y_1 and Y_2 have a 79-dimensional indecomposable summand and two indecomposable direct summands of dimension at least 83 on $L(E_8)$. Hence neither Y_1 nor Y_2 is contained in D_8 and they both satisfy the hypothesis of the corollary.

Finally, let $p = 7$ and $Z = G_2 \hookrightarrow G_2G_2 < G_2F_4$ via $(10, 10)$. Other than G_2F_4, the only reductive, connected maximal subgroup that can contain Z is D_8 and the only Levi subgroup is D_7. There is only one D_8-conjugacy class of G_2 subgroups with the same composition factors as Z on $L(E_8)$, with $V_{D_8}(\lambda_1) \downarrow G_2 = V_{G_2}(01) + V_{G_2}(00)^2$. This G_2 is contained in a D_7 Levi subgroup of D_8 (and E_8) and therefore $L(E_8) \downarrow G_2$ has a trivial submodule. However, restricting from $L(E_8) \downarrow G_2F_4$ in [18, Table 10.1], we find that $L(E_8) \downarrow Z = 10 \otimes 20 + 01^2 + 11$. Since $\text{Hom}_{G_2}(00, 10 \otimes 20) = \text{Hom}_{G_2}(10, 20) = 0$, we see that $L(E_8) \downarrow Z$ has no trivial submodules. Hence Z is not contained in D_7 and does satisfy the hypothesis of Corollary 2.

\[\Box \]
9 Variations of Steinberg’s Tensor Product Theorem

We need some background for the next set of corollaries. Let X be a simple, simply connected algebraic group over an algebraically closed field K of characteristic $p < \infty$. We recall Steinberg’s tensor product theorem [28]. It states that if $\phi: X \to SL(V)$ is an irreducible rational representation, then we can write $V = V_1^{[r_1]} \otimes \ldots \otimes V_k^{[r_k]}$, where the V_i are restricted X-modules and the r_i are distinct. The main result of [17] generalises this conclusion to the situation where ϕ is a rational homomorphism from X to an arbitrary simple algebraic group G. We describe this generalisation now. Recall the definition of a subgroup being G-cr and of being restricted from Section 1.

Theorem 9.1. [17, Corollary 1] Assume p is good for G. If X is a connected simple G-cr subgroup of G, then there is a uniquely determined commuting product $Y_1 \ldots Y_k$ with $X \leq Y_1 \ldots Y_k \leq G$, such that each Y_i is a simple restricted subgroup of the same type as X, and each of the projections $X \to Y_i/Z(Y_i)$ is non-trivial and involves a different field twist.

Using our classification of G-irreducible subgroups, we can investigate to what extent Theorem 9.1 is true in bad characteristics for simple, connected G-irreducible subgroups of rank at least 2. For $G = G_2, F_4, E_6$ and E_7 the bad characteristics are 2, 3 and for $G = E_8$ they are 2, 3, 5. To save repeating ourselves, we will say a subgroup X satisfies the conclusion of Theorem 9.1 if there is a uniquely determined commuting product $Y_1 \ldots Y_k$ with $X \leq Y_1 \ldots Y_k \leq G$, such that each Y_i is a simple restricted subgroup of the same type as X, and each of the projections $X \to Y_i/Z(Y_i)$ is non-trivial and involves a different field twist.

Corollary 9.2. Let $G = G_2$ and X be a simple, connected irreducible subgroup of rank at least 2. Then either X satisfies the conclusion of Theorem 9.1 or $p = 3$ and $X = \tilde{A}_2$.

Proof. From Lemma 3.3 we know the only G_2-irreducible subgroups which are simple and of rank at least 2 are A_2 and \tilde{A}_2 ($p = 3$). Both are maximal subgroups, so we only have to check whether they are restricted for $p = 2, 3$. To do this we use Table 7 which shows A_2 is restricted for both $p = 2, 3$ but \tilde{A}_2 is not restricted for $p = 3$.

Corollary 9.3. Let $G = F_4$ and X be a simple, connected irreducible subgroup of rank at least 2. Then either X satisfies the conclusion of Theorem 9.1 or $p = 2$ and X is conjugate to one of the following subgroups:

1. C_4;
2. \tilde{D}_4;
3. $A_2 \hookrightarrow A_2\tilde{A}_2$ via any G-irreducible embedding;
4. $B_2 \hookrightarrow B_2^\times$ via (10, 02).

Proof. Using the proof of Theorem 3.4 we find that for each simple F_4-irreducible connected subgroup X there is at most one commuting product of restricted groups, of the same type as X, containing X as a diagonal subgroup with distinct field twists. We have to check if the subgroups in the possible commuting product are indeed restricted (that is the only obstruction to the conclusion of Theorem 9.1).
If the possible commuting product is just X itself, then we use Table 8 to check whether X is restricted or not and hence whether X satisfies the conclusion of Theorem 9.1. This leads to the subgroups in (1), (2) and (4) as well as $A_2 \hookrightarrow \tilde{A}_2 \tilde{A}_2$ via $(10,10)$ and $(10,01)$ in (3). Note that the subgroup in (4), namely $B_2 \hookrightarrow B_2^3$ via $(10,02)$, does not satisfy the conclusion of Theorem 9.1: firstly, it is not itself 2-restricted; secondly, despite appearances the twists in the two factors are not distinct, as 02 is just our notation for an endomorphism of B_2 involving a graph automorphism, which is untwisted although it happens to induce a field twist when applied to $V_{B_2}(10)$.

Now let $X \cong A_2$. We see that the only commuting product of A_2 subgroups containing X as a diagonal subgroup with distinct field twists is $A_2 \tilde{A}_2$ (or just X itself which is covered above). Since \tilde{A}_2 is not 2-restricted ($L(F_4) \downarrow \tilde{A}_2 = W(11)/W(20)^3/W(02)^3/00^2$) it follows that when $p = 2$, the subgroup X does not satisfy the conclusion of Theorem 9.1. When $p = 3$, both A_2 and \tilde{A}_2 are 3-restricted and so X satisfies the conclusion of Theorem 9.1.

Let $X \cong B_2$. Then $p = 2$ and the possible commuting product is B_2^2, containing X diagonally with distinct field twists. The two B_2 factors are restricted ($L(F_4) \downarrow B_2 = 10^5/01^5/00^2$) and hence X satisfies the conclusion of Theorem 9.1.

Corollary 9.4. Let $G = E_6$ and X be a simple, connected irreducible subgroup of rank at least 2. Then either X satisfies the conclusion of Theorem 9.1 or $p = 2$ or 3 and X is conjugate to one of the following subgroups:

1. maximal A_2 ($p = 3$);
2. $A_2 \hookrightarrow A_2 \tilde{A}_2 < A_2 G_2$ ($p = 3$) via $(10[r], 10[s])$ ($rs = 0$);
3. C_4 ($p = 2$);
4. D_4 ($p = 2$);
5. $A_2 \hookrightarrow A_2^3$ ($p = 2$) via:
 a. $(10, 10, 01)$,
 b. $(10, 10, 10[r])$ ($r \neq 0$),
 c. $(10, 10, 01[r])$ ($r \neq 0$),
 d. $(10, 10[r], 10[r])$ ($r \neq 0$),
 e. $(10, 01[r], 01[r])$ ($r \neq 0$).

Proof. We proceed as we did for F_4. The proof of Theorem 1 shows that for each simple E_6-irreducible connected subgroup X, there is at most one commuting product of restricted groups, of the same type as X, containing X as a diagonal subgroup with distinct field twists. When this is just X, Table 9 is used to determine whether X is restricted or not and hence whether X satisfies the conclusion of Theorem 9.1. This yields subgroups (1), (3), (4) and (5)a in the conclusion of the corollary.

Now let $X \cong A_2$, and first suppose $X \hookrightarrow A_2 \tilde{A}_2 < A_2 G_2$ via $(10[r], 10[s])$ when $p = 3$. Because \tilde{A}_2 is not 3-restricted ($L(G) \downarrow \tilde{A}_2 = 30/03/11^2/00^2$) it follows that X does not satisfy the conclusion of Theorem 9.1. Now suppose $X < A_2^3$. Since \tilde{A}_2 is both 2-restricted and 3-restricted, if X is a
diagonal subgroup with three distinct field twists then X satisfies the conclusion of Theorem 9.1
for $p = 2, 3$. If X has two distinct field twists then it is contained in $\bar{A}_2 A < \bar{A}_2^3$ or $\bar{A}_2 B < \bar{A}_2^3$
where $A = A_2 \rightarrow \tilde{A}_2^5$ via (10, 10) and $B = A_2 \rightarrow \tilde{A}_2^6$ via (10, 01). We have $L(E_6) \downarrow A = W(11)/W(20)/W(02)/W(03)/W(01)/W(02)$ and $L(E_6) \downarrow B = W(11)/W(02)$. It follows that B is both 2-restricted and 3-restricted, but A is only 3-restricted. Therefore X satisfies the conclusion of Theorem 9.1 unless $p = 2$ and it is contained in $\bar{A}_2 A$.

Corollary 9.5. Let $G = E_7$ and X be a connected, simple irreducible subgroup of rank at least 2.
Then either X satisfies the conclusion of Theorem 9.1 or $p = 2$ or 3 and X is conjugate to one of the following subgroups:

1. $A_2 \rightarrow \bar{A}_2 A_2^3 < A_2 A_5$ (where $A_2^{(3)}$ is embedded in A_5 via $V_{A_2}(20)$);
2. $G_2 \rightarrow \bar{G}_2 G_2 < G_2 C_3$ (p = 2) via (10$^{|r|}$, 10$^{|s|}$) ($rs = 0$).

Proof. Studying the proof of Theorem 2, specifically Lemmas 6.1, 6.3 and 6.4, we find that for each subgroup X there is at most one commuting product of restricted groups, of the same type as X, containing X as a diagonal subgroup with distinct field twists. As before, it remains to check whether the groups in the product are restricted.

From Table 10, we see that A_7 and D_4 ($p > 2$) are restricted for $p = 2, 3$. Let $X = A_2 \rightarrow \tilde{A}_2 A_2^{(3)}$ via any G-irreducible embedding. The only possibility for a commuting product of A_2 restricted subgroups containing X as a diagonal subgroup with distinct field twists is $\bar{A}_2 A_2^{(3)}$. Both \tilde{A}_2 and $A_2^{(3)}$ are 3-restricted $(L(G) \downarrow A_2 = W(11)/10^{15}/01^{15}/00^{35}$ and $L(G) \downarrow A_2^{(3)} = 22/21^{3}/12^{3}/W(11)/00^{8}$).

It follows that if X has two distinct field twists then it satisfies the conclusion of Theorem 9.1. If X is embedded via (10, 01) then Table 10 shows that X is not 3-restricted and hence does not satisfy the conclusion of Theorem 9.1.

Now consider $X \cong G_2$, with $p = 2$. The only possibility for a commuting product of G_2 subgroups containing X as a diagonal subgroup with distinct field twists is $G_2 G_2 < G_2 C_3$. The subgroup $G_2 < C_3$ is not 2-restricted $(L(G) \downarrow G_2 = 20/10^{15}/00^{15})$ and hence X does not satisfy the conclusion of Theorem 9.1.

Corollary 9.6. Let $G = E_8$ and X be a connected, simple irreducible subgroup of rank at least 2.
Then either X satisfies the conclusion of Theorem 9.1 or $p = 2, 3$ or 5 and X is conjugate to one of the following subgroups:

1. maximal B_2 ($p = 5$);
2. $A_2 \rightarrow \tilde{A}_2 A_2 < \tilde{A}_2 E_6$ (p = 3) via any G-irreducible embedding;
3. $A_2 \rightarrow \tilde{A}_2 A_2 \tilde{A}_2 < \tilde{A}_2 A_2 G_2$ (p = 3) via any G-irreducible embedding;
4. $A_2 \rightarrow \bar{A}_2 A_2$ (p = 2) via any G-irreducible embedding that does not have four distinct field twists;
5. $A_2 \rightarrow \bar{A}_2 A_2 < D_2^2$ (p = 2) via $10^{10|c|}$ (r ≠ 0) or $10^{10|c|}$ (r ≠ 0);
6. $B_2 \rightarrow B_2^\prime$ (p = 2) via any G-irreducible embedding.

Proof. As for E_7, we use the proof of Theorem 3 to check that for each subgroup X there is only one possibility for a commuting product of groups, of the same type as X, containing X as a diagonal
When this is just X, Table 11 is used to determine whether or not X is restricted and hence whether it satisfies the conclusion of Theorem 9.1.

If $X \cong D_4$, A_4 or B_3 then X satisfies the conclusion of Theorem 9.1 because the simple factors of D_4, A_4 and $B_3 < D_4$ are all restricted for $p = 2, 3, 5$. Indeed, $L(G) \downarrow D_4 = 0100/1000^8/0010^8/0001^8/0000^28$, $L(G) \downarrow A_4 = W(1001)/1000^{10}/0100^3/0010^5/0001^{10}/0000^{24}$ and $L(G) \downarrow B_3 = 010/100^9/001^16/000^{36}$.

Now suppose $X \cong A_2$. When X is contained diagonally in $A_2 < D_4$ ($p \neq 3$) (each factor A_2 irreducibly embedded) it satisfies the conclusion of Theorem 9.1 only when $p = 5$. Indeed, $A_2 < D_4$ is 5-restricted but not 2-restricted since $L(G) \downarrow A_2 = 11^{25}/W(30)/W(03)/00^{28}$. If X is contained in $A_2 A_2 \tilde{A}_2 < A_2 A_2 G_2$ ($p = 3$) then it does not satisfy the conclusion of Theorem 9.1 because A_2 is not 3-restricted ($L(G) \downarrow \tilde{A}_2 = 30/03/11^{27}/00^{53}$). If X is contained in $\tilde{A}_2 A_2 < A_2 E_6$ ($p \geq 3$), where the A_2 acts on V_{27} as $W(22)$ then X satisfies the conclusion of Theorem 9.1 when $p = 5$ but not when $p = 3$. Indeed, \tilde{A}_2 is restricted for all p since $L(G) \downarrow \tilde{A}_2 = 11/10^{27}/01^{27}/00^{28}$ but $A_2 < E_6$ is 5-restricted but not 3-restricted since $L(G) \downarrow A_2 = W(41)/W(14)/W(22)^6/W(11)/00^6$.

Now let X be contained in A_2. If X is embedded with four distinct field twists then it satisfies the conclusion of Theorem 9.1 for all p because A_2 is restricted for all p, as seen in the previous paragraph. If X is embedded with three distinct field twists then the possibilities for a commuting product of A_2 subgroups diagonally containing X are $\tilde{A}_2 A$ or $\tilde{A}_2 B$ where $A = A_2 \hookrightarrow \tilde{A}_2$ via $(10,10)$ and $B = A_2 \hookrightarrow \tilde{A}_2$ via $(10,01)$. From $L(G) \downarrow A_2$ in subsection 7.3 we find that when $p = 3$ or 5, both A and B are restricted but neither A nor B is 2-restricted and hence X satisfies the conclusion of Theorem 9.1 only when $p > 2$. Similarly, if X is embedded with two distinct field twists then it satisfies the conclusion of Theorem 9.1 only when $p > 2$. Indeed, the possibilities for a commuting product of A_2 subgroups diagonally containing X are A^2, AB and $\tilde{A}_2 C$ where $C = A_2 \hookrightarrow \tilde{A}_2$ via $(10,10,01)$.

Finally, assume $X \cong B_2$. Suppose X is diagonally contained in $B_2(\dagger)$, $B_2 B_2 < A_3 D_5$ or B_2^2 (all with $p \geq 3$) with distinct field twists. Then X satisfies the conclusion of Theorem 9.1 because all of the simple B_2 factors are restricted for $p = 3$ and 5. Indeed, the factors are contained in A_4, A_3, D_5 and A_4 again, respectively and the restrictions of $L(G)$ are $20/02^{11}/10^{20}/00^{24}$, $02/10^{11}/10^{32}/00^{55}$ and $02^7/11^8/12/00^{15}$ respectively. Now suppose X is diagonally contained in $B_2^2(\dagger)$ with two distinct field twists. The simple B_2 factors are restricted for $p = 3$ and 5 but not for $p = 2$ ($L(G) \downarrow B_2 = W(02)^6/11^4/10^{10}/01^{16}/00^{10}$). Hence X satisfies the conclusion of Theorem 9.1 only when $p > 2$.

10 Tables

Here we give the tables from Lemma 3.3, Theorem 3.4 and Theorems 1–3. The notation used is explained in Section 2. All of the subgroups listed in Theorems 1–3 are either maximal and hence found in Theorem 3.1 or an M-irreducible subgroup for one of the maximal connected subgroups M. Details of these can be found in Sections 4–6. For some subgroups we give a reference to the subsection they are defined in. We should also explain where all of the restrictions for V_{26}, V_{27}, V_{56} and $L(G)$ come from. Theorem 3.1 gives the composition factors for the maximal subgroups.
From these it is just a case of restricting to the M-irreducible subgroups. This is a mainly routine calculation, and lots of them have been carried out already. Specifically, in [14, Tables 8.1-8.7], the composition factors are given with some restrictions on the characteristic. However, even in the characteristics not covered, it is still possible to deduce the composition factors. Sometimes we give a composition factor as a Weyl module, which will be reducible in certain characteristics. The Weyl modules package for GAP, by S. Doty, can be used to determine the composition factors of these reducible Weyl modules. For convenience, Appendix A has a table listing all of the reducible Weyl modules that occur in Tables 7–11, which have a trivial composition factor.

Table 7: The simple, connected irreducible subgroups of G_2 of rank at least 2.

<table>
<thead>
<tr>
<th>Irreducible subgroup X</th>
<th>Comp. factors of $V_7 \downarrow X$</th>
<th>Comp. factors of $L(G_2) \downarrow X$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_2</td>
<td>10/01/00</td>
<td>$W(11)/10/01$</td>
</tr>
<tr>
<td>$\tilde{A}_2 (p = 3)$</td>
<td>11</td>
<td>11/30/03/00</td>
</tr>
</tbody>
</table>

Table 8: The simple, connected irreducible subgroups of F_4 of rank at least 2.

<table>
<thead>
<tr>
<th>Irreducible subgroup X</th>
<th>Comp. factors of $V_{26} \downarrow X$</th>
<th>Comp. factors of $L(F_4) \downarrow X$</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_4</td>
<td>$W(1000)/0001/0000$</td>
<td>$W(0100)/0001$</td>
</tr>
<tr>
<td>D_4</td>
<td>1000/0010/0001/0000$</td>
<td>$W(0100)/1000/0010/0001$</td>
</tr>
<tr>
<td>$C_4 (p = 2)$</td>
<td>0100</td>
<td>2000/0100/0001/0000$</td>
</tr>
<tr>
<td>$\tilde{D}_4 (p = 2)$</td>
<td>0100</td>
<td>0100/2000/0020/0002/0000$</td>
</tr>
<tr>
<td>$G_2 (p = 7)$</td>
<td>20</td>
<td>01/11</td>
</tr>
<tr>
<td>$A_2 \hookrightarrow A_2\tilde{A}_2$ via:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(10, 10)$</td>
<td>$W(20)/W(02)/10/01/W(11)$</td>
<td>$W(11)^2/W(21)/W(12)/10/01$</td>
</tr>
<tr>
<td>$(10^{[r]}, 10^{[s]})$</td>
<td>$10^{[r]} \otimes 10^{[s]}/01^{[r]} \otimes 01^{[s]}/W(11)^{[s]}$</td>
<td>$W(11)^{[r]}/W(11)^{[s]}/10^{[r]} \otimes W(02)^{[s]}$/01^{[r]} \otimes W(20)^{[s]}$</td>
</tr>
<tr>
<td>$(10, 01) (p \neq 3)$</td>
<td>11/2/002</td>
<td>11/2/$W(30)/W(03)$</td>
</tr>
<tr>
<td>$(10^{[r]}, 01^{[s]})$</td>
<td>$10^{[r]} \otimes 01^{[s]}/01^{[r]} \otimes 10^{[s]}/W(11)^{[s]}$</td>
<td>$W(11)^{[r]}/W(11)^{[s]}/10^{[r]} \otimes W(20)^{[s]}/01^{[r]} \otimes W(02)^{[s]}$</td>
</tr>
<tr>
<td>$B_2 \hookrightarrow B_2^2 (p = 2)$ via:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(10, 10^{[r]}) (r \neq 0)$</td>
<td>$10/10^{[r]}/01 \otimes 01^{[r]}/00^2$</td>
<td>$10/10^{[r]}/02/02^{[r]}/10 \otimes 10^{[r]}$/01 \otimes 01^{[r]}$/00^4$</td>
</tr>
<tr>
<td>$(10, 02)$</td>
<td>$10/02/11/00^2$</td>
<td>$10/20/02^2/11/12/00^4$</td>
</tr>
<tr>
<td>$(10, 02^{[r]}) (r \neq 0)$</td>
<td>$10/01^{[r+1]}/01 \otimes 10^{[r]}/00^2$</td>
<td>$10/01^{[r+1]}/02/10^{[r+1]}/01 \otimes 10^{[r]}/10 \otimes 01^{[r+1]}$/00^4$</td>
</tr>
</tbody>
</table>
Table 9: The simple, connected irreducible subgroups of E_6 of rank at least 2.

<table>
<thead>
<tr>
<th>Irreducible subgroup X</th>
<th>Composition factors of $V_{27} \downarrow X$</th>
<th>Composition factors of $L(E_6) \downarrow X$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_4</td>
<td>$W(0001)/, 0000$</td>
<td>$W(1000)/, W(0001)$</td>
</tr>
<tr>
<td>C_4</td>
<td>$W(0100)$</td>
<td>$W(2000)/, W(0001)$</td>
</tr>
<tr>
<td>$D_4 < F_4$ ($p = 2$)</td>
<td>$0100/, 0000$</td>
<td>$2000/, 0020/, 0002/, 0100^2/, 0000^2$</td>
</tr>
<tr>
<td>G_2</td>
<td>$W(20)$</td>
<td>$W(01)/, W(11)$</td>
</tr>
<tr>
<td>A_2 ($p \geq 3$)</td>
<td>$W(22)$</td>
<td>$W(11)/, W(14)/, W(41)$</td>
</tr>
<tr>
<td>$A_2 \hookrightarrow A_2 \tilde{A}_2 < A_2 G_2$ ($p = 3$) via:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(10^{[r]}, 10^{[s]})$ ($rs = 0$)</td>
<td>$10^{[r]} \otimes 11^{[s]}/, 02^{[r]}$</td>
<td>$11^{[r]}/, 11^{[r]} \otimes 11^{[s]}/, (11^{[s]})/, 30^{[s]}/, 03^{[s]}/, 00^2$</td>
</tr>
<tr>
<td>$A_2 \hookrightarrow A_3^2$ via:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(10, 10, 01)$</td>
<td>$10/, 01/, W(20)/, W(02)/, W(11)/, 00$</td>
<td>$W(11)^3/, 10^2/, 01^2/, 02/, W(20)/, W(02)/, W(21)/, W(12)$</td>
</tr>
<tr>
<td>$(10, 10, 10^{[r]})$ ($r \neq 0$)</td>
<td>$W(11)/, 10 \otimes 01^{[r]}/, 10^{[r]} \otimes 01/, 00$</td>
<td>$W(11)^2/, W(11)^r/, W(20) \otimes 10^{[r]}/, 01 \otimes 10^{[r]}/, W(02) \otimes 01^{[r]}/, 10 \otimes 01^{[r]}$</td>
</tr>
<tr>
<td>$(10, 10, 01^{[r]})$ ($r \neq 0$)</td>
<td>$W(11)/, 10 \otimes 10^{[r]}/, 01^{[r]} \otimes 01/, 00$</td>
<td>$W(11)^2/, W(11)^r/, W(20) \otimes 01^{[r]}/, 01 \otimes 01^{[r]}/, W(02) \otimes 10^{[r]}/, 10 \otimes 10^{[r]}$</td>
</tr>
<tr>
<td>$(10, 10^{[r]}, 01)$ ($r \neq 0$)</td>
<td>$10 \otimes 01^{[r]}/, W(02)/, 10/, 10^{[r]} \otimes 10$</td>
<td>$W(11)^2/, W(11)^r/, W(11) \otimes 10^{[r]}/, W(11)^3/, 01^{[r]}/, 01^{[r]}$</td>
</tr>
<tr>
<td>$(10, 10^{[r]}, 10^{[r]})$ ($r \neq 0$)</td>
<td>$10 \otimes 01^{[r]}/, 10^{[r]} \otimes 01/, W(11)^r/, 00$</td>
<td>$W(11)/, W(11)^r/, W(20)^r/, 01^{[r]}/, 10/, W(02)^r/, 01/, 10^{[r]} \otimes 01^{[r]}/, 10 \otimes 01^{[r]}$</td>
</tr>
<tr>
<td>$(10, 10^{[r]}, 01^{[r]})$ ($r \neq 0$)</td>
<td>$10 \otimes 01^{[r]}/, 01 \otimes 01^{[r]}/, W(20)^r/, 01^{[r]}$</td>
<td>$W(11)/, W(11)^r/, W(11) \otimes 10^{[r]}/, 10/, W(11)^r/, 01^{[r]}$</td>
</tr>
<tr>
<td>$(10, 01^{[r]}, 01^{[r]})$ ($r \neq 0$)</td>
<td>$10 \otimes 10^{[r]}/, 01 \otimes 01^{[r]}/, W(11)^r/, 00$</td>
<td>$W(11)/, W(11)^r/, W(11)^3/, 20^{[r]}/, W(02)^r/, 01/, 10^{[r]} \otimes 01^{[r]}/, 10 \otimes 01^{[r]}$</td>
</tr>
<tr>
<td>$(10, 10^{[r]}, 10^{[s]})$ ($0 < r < s$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(10, 10^{[r]}, 01^{[s]})$ ($0 < r < s$)</td>
<td>$10 \otimes 10^{[r]}/, 01 \otimes 01^{[s]}/, 10^{[r]} \otimes 10^{[s]}$</td>
<td>$W(11)^3/, 10^{[r]} \otimes 10^{[s]}/, 01^{[r]} \otimes 01^{[s]}/, 01^{[s]}$</td>
</tr>
<tr>
<td>$(10, 10^{[r]}, 10^{[s]}$) ($0 < r < s$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(10, 10^{[r]}, 10^{[s]})$ ($0 < r < s$)</td>
<td>$10 \otimes 10^{[r]}/, 01 \otimes 01^{[s]}/, 10^{[r]} \otimes 10^{[s]}$</td>
<td>$W(11)^3/, 10^{[r]} \otimes 10^{[s]}/, 01^{[r]} \otimes 01^{[s]}/, 01^{[s]}$</td>
</tr>
<tr>
<td>$(10, 01^{[r]}, 01^{[s]})$ ($0 < r < s$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(10, 01^{[r]}, 10^{[s]})$ ($0 < r < s$)</td>
<td>$10 \otimes 10^{[r]}/, 01 \otimes 01^{[s]}/, 01^{[r]} \otimes 10^{[s]}$</td>
<td>$W(11)^3/, 10^{[r]} \otimes 10^{[s]}/, 01^{[r]} \otimes 01^{[s]}/, 01^{[s]}$</td>
</tr>
<tr>
<td>$(10, 01^{[r]}, 01^{[s]})$ ($0 < r < s$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(10, 01^{[r]}, 10^{[s]})$ ($0 < r < s$)</td>
<td>$10 \otimes 10^{[r]}/, 01 \otimes 01^{[s]}/, 01^{[r]} \otimes 10^{[s]}$</td>
<td>$W(11)^3/, 10^{[r]} \otimes 10^{[s]}/, 01^{[r]} \otimes 01^{[s]}/, 01^{[s]}$</td>
</tr>
</tbody>
</table>

Table 10: The simple, connected irreducible subgroups of E_7 of rank at least 2.

<table>
<thead>
<tr>
<th>Irreducible subgroup X</th>
<th>Composition factors of $V_{36} \downarrow X$</th>
<th>Composition factors of $L(E_7) \downarrow X$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_7</td>
<td>$0100000/, 0000010$</td>
<td>$W(1000000)/, 0001000$</td>
</tr>
<tr>
<td>D_4 ($p > 2$)</td>
<td>0100^2</td>
<td>$0100/, 2000/, 0020/, 0002$</td>
</tr>
<tr>
<td>$A_2 \hookrightarrow A_2 \tilde{A}_2 < A_2 A_5$ ($p \neq 2$) (see §6.2) via:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(10, 10)$ ($p > 3$)</td>
<td>$30^2/, 03^2/, 11^2$</td>
<td>$11^4/, W(22)^3/, 30/, 03$</td>
</tr>
</tbody>
</table>

38
\[(10^{[r]}, 10^{[s]}) \text{ (rs = 0)}\]
\[10^{[r]} \otimes 20^{[s]} / 01^{[r]} \otimes 02^{[s]} / W(30)^{[s]} / W(03)^{[s]} / W(11)^{[r]} / W(11)^{[s]} / W(22)^{[s]} / 01^{[r]} \otimes 21^{[s]} / 10^{[r]} \otimes 12^{[s]}\]
\[(10, 01)\]
\[10/01 / W(30) / W(03) / 21 / 12\]
\[W(11)^{[r]} / 20 / W(31) / W(22) / 02 / 12 / W(13)\]
\[(10^{[r]}, 01^{[s]}) \text{ (rs = 0)}\]
\[10^{[r]} \otimes 02^{[s]} / 01^{[r]} \otimes 20^{[s]} / W(30)^{[s]} / W(03)^{[s]} / W(11)^{[r]} / W(22)^{[s]} / 10^{[r]} \otimes 21^{[s]} / 01^{[r]} \otimes 12^{[s]}\]
\[
G_2 \leftrightarrow G_2 G_2 < G_2 C_3 \ (p = 2) \ \text{via:} \n\]
\[(10^{[r]}, 10^{[s]}) \text{ (rs = 0)}\]
\[10^{[r]} \otimes 10^{[s]} / 20^{[s]} / (10^{[s]})^2 / 00^2\]
\[01^{[r]} / (01^{[s]})^2 / 10^{[r]} \otimes 01^{[s]} / 20^{[s]} / 00\]
\[A_2 \ (p \geq 5)\]
\[W(60) / W(06)\]
\[W(44) / 11\]

Table 11: The simple, connected irreducible subgroups of E_8 of rank at least 2.

<table>
<thead>
<tr>
<th>Irreducible subgroup X</th>
<th>Composition factors of $L(E_8) \downarrow X$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_8</td>
<td>$W(01000000) / 00000010$</td>
</tr>
<tr>
<td>B_7</td>
<td>$W(01000000) / W(10000000) / 0000001$</td>
</tr>
<tr>
<td>$B_4(\dagger)$ (see §7.1)</td>
<td>$W(0100) / W(0010) / W(1001)$</td>
</tr>
<tr>
<td>$B_4(\dagger)$ (p ≠ 2) (see §7.1)</td>
<td>$0100 / W(2000) / 0010^2$</td>
</tr>
<tr>
<td>A_3 (p ≠ 2)</td>
<td>$101^2 / 210 / 012 / W(111)^2$</td>
</tr>
<tr>
<td>$D_4 \leftrightarrow D_4^2$ via:</td>
<td></td>
</tr>
<tr>
<td>$(1000, 1000^{[r]})$ (r ≠ 0)</td>
<td>$W(0100) / W(1000)^{[r]} / 1000 \otimes 1000^{[r]} / 0010 \otimes 0010^{[r]} / 0001 \otimes 0001^{[r]}$</td>
</tr>
<tr>
<td>$(1000, 1000^{[r]})$ (r ≠ 0)</td>
<td>$W(0100)^2 / 1000 / 0010 / 0001 / W(1010) / W(1001) / W(011)$</td>
</tr>
<tr>
<td>$(1000, 1000^{[r]})$ (r ≠ 0)</td>
<td>$W(0100) / W(0100)^{[r]} / 1000 \otimes 0010^{[r]} / 0010 \otimes 0001^{[r]} / 0001 \otimes 1000^{[r]}$</td>
</tr>
<tr>
<td>$(1000, 1000^{[r]})$ (r ≠ 0)</td>
<td>$W(0100) / W(0100)^{[r]} / 1000 \otimes 1000^{[r]} / 0010 \otimes 0001^{[r]} / 0001 \otimes 0010^{[r]}$</td>
</tr>
<tr>
<td>$B_3 \leftrightarrow B_3 B_3 < D_4^2$ via:</td>
<td></td>
</tr>
<tr>
<td>$(100, 100^{[r]})$ (r ≠ 0)</td>
<td>$W(010) / W(100) / W(100)^{[r]} / W(010)^{[r]} / 001 / 001^{[r]} / W(100) \otimes 001^{[r]} / 001 \otimes W(100)^{[r]} / 001 \otimes 001^{[r]}$</td>
</tr>
<tr>
<td>$A_2 \leftrightarrow A_2^2 < D_4^2$ (p ≠ 3) via:</td>
<td></td>
</tr>
<tr>
<td>$(10, 10^{[r]})$ (r ≠ 0)</td>
<td>$1/ W(30) / W(03) / 11^{[r]} / W(30)^{[r]} / W(03)^{[r]} / (11 \otimes 11^{[r]})^3$</td>
</tr>
<tr>
<td>$(10, 01^{[r]})$ (r ≠ 0)</td>
<td>$11 / W(30) / W(03) / 11^{[r]} / W(30)^{[r]} / W(03)^{[r]} / (11 \otimes 11^{[r]})^3$</td>
</tr>
<tr>
<td>$B_2 \leftrightarrow B_2^2(\dagger)$ (see §7.1) via:</td>
<td></td>
</tr>
<tr>
<td>$(10, 10^{[r]})$ (r ≠ 0)</td>
<td>$W(02) / W(02)^{[r]} / W(10) \otimes W(02)^{[r]} / W(02) \otimes W(10)^{[r]} / 01 \otimes W(11)^{[r]} / W(11) \otimes 01^{[r]}$</td>
</tr>
<tr>
<td>$(10, 02)$ (p = 2)</td>
<td>$10^4 / 01^4 / 20^4 / 02^6 / 21 / 12^2 / 30 / 03 / 13 / 04 / 0012^2$</td>
</tr>
<tr>
<td>$(10, 02^{[r]})$ (p = 2, r ≠ 0)</td>
<td>$10^4 / 02^6 / (02^{[r]})^4 / (20^{[r]})^2 / 02 \otimes 02^{[r]} / (10 \otimes 02^{[r]})^2 / 10 \otimes 20^{[r]} / 01 \otimes 12^{[r]} / 11 \otimes 10^{[r]} / 00^6$</td>
</tr>
<tr>
<td>$B_2 \leftrightarrow B_2^2(\dagger)$ (p ≠ 2) (see §7.1) via:</td>
<td></td>
</tr>
<tr>
<td>$(10, 10^{[r]})$ (r ≠ 0)</td>
<td>$02 / 02^{[r]} / W(20) / W(20)^{[r]} / (10 \otimes 02^{[r]})^2 / (02 \otimes 10^{[r]})^2$</td>
</tr>
<tr>
<td>$B_2 \leftrightarrow B_2 B_2 < A_3 D_5$ (p ≥ 3) via:</td>
<td></td>
</tr>
<tr>
<td>$(10, 10)$</td>
<td>$02^6 / 10^4 / W(20)^2 / W(12)^4$</td>
</tr>
<tr>
<td>$(10^{[r]}, 10^{[s]})$ (rs = 0)</td>
<td>$02^{[r]} / (02^{[s]})^2 / 10^{[r]} / W(12)^{[r]} / 10^{[r]} \otimes 02^{[s]} / (01^{[r]} \otimes W(11)^{[s]})^2$</td>
</tr>
<tr>
<td>$B_2 \leftrightarrow B_2^3$ $(p \geq 3)$ via:</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>$(10, 10^{[r]}, 10^{[s]})$</td>
<td>$02/10/10^{[r]}/10^{[s]}/02^{[r]}/02^{[s]}/10 \otimes 10^{[r]}/10 \otimes 10^{[s]}/10^{[r]} \otimes 10^{[s]}$/</td>
</tr>
<tr>
<td>$(0 < r < s)$</td>
<td>$(01 \otimes 01^{[r]} \otimes 01^{[s]})/2$</td>
</tr>
</tbody>
</table>

| $A_8 \rightarrow A_2^3$ via: |
|---|---|
| $(1000, 1000)$ | $W(1001)^2/1000/0001/0100/0010/W(1100)/W(0011)/W(1010)/W(0101)$ |
| $(1000, 1000^{[r]}) (r \neq 0)$ | $W(1001)/W(1001)^{[r]}/1000 \otimes 0100^{[r]}/0010 \otimes 0001^{[r]}/0001 \otimes 0010^{[r]}/0010 \otimes 1000^{[r]}$ |
| $(1000, 0001^{[r]}) (r \neq 0)$ | $W(1001)/W(1001)^{[r]}/1000 \otimes 0100^{[r]}/0010 \otimes 1000^{[r]}/0010 \otimes 0001^{[r]}$ |

| $A_2 \rightarrow A_2^4$ via: |
|---|---|
| $(10^{[r]}, 10, 10, 01)$ | $W(11)^3/W(11)^{[r]}/10^2/01^2/W(20)/W(02)/W(21)/W(12)/10^{[r]}/01^{[r]}$/ |
| $(r \neq 0)$ | $10 \otimes 10^{[r]}/01 \otimes 01^{[r]}/10 \otimes 01^{[r]}/10 \otimes 10^{[r]}/W(20) \otimes 01^{[r]}/W(02) \otimes 01^{[r]}$/ |
| $(10, 10^{[r]}, 10^{[s]}, 01^{[r]})$ | $W(11)^2/W(11)^{[r]}/10 \otimes W(20)^{[r]}/10 \otimes W(02)^{[r]}/01 \otimes 10^{[r]}$/ |
| $(r \neq 0)$ | $10 \otimes W(11)^{[r]}/10 \otimes 01 \otimes W(11)^{[r]}/10 \otimes 01\otimes W(02)^{[r]}/01 \otimes 10^{[r]}$/ |
| $(10, 10^{[r]}, 01^{[r]})$ | $W(11)^2/W(11)^{[r]}/10 \otimes W(11)^{[r]}/10 \otimes 01^{[r]}$/ |
| $(r \neq 0)$ | $10 \otimes W(02)^{[r]}/10 \otimes 10^{[r]}$/ |
| $(10, 10^{[r]}, 10^{[s]}, 01^{[r]})$ | $W(11)^2/W(11)^{[r]}/W(11)^{[s]}/10 \otimes 10^{[r]}$/ |
| $(r \neq 0)$ | $10 \otimes 10^{[r]}$/ |
| $(10, 10^{[r]}, 10^{[s]}, 10^{[s]})$ | $W(11)^2/W(11)^{[r]}/W(11)^{[s]}/10 \otimes 10^{[r]}$/ |
| $(0 < r < s)$ | $10 \otimes 10^{[r]}$/ |

| $A_2 \rightarrow A_2^2$ via: |
|---|---|
| $(10^{[r]}, 10, 10, 01)$ | $W(11)^2/W(11)^{[r]}/W(11)^{[s]}/10 \otimes 10^{[r]}$/ |
| $(0 \leq r < s)$ | $10 \otimes 10^{[r]}$/ |
| $(10, 10^{[r]}, 10^{[s]}, 01^{[r]})$ | $W(11)^2/W(11)^{[r]}/W(11)^{[s]}/10 \otimes 10^{[r]}$/ |
| $(0 \leq r < s)$ | $10 \otimes 10^{[r]}$/ |
| $(10, 10^{[r]}, 10^{[s]}, 01^{[r]})$ | $W(11)^2/W(11)^{[r]}/W(11)^{[s]}/10 \otimes 10^{[r]}$/ |
| $(0 \leq r < s)$ | $10 \otimes 10^{[r]}$/ |
| $(10, 10^{[r]}, 01^{[r]}, 10^{[s]})$ | $W(11)^2/W(11)^{[r]}/01 \otimes 10^{[r]}$/ |
| $(0 \leq r < s)$ | $10 \otimes 10^{[r]}$/ |
| $(10, 10^{[r]}, 01^{[r]}, 01^{[r]})$ | $W(11)^2/W(11)^{[r]}/01 \otimes 10^{[r]}$/ |
| $(0 \leq r < s)$ | $10 \otimes 10^{[r]}$/ |

40
\[
\begin{array}{l}
\text{(10, 01[r], 10[s], 10[t])} \\
\text{(0 < r < s)} \\
W(11)/W(11)[r]/W(11)[s]/W(11)[t] \\
\quad \text{10}\odot W(11)[r] \times 10[s]/10[t]/W(11)[r] \odot W(11)[s]/W(11)[t]/(11) \times (11) / (20) / (23) / (02)
\end{array}
\]
We give tables of composition factors for Levi subgroups with each simple factor of rank at least 2, for $G = E_6, E_7$ and E_8. If L' is simple then these can be found in [14, Tables 8.1–8.3, 8.6, 8.7]. If L' is not simple then the composition factors can be deduced from those of a maximal subsystem subgroup containing L'. We also give the composition factors of the reducible Weyl modules (with at least one trivial composition factor) which appear in Tables 7–14.
Table 12: The composition factors for the action of Levi subgroups (with no rank 1 simple factors) of E_6 on V_{27} and $L(E_6)$.

<table>
<thead>
<tr>
<th>Levi L'</th>
<th>Comp. factors of $V_{27} \downarrow L'$</th>
<th>Comp. factors of $L(E_6) \downarrow L'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_5</td>
<td>$\lambda_1 / \lambda_3 / 0$</td>
<td>$W(\lambda_2) / \lambda_1 / \lambda_5 / 0$</td>
</tr>
<tr>
<td>D_4</td>
<td>$1000 / 0010 / 0001 / 0000^3$</td>
<td>$W(0100) / 1000^2 / 0010^2 / 0001^2 / 0000^2$</td>
</tr>
<tr>
<td>A_5</td>
<td>λ_1^2 / λ_4</td>
<td>$W(\lambda_1 + \lambda_3) / \lambda_3^2 / 0^3$</td>
</tr>
<tr>
<td>A_4</td>
<td>$1000^2 / 0010 / 0001 / 0000^2$</td>
<td>$W(1001) / 1000 / 0100^2 / 0010^2 / 0001 / 0000^4$</td>
</tr>
<tr>
<td>A_3</td>
<td>$100^2 / 001^2 / 010 / 000^5$</td>
<td>$W(101) / 100^4 / 001^4 / 010^4 / 000^7$</td>
</tr>
<tr>
<td>A_2</td>
<td>$10^8 / 01^3 / 00^8$</td>
<td>$W(11) / 10^9 / 01^9 / 00^{16}$</td>
</tr>
<tr>
<td>$A_2 A_2$</td>
<td>$(10, 01) / (00, 10)^3 / (01, 00)^3$</td>
<td>$(W(11), 00) / (00, W(11)) / (10, 10)^3 / (01, 01)^3 / (00, 00)^8$</td>
</tr>
</tbody>
</table>

Table 13: The composition factors for the action of Levi subgroups (with no rank 1 simple factors) of E_7 on V_{56} and $L(E_7)$.

<table>
<thead>
<tr>
<th>Levi L'</th>
<th>Comp. factors of $V_{56} \downarrow L'$</th>
<th>Comp. factors of $L(E_7) \downarrow L'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_6</td>
<td>$\lambda_1 / \lambda_6 / 0^2$</td>
<td>$W(\lambda_2) / \lambda_1 / \lambda_6 / 0$</td>
</tr>
<tr>
<td>D_6</td>
<td>λ_2^2 / λ_5</td>
<td>$W(\lambda_2) / \lambda_2^2 / 0^3$</td>
</tr>
<tr>
<td>D_5</td>
<td>$\lambda_1^2 / \lambda_3 / \lambda_5 / 0^4$</td>
<td>$W(\lambda_2) / \lambda_1^2 / \lambda_3^2 / \lambda_5^2 / 0^4$</td>
</tr>
<tr>
<td>D_4</td>
<td>$1000^2 / 0010^2 / 0001^2 / 0000^8$</td>
<td>$W(0100) / 1000^4 / 0010^4 / 0001^4 / 0000^9$</td>
</tr>
<tr>
<td>A_6</td>
<td>$\lambda_1 / \lambda_3 / \lambda_5 / \lambda_6$</td>
<td>$W(\lambda_1 + \lambda_3) / \lambda_1 / \lambda_3 / \lambda_5 / \lambda_6 / 0$</td>
</tr>
<tr>
<td>A_5</td>
<td>$\lambda_2^3 / \lambda_3 / \lambda_4^2$</td>
<td>$W(\lambda_1 + \lambda_3) / \lambda_2^3 / \lambda_3 / \lambda_4^2 / 0^8$</td>
</tr>
<tr>
<td>A_4</td>
<td>$\lambda_2^3 / \lambda_3 / \lambda_2^3 / \lambda_3^2 / \lambda_4 / \lambda_5^2 / 0^4$</td>
<td>$W(\lambda_1 + \lambda_3) / \lambda_2^3 / \lambda_3 / \lambda_2^3 / \lambda_4 / \lambda_5^2 / 0^4$</td>
</tr>
<tr>
<td>A_3</td>
<td>$100^4 / 001^4 / 010^2 / 000^5$</td>
<td>$W(101) / 100^8 / 001^8 / 010^6 / 000^{13}$</td>
</tr>
<tr>
<td>A_2</td>
<td>$10^8 / 01^3 / 00^8$</td>
<td>$W(11) / 10^{15} / 01^{15} / 00^{35}$</td>
</tr>
<tr>
<td>$A_4 A_2$</td>
<td>$(1000, 10)^1 / (0000, 10) / (0001, 01)$</td>
<td>$(W(1001), 00) / (1000, 00) / (0001, 00)$</td>
</tr>
<tr>
<td></td>
<td>$(0000, 01) / (0100, 00) / (0010, 00)$</td>
<td>$(0000, W(11)) / (0010, 10) / (0001, 10) / (0100, 01)$</td>
</tr>
<tr>
<td></td>
<td>$(1000, 01) / (0000, 00)$</td>
<td>$(1000, 01) / (0000, 00)$</td>
</tr>
<tr>
<td>$A_3 A_2$</td>
<td>$(100, 10) / (000, 10)^2 / (001, 01)$</td>
<td>$(W(101), 00) / (100, 00)^2 / (001, 00)^2$</td>
</tr>
<tr>
<td></td>
<td>$(000, 01)^2 / (010, 00)^2 / (100, 00)^3 / (001, 00)$</td>
<td>$(000, W(11)) / (010, 10) / (001, 10)^2 / (000, 10)$</td>
</tr>
<tr>
<td></td>
<td>$(010, 00)^3 / (100, 00)^3 / (00, 00)^4$</td>
<td>$(010, 01) / (100, 01)^2 / (000, 01) / (000, 00)^4$</td>
</tr>
<tr>
<td>$A_2 A_2$</td>
<td>$(10, 10)^3 / (01, 01)^3 / (00, 01)^3$</td>
<td>$(W(11), 00) / (00, W(11)) / (10, 10)^3 / (01, 01)^3 / (00, 00)^3$</td>
</tr>
<tr>
<td></td>
<td>$(00, 01)^3 / (10, 00)^3 / (01, 00)^3$</td>
<td>$(10, 01) / (01, 10) / (10, 00)^3 / (01, 00)^3 / (00, 10)^3 / (00, 00)^3$</td>
</tr>
<tr>
<td></td>
<td>$(00, 00)^2$</td>
<td>$(00, 01)^3 / (00, 00)^9$</td>
</tr>
</tbody>
</table>

Table 14: The composition factors for the action of Levi subgroups (with no rank 1 simple factors) of E_8 on $L(E_8)$.

<table>
<thead>
<tr>
<th>Levi L'</th>
<th>Composition factors of $L(E_8) \downarrow L'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_7</td>
<td>$W(\lambda_1) / \lambda_7^2 / 0^3$</td>
</tr>
<tr>
<td>E_6</td>
<td>$W(\lambda_2) / \lambda_3^2 / \lambda_5^2 / 0^8$</td>
</tr>
<tr>
<td>D_7</td>
<td>$W(\lambda_2) / \lambda_3^2 / \lambda_6 / \lambda_7 / 0$</td>
</tr>
<tr>
<td>D_6</td>
<td>$W(\lambda_2) / \lambda_3^2 / \lambda_5^2 / \lambda_7^2 / 0^6$</td>
</tr>
</tbody>
</table>
Table 15: The composition factors of some reducible Weyl modules that have a trivial composition factor.

<table>
<thead>
<tr>
<th>Group</th>
<th>p</th>
<th>High weight λ</th>
<th>Composition factors of $W(\lambda)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_n</td>
<td>$p</td>
<td>n+1$</td>
<td>$\lambda_1 + \lambda_n$</td>
</tr>
<tr>
<td>B_n ($n \geq 2$)</td>
<td>2</td>
<td>λ_1</td>
<td>$\lambda_1/0$</td>
</tr>
<tr>
<td>B_n ($n > 2$)</td>
<td>2</td>
<td>λ_2</td>
<td>$\lambda_2/\lambda_1/0^{(n,2)}$</td>
</tr>
<tr>
<td>D_n</td>
<td>2</td>
<td>λ_2</td>
<td>$\lambda_2/0^{(n,2)}$</td>
</tr>
<tr>
<td>A_2</td>
<td>3</td>
<td>$3\lambda_1$</td>
<td>$3\lambda_1/0$</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>$4\lambda_1 + \lambda_2$</td>
<td>$4\lambda_1 + \lambda_2/3\lambda_1/3\lambda_2/\lambda_1 + \lambda_2/0$</td>
</tr>
<tr>
<td>B_2</td>
<td>2</td>
<td>$2\lambda_2$</td>
<td>$2\lambda_2/\lambda_1/0^2$</td>
</tr>
<tr>
<td>B_3</td>
<td>2</td>
<td>λ_3</td>
<td>$\lambda_3/\lambda_2/\lambda_1/0^2$</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>$2\lambda_1$</td>
<td>$2\lambda_1/0$</td>
</tr>
<tr>
<td>C_4</td>
<td>2</td>
<td>$2\lambda_1$</td>
<td>$2\lambda_1/\lambda_2/0^2$</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>λ_2</td>
<td>$\lambda_2/0$</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>λ_4</td>
<td>$\lambda_4/0$</td>
</tr>
<tr>
<td>G_2</td>
<td>7</td>
<td>$2\lambda_1$</td>
<td>$2\lambda_1/0$</td>
</tr>
<tr>
<td>F_4</td>
<td>3</td>
<td>λ_4</td>
<td>$\lambda_4/0$</td>
</tr>
<tr>
<td>E_6</td>
<td>3</td>
<td>λ_2</td>
<td>$\lambda_2/0$</td>
</tr>
<tr>
<td>E_7</td>
<td>2</td>
<td>λ_1</td>
<td>$\lambda_1/0$</td>
</tr>
</tbody>
</table>
References

[29] _____, Lectures on Chevalley groups, Lecture Notes, Yale University, 1968.

