Okbay, A., St Pourcain, B., Evans, D., McMahon, G., Paternoster, L., Ring, S., ... Benjamin, D. J. (2016). Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 533(7604), 539-542. https://doi.org/10.1038/nature17671

Peer reviewed version

Link to published version (if available): 10.1038/nature17671

Link to publication record in Explore Bristol Research

PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Nature Publishing Group at http://dx.doi.org/10.1038/nature17671.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Title: Genome-wide association study identifies 74 loci associated with educational attainment

Authors: All authors and their affiliations appear at the end of the paper

Summary: Educational attainment (EA) is strongly influenced by social and other environmental factors, but genetic factors are also estimated to account for at least 20% of the variation across individuals. We report the results of a genome-wide association study (GWAS) for EA that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication in an independent sample of 111,349 individuals from the UK Biobank. We now identify 74 genome-wide significant loci associated with number of years of schooling completed. Single-nucleotide polymorphisms (SNPs) associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioral phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because EA is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric disease.

Main Text:

We study educational attainment (EA), which is measured in all main analyses as the number of years of schooling completed (EduYears, N = 293,723, mean = 14.33, SD = 3.61; Supplementary Information sections 1.1-1.2). All genome-wide association studies (GWAS) were performed at the cohort level in samples restricted to individuals of European descent whose EA was assessed at or above age 30. A uniform set of quality-control (QC) procedures
was applied to the cohort-level summary statistics. In our GWAS meta-analysis of ~9.3M SNPs from the 1000 Genomes Project, we used sample-size weighting and applied a single round of genomic control at the cohort level.

Our meta-analysis identified 74 approximately independent genome-wide significant loci. For each locus, we define the “lead SNP” as the SNP in the genomic region that has the smallest P-value (Supplementary Information section 1.6.1). Fig. 1 shows a Manhattan plot with the lead SNPs highlighted. The three SNPs that reached genome-wide significance in the discovery stage of our previous GWAS meta-analysis of EA1 are also highlighted. The quantile-quantile (Q-Q) plot of the meta-analysis (Extended Data Fig. 1) exhibits inflation ($\lambda_{GC} = 1.28$), as expected under polygenicity3.

Extended Data Fig. 2 shows the estimated effect sizes of the lead SNPs. The estimates range from 0.014 to 0.048 standard deviations per allele (2.7 to 9.0 weeks of schooling), with incremental R^2 in the range 0.01% to 0.035%.

To quantify the amount of population stratification in the GWAS estimates that remains even after the stringent controls used by the cohorts (Supplementary Information section 1.4), we used LD Score regression4. The regression results indicate that ~8% of the observed inflation in the mean χ^2 is due to bias rather than polygenic signal (Extended Data Fig. 3a), suggesting that stratification effects are small in magnitude. We also found evidence that the genetic association signals taken as a whole replicate reliably in several within-family analyses (Supplementary Information section 2 and Extended Data Fig. 3b).

To further test the robustness of our findings, we examined the within-sample and out-of-sample replicability of SNPs reaching genome-wide significance (Supplementary Information sections 1.7-1.8). We found that SNPs identified in the previous EA meta-analysis replicated in the new cohorts included here, and conversely, that SNPs reaching genome-wide
significance in the new cohorts replicated in the old cohorts. For the out-of-sample replication analyses of our 74 lead SNPs, we used the interim release of the U.K. Biobank \(^5\) (UKB) \((N = 111,349)\). As shown in Extended Data Fig. 4, 72 out of the 74 lead SNPs have a consistent sign \((P = 1.47\times10^{-19})\), 52 are significant at the 5\% level \((P = 2.68\times10^{-50})\), and 7 reach genome-wide significance in the U.K. Biobank dataset \((P = 1.41\times10^{-42})\). For comparison, the corresponding expected numbers, assuming each SNP’s true effect size is its estimated effect adjusted for the winner’s curse, are 71.4, 40.3, and 0.6. (Supplementary Information section 1.8.2). We also find out-of-sample replicability of our overall GWAS results: the genetic correlation between EduYears in our meta-analysis sample and in the UKB data is 0.95 \((\text{s.e.} = 0.021\); Supplementary Table 1.14).

It is known that EA, cognitive performance, and many neuropsychiatric phenotypes are phenotypically correlated, and several studies of twins find that the phenotypic correlations partly reflect genetic overlap\(^6\text{–}^8\) (Supplementary Information section 3.3.4). Here, we investigate genetic correlation using our GWAS results for EduYears and published GWAS results for 14 other phenotypes, using bivariate Linkage-Disequilibrium (LD) Score regression\(^9\). First, we estimated genetic correlations with EduYears. As shown in Fig. 2, on average, alleles associated with greater EA are also associated with increased cognitive performance \((P = 9.9\times10^{-50})\) and intracranial volume \((P = 1.2\times10^{-6})\), increased risk of bipolar disorder \((P = 7\times10^{-13})\), decreased risk of Alzheimer’s \((P = 4\times10^{-4})\), and lower neuroticism \((P = 2.8\times10^{-8})\). We also found positive, statistically significant, but very small, genetic correlations with height \((P = 5.2\times10^{-15})\) and risk of schizophrenia \((P = 3.2\times10^{-4})\).

Second, we examined whether our 74 lead SNPs are jointly associated with each phenotype (Extended Data Fig. 5 and Supplementary Information section 3.3.1). We reject the null hypothesis of no enrichment at \(P < 0.05\) for 10 of the 14 phenotypes (all the exceptions are subcortical brain structures).
Third, for each phenotype, we tested (in the published GWAS results) each of our 74 lead SNPs or proxy for association at a significance threshold of 0.05/74. We found a total of 25 SNPs meeting this threshold for any of these phenotypes (but only one reaching genome-wide significance). While these results provide suggestive evidence that some of these SNPs may be associated with other phenotypes, further testing of these associations in independent cohorts is required (Supplementary Tables 3.2-3.4, Extended Data Fig. 6).

To consider potential biological pathways, we first tested whether SNPs in particular regions of the genome are implicated by our GWAS results. Unlike what has been found for other phenotypes, SNPs in regions that are DNase I hypersensitive in the fetal brain are more likely to be associated with EduYears by a factor of ~5 (95% confidence interval 2.89–7.07; Extended Data Fig. 7). Moreover, the 15% of SNPs residing in regions associated with histones marked in the central nervous system (CNS) explain 44% of the heritable variation (Extended Data Fig. 8a and Supplementary Table 4.4.2). This enrichment factor of ~3 for CNS ($P = 2.48 \times 10^{-16}$) is greater than that of any of the other nine tissue categories in this analysis.

Given that our findings disproportionately implicate SNPs in regions regulating brain-specific gene expression, we examined whether genes located near EduYears-associated SNPs show elevated expression in neural tissue. We tested this hypothesis using data on mRNA transcript levels in the 37 adult tissues assayed by the Genotype-Tissue Expression Project (GTEx)10. Remarkably, the 13 GTEx tissues that are components of the CNS—and only those 13 tissues—show significantly elevated expression levels of genes near EduYears-associated SNPs (FDR < 0.05; Extended Data Fig. 8b and Supplementary Table 4.5.2).

To investigate possible functions of the candidate genes from the GWAS associated loci, we examined the extent of their overlap with groups of genes (“gene sets”) whose products are known or predicted to participate in a common biological process11. We found 283 gene sets significantly enriched by the candidate genes identified in our GWAS (FDR < 0.05;
Supplementary Table 4.5.1). To facilitate interpretation, we used a standard procedure11 to
group the 283 gene sets into “clusters” defined by degree of gene overlap. The resulting 34
clusters, shown in Fig. 3, paint a coherent picture, with many clusters corresponding to stages
of neural development: the proliferation of neural progenitor cells and their specialization (the
"cluster npBAF complex"), the migration of new neurons to the different layers of the cortex
("forebrain development, abnormal cerebral cortex morphology"), the projection of axons from
neurons to their signaling targets ("axonogenesis, signaling by Robo receptor"), the sprouting of
dendrites and their spines ("dendrite, dendritic spine organization"), and neuronal signaling
and synaptic plasticity throughout the lifespan ("voltage-gated calcium channel complex,
synapse part, synapse organization").
Many of our results implicate candidate genes and biological pathways that are active during
distinct stages of prenatal brain development. To directly examine how the expression levels
of candidate genes identified in our GWAS vary over the course of development, we used gene
expression data from the BrainSpan Developmental Transcriptome12. As shown in Extended
Data Fig. 9, these candidate genes exhibit above-baseline expression in the brain throughout
life but especially higher expression levels in the brain during prenatal development (1.36 times
higher prenatally than postnatally, $P = 6.02 \times 10^{-8}$).
A summary overview of some promising candidate genes for follow-up work is provided in
Table 1.
We constructed polygenic scores13 to assess the joint predictive power afforded by the GWAS
results (Supplementary Information section 5.2). Across our two holdout samples, the mean
predictive power of a polygenic score constructed from all measured SNPs is 3.2\% ($P =
1.18 \times 10^{-39}$; Supplementary Table 5.2 and Supplementary Information section 5).
Studies of genetic analyses of behavioral phenotypes have been prone to misinterpretation,
such as characterizing identified associated variants as “genes for education.” Such
characterization is not correct for many reasons: EA is primarily determined by environmental factors, the explanatory power of the individual SNPs is small, the candidate genes may not be causal, and the genetic associations with EA are mediated by multiple intermediate phenotypes. To illustrate this last point, we studied mediation of the association between the all-SNPs polygenic score and EduYears in two of our cohorts. We found that cognitive performance can statistically account for 23-42% of the association ($P < 0.001$) and the personality trait “openness to experience” for approximately 7% ($P < 0.001$; Supplementary Information section 6).

It would also be a mistake to infer from our findings that the genetic effects operate independently of environmental factors. Indeed, a recent meta-analysis of twin studies found that genetic influences on EA are heterogeneous across countries and birth cohorts. We conducted exploratory analyses in the Swedish Twin Registry to illustrate how environmental factors may amplify or dampen the impact of genetic influences (Supplementary Information section 7). We found that the predictive power of the all-SNPs polygenic score is heterogeneous by birth cohort, with smaller explanatory power in younger cohorts (Extended Data Fig. 10; see also Supplementary Information section 7.4 for discussion of the contrast between these results and findings from a seminal twin study that estimated EA heritability by birth cohort).

Methods: All methods are described in the Supplementary Information.

References:

Supplementary Information is linked to the online version of the paper at www.nature.com/nature.
Acknowledgements This research was carried out under the auspices of the Social Science Genetic Association Consortium (SSGAC). The SSGAC seeks to facilitate studies that investigate the influence of genes on human behavior, well-being, and social-scientific outcomes using large genome-wide association study meta-analyses. The SSGAC also provides opportunities for replication and promotes the collection of accurately measured, harmonized phenotypes across cohorts. The SSGAC operates as a working group within the CHARGE consortium. This research has also been conducted using the UK Biobank Resource. This study was supported by funding from the Ragnar Söderberg Foundation (E9/11), the Swedish Research Council (421-2013-1061), The Jan Wallander and Tom Hedelius Foundation, an ERC Consolidator Grant (647648 EdGe), the Pershing Square Fund of the Foundations of Human Behavior, and the NIA/NIH through grants P01-AG005842, P01-AG005842-20S2, P30-AG012810, and T32-AG000186-23 to NBER, and R01-AG042568 to USC. We thank Samantha Cunningham, Nishanth Galla and Justin Rashtian for research assistance. A full list of acknowledgments is provided in the supplementary materials.

contributing components of the meta-analysis. For a full list of author contributions, see Supplementary Information section 8.

Author Information Results can be downloaded from the SSGAC website (http://ssgac.org/Data.php). Data for our analyses come from many studies and organizations, some of which are subject to a MTA, and are listed in the Supplementary Information. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Correspondence and requests for materials should be addressed to D.J.B. (daniel.benjamin@gmail.com), D.C. (dac12@nyu.edu), P.D.K. (p.d.koellinger@vu.nl), or P.M.V. (peter.visscher@uq.edu.au).
Table 1 | Selected candidate genes implicated by bioinformatics analyses. Fifteen candidate genes implicated most consistently across various analyses. To assemble this list, each gene in a DEPICT-defined locus (Supplementary Information section 4.5) was assigned a score equal to the number of criteria it satisfies out of ten (see Supplementary Table 4.1 for details). The DEPICT prioritization P-value was used as the tiebreaker. “SNP”: the SNP in the gene’s locus with the lowest P-value in the EduYears meta-analysis. “Syndromic”: which, if any, of three neuropsychiatric disorders have been linked to de novo mutations in the gene (Supplementary Information section 4.6). “Top-ranking gene sets”: DEPICT reconstituted gene sets of which the gene is a top-20 member (Supplementary Table 4.5.1). The three most significant gene sets are shown if more than three are available. ID, intellectual disability; ASD, autism spectrum disorder; SCZ, schizophrenia.
<table>
<thead>
<tr>
<th>Gene</th>
<th>SNP</th>
<th>Syndromic</th>
<th>Score</th>
<th>Top-ranking gene sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBR1</td>
<td>rs4500960</td>
<td>ID, ASD</td>
<td>6</td>
<td>Developmental biology, decreased brain size, abnormal cerebral cortex morphology</td>
</tr>
<tr>
<td>MEF2C</td>
<td>rs7277187</td>
<td>ID, ASD</td>
<td>5</td>
<td>ErbB signaling pathway, abnormal sternum ossification, regulation of muscle cell differentiation</td>
</tr>
<tr>
<td>ZSWIM6</td>
<td>rs61160187</td>
<td>–</td>
<td>5</td>
<td>Transcription factor binding, negative regulation of signal transduction, PI3K events in ErbB4 signaling</td>
</tr>
<tr>
<td>BCL11A</td>
<td>rs2457660</td>
<td>ASD</td>
<td>5</td>
<td>Dendritic spine organization, abnormal hippocampal mossy fiber morphology, SWI/SNF-type complex</td>
</tr>
<tr>
<td>CELSR3</td>
<td>rs11712056</td>
<td>SCZ</td>
<td>5</td>
<td>Dendrite morphogenesis, dendrite development, abnormal hippocampal mossy fiber morphology</td>
</tr>
<tr>
<td>MAPT</td>
<td>rs192818565</td>
<td>ID</td>
<td>5</td>
<td>Dendrite morphogenesis, abnormal hippocampal mossy fiber morphology, abnormal axon guidance</td>
</tr>
<tr>
<td>SBNO1</td>
<td>rs7306755</td>
<td>SCZ</td>
<td>5</td>
<td>Protein serine/threonine phosphatase complex</td>
</tr>
<tr>
<td>NBAS</td>
<td>rs12987662</td>
<td>–</td>
<td>5</td>
<td>–</td>
</tr>
<tr>
<td>NBEA</td>
<td>rs9544418</td>
<td>SCZ</td>
<td>4</td>
<td>Developmental biology, signaling by Robo receptor, dendritic shaft</td>
</tr>
<tr>
<td>SMARCA2</td>
<td>rs1871109</td>
<td>ID</td>
<td>4</td>
<td>–</td>
</tr>
<tr>
<td>MAP4</td>
<td>rs11712056</td>
<td>ASD</td>
<td>4</td>
<td>Developmental biology, signaling by Robo receptor, SWI-SNF-type complex</td>
</tr>
<tr>
<td>LINC00461</td>
<td>rs10061788</td>
<td>–</td>
<td>4</td>
<td>Decreased brain size, abnormal cerebral cortex morphology, abnormal hippocampal mossy fiber morphology</td>
</tr>
<tr>
<td>POU3F2</td>
<td>rs9320913</td>
<td>–</td>
<td>4</td>
<td>Dendrite morphogenesis, developmental biology, decreased brain size</td>
</tr>
<tr>
<td>RAD54L2</td>
<td>rs11712056</td>
<td>SCZ</td>
<td>4</td>
<td>Decreased brain size, SWI/SNF-type complex, nBAF complex</td>
</tr>
<tr>
<td>PLK2</td>
<td>rs2964197</td>
<td>–</td>
<td>4</td>
<td>Negative regulation of signal transduction, PI3K events in ErbB4 signaling</td>
</tr>
</tbody>
</table>
Authors:

Aysu Okbay1,2,3,*, Jonathan P. Beauchamp4,*, Mark A. Fontana5,*, James J. Lee6,*, Tune H. Pers7,8,9,10,*, Cornelius A. Rietveld1,2,3,*, Patrick Turley4,*, Guo-Bo Chen11, Valur Emilsson12,13, S. Fleur W. Meddens14,3,15, Sven Oskarsson16, Joseph K. Pickrell17, Kevin Thom18, Pascal Timshel19,8, Ronald de Vlaming1,2,3, Abdel Abdellaoui20, Tarunveer S. Ahluwalia21,9,22, Jonas Bacelis23, Clemens Baumbach24,25, Gyda Bjornsdottir95, Johannes H. Brandsma26, Maria Pina Concas27, Jaime Derringer28, Nicholas A. Furlotte29, Tessel E. Hofer37,38, Momoko Horikoshi39,40, Jennifer E. Huffman41, Kadri Kaasik42, Ioanna P. Kalafati43, Robert Karlsson44, Augustine Kong95, Jari Lahti42,45, Sven J. van der Lee2, Christiaan de Leeuw14,46, Penelope A. Lind47, Karl-Oskar Lindgren16, Tian Liu48, Massimo Mangino49,50, Jonathan Marten41, Evelin Mihailov114, Michael B. Miller6, Peter J. van der Most51, Christopher Oldmeadow52,53, Antony Payton54,55, Natalia Pervjakova56,114, Wouter J. Peyrot57, Yong Qian58, Olli Raitakari59, Rico Rueedi60,61, Erika Salvi62, Börge Schmidt63, Katharina E. Schraut64, Jianxin Shi65, Albert V. Smith66,67, Raymond A. Poot26, Beate St Pourcain68,69, Alexander Teumer70, Gudmar Thorleifsson95, Nick Verweij71, Dragana Vuckovic31, Juergen Wellmann72, Harm-Jan Westra73,74,8, Jingyun Yang75,76, Wei Zhao77, Zhihong Zhu11, Behrooz Z. Alizadeh51,78, Najaf Amin2, Andrew Bakshi11, Sebastian E. Baumeister70,79, Ginevra Biino80, Klaus Bennelykke21, Patricia A. Boyle75,81, Harry Campbell64, Francesco P. Cappuccio82, Gail Davies35,83, Jan-Emmanuel De Neve84, Panos Deloukas85,86, Ilja Demuth87,88, Jun Ding58, Peter Eibich89,90, Leaun Eisele63, Niina Eklund56, David M. Evans68,184, Jessica D. Faul91, Mary F. Feitosa92, Andreas J. Forstner93,94, Ilaria Gandin31, Bjarni Gunnarsson95, Bjarni V. Halldórsson95,96, Tamara B. Harris97, Andrew C. Heath98, Lynne J. Hocking99, Elizabeth G. Holliday52,53, Georg Homuth100, Michael A. Horan101, Jouke-Jan Hottenga20, Philip L. de Jager102,103,8, Peter K. Joshi64, Astanand
Karl-Heinz Jöckel63, Jaakko Kaprio32,124,56, Sharon L.R. Kardia77, Terho Lehtimäki165,166, Steven F. Lehrer167,168, Patrik K.E. Magnusson44, Nicholas G. Martin169, Matt McGue6, Andres Metspalu114,170, Neil Pendleton171,172, Brenda W.J.H. Penninx57, Markus Perola56,114, Nicola Pirastu31, Mario Pirastu27, Ozren Polasek173,64, Danielle Posthuma14,174, Christine Power160, Michael A. Province92, Nilesh J. Samani133,34, David Schlessinger48, Reinhold Schmidt37, Thorkild I.A. Sørensen175,9,68, Tim D. Spector49, Kari Stefansson95,67, Unnur Thorsteinsdottir95,67, A. Roy Thurik1,176,177,3, Nicholas J. Timpson68, Henning Tiemeier2,178,179, Joyce Y. Tung29, André G. Uitterlinden180,2, Veronique Vitart41, Peter Vollenweider116, David R. Weir91, James F. Wilson64,41, Alan F. Wright41, Dalton C. Conley181,182, Robert F. Krueger\#, George Davey Smith68, Albert Hofman2, David I. Laibson4, Sarah E. Medland47, Michelle N. Meyer183, Jian Yang11,184, Magnus Johannesson185, Peter M. Visscher11,184,\#, Tõnu Esko114,7,186,8,\#, Philipp D. Koellinger14,15,3,\#, David Cesarini18,187,\#, Daniel J. Benjamin188,5,\#

* These authors contributed equally.

\# Designed and oversaw the study.

1 Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, 3062 PA, Rotterdam, The Netherlands

2 Department of Epidemiology, Erasmus Medical Center, Rotterdam, 3015 GE, The Netherlands

3 Erasmus University Rotterdam Institute for Behavior and Biology, Rotterdam 3062 PA, The Netherlands

4 Department of Economics, Harvard University, Cambridge, MA 02138, USA

5 Center for Economic and Social Research, University of Southern California, Los Angeles, CA 90089-3332, USA
6 Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA

7 Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children’s Hospital, Boston, MA 2116, USA

8 Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA

9 The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, 2100, Denmark

10 Statens Serum Institut, Department of Epidemiology Research, Copenhagen, DK 2300, Denmark

11 Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia

12 Icelandic Heart Association, Kopavogur, 201, Iceland

13 Faculty of Pharmaceutical Sciences, University of Iceland, 107 Reykjavik, Iceland

14 Department of Complex Trait Genetics, VU University, Center for Neurogenomics and Cognitive Research, Amsterdam, 1081 HV, The Netherlands

15 Amsterdam Business School, University of Amsterdam, Amsterdam, 1018 TV, The Netherlands

16 Department of Government, Uppsala University, Uppsala, 751 20, Sweden

17 New York Genome Center, New York, NY 10013, USA

18 Department of Economics, New York University, New York, NY 10012, USA

19 Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark Lyngby, 2800, Denmark
20 Department of Biological Psychology, VU University Amsterdam, Amsterdam, 1081 BT, The Netherlands

21 COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, 2820, Denmark

22 Steno Diabetes Center, Gentofte, 2820, Denmark

23 Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg, SE 416 85, Sweden

24 Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany

25 Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany

26 Department of Cell Biology, Erasmus Medical Center Rotterdam, 3015 CN, The Netherlands

27 Istituto di Ricerca Genetica e Biomedica U.O.S. di Sassari, National Research Council of Italy, Sassari, 07100, Italy

28 Psychology, University of Illinois, IL 61820, Champaign, USA

29 23andMe, Inc., Mountain View, CA 94041, USA

30 Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands

31 Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, 34100, Italy

32 Department of Public Health, University of Helsinki, Helsinki, FI-00014, Finland

33 Department of Cardiovascular Sciences, University of Leicester, Leicester, LE3 9QP, UK

34 NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, LE3 9QP, UK
35 Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
36 Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
37 Department of Neurology, General Hospital and Medical University Graz, Graz, 8036, Austria
38 Institute for Medical Informatics, Statistics and Documentation, General Hospital and Medical University Graz, Graz, 8036, Austria
39 Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, OX3 7LE, UK
40 Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
41 MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
42 Institute of Behavioural Sciences, University of Helsinki, Helsinki, FI-00014, Finland
43 Nutrition and Dietetics, Health Science and Education, Harokopio University, Athens, 17671, Greece
44 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 171 77, Sweden
45 Folkhälsan Research Centre, Helsingfors, FI-00014, Finland
46 Institute for Computing and Information Sciences, Radboud University Nijmegen, Nijmegen, 6525 EC, The Netherlands
47 Quantitative Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
48 Lifespan Psychology, Max Planck Institute for Human Development, Berlin, 14195, Germany
Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK

NIHR Biomedical Research Centre, Guy’s and St. Thomas’ Foundation Trust, London, SE1 7EH, UK

Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands

Public Health Stream, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia

Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW 2300, Australia

Centre for Integrated Genomic Medical Research, Institute of Population Health, The University of Manchester, Manchester, M13 9PT, UK

School of Psychological Sciences, The University of Manchester, Manchester, M13 9PL, UK

Department of Health, THL-National Institute for Health and Welfare, Helsinki, FI-00271, Finland

Psychiatry, VU University Medical Center & GGZ inGeest, Amsterdam, 1081 HL, The Netherlands

Laboratory of Genetics, National Institute on Aging, Baltimore, MD 21224, USA

Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, 20521, Finland

Department of Medical Genetics, University of Lausanne, Lausanne, 1005, Switzerland

Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland

Department Of Health Sciences, University of Milan, Milano, 20142, Italy

Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, 45147, Germany
Centre for Global Health Research, The Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH8 9AG, UK

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892-9780, USA

Icelandic Heart Association, Kopavogur, 201, Iceland

Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland

MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK

School of Oral and Dental Sciences, University of Bristol, Bristol, BS1 2LY, UK

Institute for Community Medicine, University Medicine Greifswald, Greifswald, 17475, Germany

Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands

Institute of Epidemiology and Social Medicine, University of Muenster, Muenster, 48149, Germany

Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, MA 02115, Boston, USA

Partners Center for Personalized Genetic Medicine, Boston, MA 02115, USA

Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA

Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA

Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, USA

Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, The Netherlands
Institute of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, D-93053, Germany

Institute of Molecular Genetics, National Research Council of Italy, Pavia, 27100, Italy

Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL 60612, USA

Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK

Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK

Saïd Business School, University of Oxford, Oxford, OX1 1HP, UK

William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK

Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, 21589, Saudi Arabia

The Berlin Aging Study II; Research Group on Geriatrics, Charité – Universitätsmedizin Berlin, Germany, Berlin, 13347, Germany

Institute of Medical and Human Genetics, Charité-Universitätsmedizin, Berlin, Berlin, 13353, Germany

German Socio- Economic Panel Study, DIW Berlin, Berlin, 10117, Germany

Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK

Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48109, USA

Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO 63018, USA

Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
Department of Genomics, Life and Brain Center, University of Bonn, Bonn, 53127, Germany

decODE Genetics/Amgen Inc., Reykjavik, IS-101, Iceland

Institute of Biomedical and Neural Engineering, School of Science and Engineering, Reykjavik University, Reykjavik 101, Iceland

Laboratory of Epidemiology, Demography, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-9205, United States

Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA

Division of Applied Health Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK

Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, 17475, Germany

Manchester Medical School, The University of Manchester, Manchester, 9PT, UK

Program in Translational NeuroPsychiatric Genomics, Departments of Neurology & Psychiatry, Brigham and Women’s Hospital, Boston, MA 02115, USA

Harvard Medical School, Boston, MA 02115, USA

Department of Genes and Environment, Norwegian Institute of Public Health, Oslo, N-0403, Norway

Department of Genomics of Common Disease, Imperial College London, London, W12 0NN, UK

Department of Clinical Physiology, Tampere University Hospital, Tampere, 33521, Finland

Department of Clinical Physiology, University of Tampere, School of Medicine, Tampere, 33014, Finland

Public Health, Medical School, University of Split, 21000 Split, Croatia
109 Institute of Social and Preventive Medicine, Lausanne University Hospital (CHUV), Lausanne, 1010, Switzerland

110 Neuroepidemiology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-9205, USA

111 Amsterdam Brain and Cognition Center, University of Amsterdam, 1018 XA, Amsterdam, The Netherlands

112 Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305-5797, USA

113 LifeLines Cohort Study, University of Groningen, University Medical Center Groningen, Groningen, 9713 BZ, The Netherlands

114 Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia

115 Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK

116 Department of Internal Medicine, Internal Medicine, Lausanne University Hospital (CHUV), Lausanne, 1011, Switzerland

117 Tema BV, 2131 HE Hoofddorp, The Netherlands

118 Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany

119 Molecular Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia

120 Institute of Health and Biomedical Innovation, Queensland Institute of Technology, Brisbane, QLD 4059, Australia

121 Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
122 The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

123 Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA

124 Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, 00014, Finland

125 Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA

126 Medical Genetics, Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, 34100, Italy

127 Social Impact, Arlington, VA 22201, USA

128 Department of Economics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA

129 Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem, Evanston, IL 60201-3137, USA

130 Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA

131 Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki 00300, Finland

132 Research Unit for Genetic Epidemiology, Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, General Hospital and Medical University, Graz, Graz, 8010, Austria

133 Information Based Medicine Stream, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia

134 Medical Research Institute, University of Dundee, Dundee, DD1 9SY, UK
135 Research Unit Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Science, University of Leuven, Leuven, 3000, Belgium

136 R&D VitaK Group, Maastricht University, Maastricht, 6229 EV, The Netherlands

137 Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany

138 Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig Maximilians-Universität, Munich, 81377, Germany

139 Department of Geriatrics, Florida State University College of Medicine, Tallahassee, FL 32306, USA

140 Department of Health Sciences and Genetics, University of Leicester, Leicester, LE1 7RH, UK

141 Department of Internal Medicine, Erasmus Medical Center, Rotterdam, 3015 GE, The Netherlands

142 Research Center for Group Dynamics, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA

143 Platform for Genome Analytics, Institutes of Neurogenetics & Integrative and Experimental Genomics, University of Lübeck, Lübeck, 23562, Germany

144 Neuroepidemiology and Ageing Research Unit, School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK

145 Department of Health Sciences, Community & Occupational Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands

146 Department of Psychology, Union College, Schenectady, NY 12308, USA

147 Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, 9042, Italy
Center for Life Course Epidemiology, Faculty of Medicine, University of Oulu, Oulu, FI-90014, Finland

Unit of Primary Care, Oulu University Hospital, Oulu, 90029 OYS, Finland

Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland

Fimlab Laboratories, Tampere, 33520, Finland

Department of Clinical Chemistry, University of Tampere, School of Medicine, Tampere, 33014, Finland

Economics, NYU Shanghai, 200122, Pudong, China

Policy Studies, Queen's University, Kingston, K7L3N6, Canada

Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia

Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia

Centre for Clinical and Cognitive Neuroscience, Institute Brain Behaviour and Mental Health, Salford Royal Hospital, Manchester, M6 8HD, UK

Manchester Institute Collaborative Research in Ageing, University of Manchester, Manchester, M13 9PL, UK

Faculty of Medicine, University of Split, Croatia, Split 21000, Croatia

Department of Clinical Genetics, VU Medical Centre, Amsterdam, 1081 HV, The Netherlands

Institute of Preventive Medicine, Bispebjerg and Frederiksberg Hospitals, The Capital Region, Frederiksberg, 2000, Denmark

Montpellier Business School, Montpellier, 34080, France

Panteia, Zoetermeer, 2715 CA, The Netherlands

Department of Psychiatry, Erasmus Medical Center, Rotterdam, 3015 GE, The Netherlands
Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, 3015 GE, The Netherlands

Department of Internal Medicine, Erasmus Medical Center, Rotterdam, 3015 GE, The Netherlands

Department of Sociology, New York University, New York, NY 10012, USA

School of Medicine, New York University, NY 10016, New York, USA

Bioethics Program, Union Graduate College - Icahn School of Medicine at Mount Sinai, Schenectady, NY 12308, USA

The University of Queensland Diamantina Institute, The Translational Research Institute, Brisbane, QLD 4102, Australia

Department of Economics, Stockholm School of Economics, Stockholm, 113 83, Sweden

Department of Genetics, Harvard Medical School, Boston, MA 02115, USA

Research Institute for Industrial Economics, Stockholm, 10215, Sweden

Department of Economics, Cornell University, Ithaca, NY 14853, USA