Opening Up Science

Marcus R. Munafò¹,²

1. MRC Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, United Kingdom.
2. UK Centre for Tobacco and Alcohol Studies, School of Experimental Psychology, University of Bristol, Bristol, United Kingdom.

Corresponding author: Marcus R. Munafò, School of Experimental Psychology, University of Bristol, Bristol BS8 1TU, United Kingdom. T: +44.117.9546841; F: +44.1179288588; E: marcus.munafo@bristol.ac.uk
Abstract

Open Science is an umbrella term that encompasses making study materials, data, results and publications freely available. This not only enables wider dissemination of research findings (including to non-academics), but also promotes greater transparency and may improve the robustness and reproducibility of published research.

Keywords: Open Science; Open Access; Open Data; Pre-Registration; Reproducibility.
There is growing consideration of the possibility that many published research findings may be false (1). While cases of fraud and data fabrication do exist, arguably a greater problem is the wider incentive structures in science that reward discovery and novelty over replication. This in turn may encourage various behaviours that reduce the likelihood that a research finding will prove robust, such as running a series of small, underpowered, but ultimately publishable studies, or conducting a large number of statistical analyses and only reporting those that produce the most interesting results. For example, the average statistical power of individual studies has been estimated to be as low as 20% in some domains (2), while the introduction of the requirement that clinical trial primary outcomes be pre-registered prior to publication was associated with a reduction in the number of trials that showed a significant benefit of intervention on the (reported) primary outcome (3). While there is ongoing debate as to the nature and extent of the reproducibility “crisis” (as it has become known), it is timely to reflect on whether the process of scientific research can be improved.

A number of potential ways to improve reproducibility have been proposed (such as pre-registration of studies and analysis plans) (4, 5), many of which form part of what has become known as the Open Science movement. This encourages scientists to make their materials, data, and publications freely available to all. In its broadest sense, it includes open source software, open peer review (such as that practiced by the Frontiers family of journals) (6), and other resources (such as educational materials). A number of third-party services now exist to support Open Science, such as the Open Science Framework (OSF), a free, open-source service provided by the non-profit Center for Open Science (http://centerforopenscience.org). However, the principal motivation of the Open Science movement is not reproducibility but rather to promote wider access to the products of scientific
research (much of which is ultimately funded by public money or charitable
donations), greater efficiency (through the sharing of materials and data), and
improved quality control (through the ability to re-analyze data independently, but
also as a result of the natural tendency to check one’s own data one more time if
these are to be made public!).

In addition to the advantages of adopting an Open Science model to science
(e.g., increased efficiency through the sharing of materials and data) and the wider
community (e.g., free access to research outputs), there are potential benefits to
individual scientists and research groups. For example, it may encourage the
harmonization of procedures within (and between) research groups, and improve
quality control procedures (7). Nevertheless, adopting an Open Science approach
can be a substantial undertaking, and may entail changes in procedures, the use of a
number of platforms to make materials, data, and publications publicly available, and
discussions with institutional ethics committees and research governance teams.
Critically, certain aspects of Open Science may not be appropriate in some settings.
For example, if there is a risk of participant identification in an anonymised data set
(e.g., where the sample is drawn from a small, distinctive clinical population),
particularly where sensitive information is involved, making data publicly available will
not be appropriate. Pre-registration of study protocols may not be appropriate for
exploratory research, or for secondary analyses of existing data. Any general move
in the scientific community towards an Open Science model will necessarily be
gradual, and will need to with genuine concerns that may exist about certain aspects
of the model in specific settings.

Recently the OSF introduced Transparency and Openness Promotion (TOP)
Guidelines for journals and publishers (http://cos.io/top). These introduce eight
standards that encourage greater openness - in brief, they cover citation standards,
data, analytic methods (code), research materials, design and analysis, pre-
registration of studies, pre-registration of analysis plans, and replication (8). Not all of
these standards are applicable to all journals or disciplines, and therefore three levels for each standard are defined, with Level 1 presenting the fewest barriers to adoption (e.g., simply stating in the text of an article whether data are available, and if so where) and Level 3 representing the most stringent standards (e.g., mandating the deposition of data to a trusted repository and reported analyses reproduced independently prior to publication). Critically, these levels also allow for various aspects of the Open Science model to be adopted gradually, and allow journals to only adopt the guidelines up to a level that is appropriate in that field.

The principles of Open Science movement are not new – calls to improve the accessibility of data go back many years (9), while pre-registration is now the norm for clinical trials. However, if Open Science is to become the norm this will require a cultural change that will come about through both top-down and bottom-up activity. The former includes funders and publishers – for example, research funders are increasingly mandating data sharing and open access publication, while a number of journals (including Addiction) are signatories to the TOP Guidelines (8). At the same time, individual researchers and research groups can work to promote this cultural change, through training of early career researchers and the promotion of the principles of Open Science (7). It will also require a wider discussion within the scientific community of the potential advantages of the Open Science model, as well as barriers to adoption, including cases where exceptions will need to be made, and what new approaches and platforms are required to support it.
Acknowledgements

MRM is a member of the UK Centre for Tobacco and Alcohol Studies, a UKCRC Public Health Research: Centre of Excellence. Funding from British Heart Foundation, Cancer Research UK, Economic and Social Research Council, Medical Research Council, and the National Institute for Health Research, under the auspices of the UK Clinical Research Collaboration, is gratefully acknowledged.
References


