
Peer reviewed version

Link to published version (if available): 10.1093/ageing/afv113.01

Link to publication record in Explore Bristol Research
PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online via Oxford University Press at http://dx.doi.org/10.1093/ageing/afv113.01. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms.html
CAN PARAMEDICS USE FRAX TO IDENTIFY PATIENTS AT GREATEST RISK OF FUTURE FRACTURE AMONG THOSE WHO FALL? A FEASIBILITY STUDY.

Authors
Rachel Bradley¹, Bethany Simmonds¹, Rachael Gooberman-Hill², Maria Robinson³, Rosemary Greenwood¹, Elsa Marques⁴, Jonathan Benger⁵, Christopher Salisbury⁶, Lee Shepstone⁷, Shane Clarke⁸

Author Provenance (Max 70 words)
1 University Hospitals Bristol NHS Foundation Trust,
2 School of Clinical Sciences, University of Bristol,
3 Research and Clinical Audit, South Western Ambulance Service NHS Foundation Trust, Exeter,
4 School of Social and Community Medicine, University of Bristol,
5 Faculty of Health and Applied Sciences, University of West of England,
6 Centre for Academic Primary Care, University of Bristol,
7 Norwich Medical School, University of East Anglia, Norwich

Background:
The majority of fragility fractures occur in people who fall. However, only a minority of people who fall are assessed for fracture risk.

We hypothesized that paramedics attending such patients could calculate 10-year fracture risk using FRAX and, by informing their GPs, increase assessment and treatment for osteoporosis for those at highest risk of fracture.

Methods:
This feasibility study aimed to explore and refine issues regarding study design, recruitment, retention, sample size and acceptability to inform a future multicentre randomised control trial.

Volunteer paramedics were trained regarding osteoporosis, falls and FRAX. Patients ≥50 years who fell were attended by paramedics. Once stabilised, they (or their carers if they lacked capacity) provided verbal consent to answer FRAX questions and subsequent contact by a researcher.

Patients were formally recruited by the researcher and randomised to the intervention (FRAX calculation and advice sent to GPs) or usual care. The target recruitment was 50 participants per group.

Results:
23 paramedics verbally consented 175/1447 (12.1%) patients who fell over a 12 month recruitment period. 53/175 (30%) progressed to formal recruitment. The average age was 81 years (57-98), 51% women.
The median number of falls per patient reported in previous year was 3.0. Prior fragility fracture was reported by 23/53 (43%). The median FRAX risk of hip fracture was 7.6% over 10 years (>5% in 37/53 70%). 28/53 (53%) of patients were at intermediate/high risk (according to NOGG criteria). Only 9/28 had ever taken osteoporosis medication.

Qualitative work suggested that the intervention was acceptable to most patients, carers, GPs and paramedics. However, recruitment was challenging, with paramedics and patients identifying the difficulties of consent in the context of a fall. GPs highlighted the complexities of fracture prevention advice in patients with comorbidities.

Conclusion:

This feasibility study suggested that the intervention was acceptable, but highlighted some challenges in recruiting patients in this setting that can be addressed in future work. The calculated FRAX fracture risk was high in this patient group which supports the need for a targeted intervention.