
Peer reviewed version

Link to published version (if available):
10.1002/anie.201604496

Link to publication record in Explore Bristol Research
PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online via Wiley at DOI: 10.1002/anie.201604496. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
The meso helix: symmetry and symmetry-breaking in dynamic oligourea foldamers with reversible hydrogen-bond polarity

Romina Wechsel[a], James Raftery[a], Dominique Cavagnat[b], Gilles Guichard[c,d] and Jonathan Clayden*[e]

Abstract: Oligoureas (up to n = 6) of meso cyclohexane-1,2-diamine were synthesised by chain extension with an enzymatically desymmetrised monomer 2. Despite being achiral, the meso oligomers adopt chiral canonical 2.5-helical conformations whose equally populated enantiomeric screw-sense conformers are in slow exchange on the NMR timescale, with a barrier to screw-sense inversion of ca. 70 kJ mol\(^{-1}\). Screw-sense inversion in these helical foldamers is coupled with cyclohexane ring-flipping, and results in a reversal of the directionality of the hydrogen bonding in the helix. The termini of the meso oligomers are enantiotopic, and desymmetrised analogues of the oligoureas with differentially and enantioselectively protected termini display moderate screw-sense preferences. A screw-sense preference may furthermore be induced in the achiral, meso oligoureas by formation of a 1:1 hydrogen-bonded complex with the carboxylate anion of Boc-D-proline. The meso oligoureas are the first examples of hydrogen-bonded foldamers with reversible hydrogen-bond directionality.

A helix is a chiral object,\(^{[1]}\) but helical molecular structures may be constructed from either chiral or achiral subunits.\(^{[2,4]}\) The diastereoisomeric screw sense conformers of helical oligomers built from chiral monomers are necessarily different in energy. As a result, structures such as peptide \(\alpha\)-helices (built from L-amino acids) and DNA (built from D-nucleotides) are characterized by a powerful screw sense preference. Helical oligomers of achiral monomers must by contrast populate a left-handed and a right-handed screw-sense conformer of equal energy, which interconvert (enantiomerise) on a timescale characteristic of the type of helix.\(^{[7]}\) Examples of such ‘achiral’ helices include polysaccharides,\(^{[8]}\) polysacrylanides,\(^{[9]}\) polyphenylenes,\(^{[10]}\) and oligomers of the achiral amino acids, whether aromatic,\(^{[11,12]}\) quaternary (Alb),\(^{[13,15]}\) or \(\alpha,\beta\)-di-alkylamino (\(\Delta\)Ph)\(^{[16]}\) helices. In all these cases, the conformationally-averaged monomers have a plane of symmetry that lies parallel to the axis of the helix.

An alternative situation arises if a helix is formed from an achiral but meso monomer. In such a case, the monomer has a plane of symmetry perpendicular to the axis of the helix, but no plane of symmetry parallel to the axis. The termini of oligomers of a meso compound are therefore enantiotopic, but become diastereotopic, and therefore chemically inequivalent, on the adoption of a chiral, helical conformation.\(^{[17]}\)

We set out to investigate the intriguing stereochemical properties and possibilities for molecular communication\(^{[18]}\) of dynamic meso oligomers, with such structures appearing as monomers the meso diamine 1. To retain the meso symmetry of the monomers, these were linked into an oligomer using symmetrical foldamers and the geometry of 1 is compatible with helix formation,\(^{[22]}\) even though oligoureas built from achiral diamine monomers do not generally display helicity.\(^{[23,25]}\)

![Figure 1: Synthesis of meso oligomers][1]

Reagents and conditions: a) Novozym-435®, diallyl carbonate (1.0 equiv), toluene, 96 h, 90–95%; b) Boc\(\text{O}\) (1.2 equiv), Et\(\text{N}\) (1.2 equiv), CH\(\text{Cl}\text{2}\), overnight, 85–99%; c) Pd(OAc)\(_2\) (10 mol%), PPh\(_3\) (polymer-bound, 30 mol%), dimethylbarbituric acid (3.0 equiv), CH\(\text{Cl}\text{2}\), 24 h, quant.; d) disuccinimidyl carbonate (1.2 equiv), CH\(\text{Cl}\text{2}\), overnight, 65–75%; e) 5 (1.0 equiv), Et\(\text{N}\) (3.0 equiv), MeCN, overnight, 70–90%; f) CF\(_3\)CO\(\text{H}\), 45 min, quant.; g) Pd(OAc)\(_2\) (10 mol%), PPh\(_3\) (polymer-bound, 30 mol%), dimethylbarbituric acid (3.0 equiv), CH\(\text{Cl}\text{2}\), 24 h, quant.; h) Boc\(\text{O}\) (1.2 equiv), Et\(\text{N}\) (1.2 equiv), CH\(\text{Cl}\text{2}\), overnight, 35 – 65%; i) RNCO (2.0 equiv), CH\(\text{Cl}\text{2}\), overnight, 59–99%.

[a] Romina Wechsel, Dr James Raftery, School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
[b] Dr Dominique Cavagnat, ICM, CNRS UMR 5255, Université de Bordeaux, 351 cours de la Libération, 33405 Talence, France
[c] Dr Gilles Guichard, Université de Bordeaux, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac France,
[d] Dr Dominique Cavagnat, ICM, CNRS UMR 5255, Université de Bordeaux, 351 cours de la Libération, 33405 Talence, France
[e] Prof Jonathan Clayden, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK, E-mail: j.clayden@bristol.ac.uk

Supporting information for this article is given via a link at the end of the document.
The synthesis of a meso oligomer poses a particular challenge, because although the final target is an achiral structure, the termini of the growing oligomer are enantiotopic, and thus the symmetrical monomers must be activated and coupled by enantioselective reactions to ensure formation of a single diastereoisomer of the product. This was achieved using the enzymatic enantioselective mono-Alloc protection of 1 reported by Berkessel.[26] Treatment of 1 with diallyl carbonate in the presence of Candida antarctica Novozym-435 in toluene at room temperature for 96 h selectively acylated 1 to give the Alloc protected 2 in 90% yield and >96% ee. Boc protection, Alloc deprotection and formation of an activated carbamate with disuccinimidyl carbonate (DSC)[27] gave a versatile reactive monomer 5 that was used iteratively for chain extension of 2, giving sequentially a series of desymmetrised oligoureas 6a–6e as shown in Figure 1. These unsymmetrical and enantiomerically pure oligomers were symmetrized by deprotection and acylation to yield the carbamate-terminated oligoureas 7c–7d and the two series of differentially terminated penta, hexa and heptaureas 8c–e and 9c–e.

Figure 2: The helical geometry of urea-linked oligomers of meso-1,2-diaminocyclohexane 1. (a) Optimized geometry of 10 calculated at the DFT level; (b) X-ray crystal structure of 7d (shown as a left-handed helix) (c) X-ray crystal structure of 9c (shown as a right-handed helix); (d) Schematic diagram of the right-handed screw-conformation of meso oligourea helix 9c. For clarity of interpretation, the helix is represented as a 2-helix rather than a 2.5-helix. The C-terminal substituent is equatorial on the cyclohexane ring; the N-terminal substituent is axial.

The conformational energy surface of a model oligomer 10, analogous in structure to 8 and 9, was explored computationally by carrying out semiempirical calculations using the RM1 method[28] with the simulated annealing technique implemented in Ampac 9.[29] A helical conformation with 2.5 residues per turn and a hydrogen-bond network forming 12 and 14-rings (Figure 2a), comparable to that of the 2.5214 geometry of related oligoureas of chiral monomers,[31] was calculated to be the most stable. The geometry of the this lowest-energy conformer was optimized at the density functional theory (DFT) level using the wB97XD functional[32] and the 6-31G** basis set (Figure 2a). In satisfying agreement with these DFT calculations, the X-ray crystal structures[31] of 7d and 9c likewise showed a 2.5 helical conformation twisted together by hydrogen bonding between the urea C=O and NH groups of alternate monomers, very close to the geometry predicted by the modelling (Figure 2b, c and supporting information, Table S1). The crystals contain helices of alternating M and P screw sense. The directional hydrogen-bonding within each helical conformer (illustrated schematically for 9c in Figure 2d) breaks the meso symmetry of the oligomer, and identifies one end of the oligomer as a C terminus (with two unsatisfied C=O hydrogen bond acceptors) and one end as an N terminus (with four unsatisfied N–H hydrogen bond donors). Within each cyclohexanediamine monomer, the N-terminal nitrogen substituent is axial, and the C-terminal nitrogen substituent is equatorial.

1H NMR revealed important information about the solution-state structure and stereodynamics of 7 and 8. Despite the configurational symmetry of the meso structures, the terminal f-Bu groups of 7 and the Bn groups of 8 appear as two separate signals, indicating that they occupy chemically non-identical environments (Fig 3a, c). The CHN protons in the oligomers likewise cluster into two groups – an axial set between 3.3 and 3.7 ppm and an equatorial set between 4.0 and 4.4 ppm.[33] The NH signals of the oligomers are well resolved and dispersed across the region between 5.6 and 6.7 ppm. This combination of features is consistent with a repetitive monomer conformation producing a well-defined global helical geometry in solution.

The spectroscopic inequivalence of the enantiotopic termini of meso oligoureas 7, 8 and 9 indicate that the enantiomeric helical screw sense conformers of these compounds are in slow exchange on the NMR timescale. Variable temperature NMR experiments were conducted with 7c in three different solvents, monitoring the line shape of the coalescing t-Bu signals between 0 and 50 °C (Fig 3a). Line shape and Eyring analysis (Fig 3b and supporting information) gave barriers for screw sense inversion $\Delta G^{\ddagger}_{298} = 70 \text{ kJ mol}^{-1}$ in chloroform, 68 kJ mol$^{-1}$ in ethanol and 66 kJ mol$^{-1}$ in methanol.[33] Similar analysis of 8d and of 8e (Fig 3c, d) in DMSO showed coalescences at 60–65 °C that indicated a barrier to helical screw-sense inversion $\Delta G^{\ddagger}_{298} = 71 \text{ kJ mol}^{-1}$ was determined in both cases. Variable temperature CD experiments showed a small (20% over 50 K; see supporting information) and more or less linear reduction in molar ellipticity between 20 and 70 °C, consistent with the maintenance of a helical conformation.

Exchange between the two screw sense conformers of 7 or of 8 involves reorganization of the hydrogen bond pattern of the oligomer such that its directionality is inverted, along with a global ring flip of four, five or six cyclohexyl rings (illustrated for 8e in Fig 3e). The calculated barrier to the inversion is significantly higher than reported values (typically <50 kJ mol$^{-1}$)[34] for cyclohexane ring flipping, so we assume that cooperative hydrogen bond reorganisation may be rate limiting.
The symmetrically functionalised oligomers are achiral and thus necessarily populate their two interconverting enantiomeric screw sense conformers equally. However, their synthetic precursors 6a–e are chiral, by virtue of differential terminal protection, and enantiopure, having been made from enantiomerically enriched precursors. Their screw-sense conformers are therefore diastereoisomeric, and doubling of signals in the NMR spectra indicates that they are populated unequally: the tert-butyl groups of 6c and 6d in CDCl$_3$ split (¹H NMR at 0 °C) into two signals in ratios of 2.3:1 and 2.9:1 respectively; for 6c (Fig 4a) and 6e in CD$_2$CN they split (¹H NMR at 25 °C) into two signals in ratios of 3.5:1 and 2.1:1 respectively. The positive band at 202-205 nm in the CD spectra of 6c-6e in CH$_3$CN (Fig 4b) indicates that these desymmetrised oligomers adopt a right-handed screw sense in solution (represented schematically in Fig 4d), with per-residue molar ellipticity being greater for the longer oligomers. The X-ray crystal structure of 6c (Fig 4c) shows a right-handed screw sense conformation (Fig 3a). Ureas are excellent hydrogen-bond donors (36,37) and are geometrically compatible with the hydrogen-bond acceptor capability of carboxylate anions (38,39). The carboxylate anion of Boc-D-Pro was formed by treating the carboxylic acid with tetra-n-butylammonium hydroxide and titrated into a solution of 9e in acetonitrile at 22 °C. The resulting conformational change was monitored by CD spectroscopy (Fig 4e), subtracting the background spectrum of the carboxylate salt. On addition of up to 10 equivalents of the carboxylate salt, a CD spectrum developed that was characteristic of a right-handed 2.5:14 helix (9) with a positive maximum at 202 nm, suggesting that the chiral carboxylate induces a right-handed screw-sense preference in the oligourea by selective coordination to one of the enantiotopic termini of the meso structure. The molar ellipticity at 202 nm fitted a binding curve corresponding to...
formation of a 1:1 complex with a binding constant $K = 8500 \pm 500 \text{ M}^{-1}$ (Fig 4f). We propose the structure illustrated in Fig 4g (in which the carboxylate binds to the N terminus of the meso oligomer) for this 1:1 complex. Although the induced helical excess$^{[40]}$ cannot be measured accurately, comparison with the molar ellipticity of hexamer $6e$ in MeCN (whose NMR spectrum in CD$_2$CN indicates a helical d.e. of ca. 36%) suggests that the maximum induced helical excess is approximately $95000 \pm (65000-0.36) \approx 50\% \text{ h.e.}$

In conclusion, we report the first exploration of the stereochimistry of achiral foldamers built from meso monomers, and the first hydrogen-bonded foldamers with reversible hydrogen bond directionality.$^{[1]}$ The meso oligourea structures in question must be built by chain extension using chiral precursors, but once re-symmetrized they possess the unusual feature of having enantiotopic end-groups. In the context of a helical foldamer, these end groups become chemically inequivalent on the NMR timescale, and VT NMR reveals the rate at which the enantiomeric conformers of the oligomer interchange. The achiral oligomer may be desymmetrised, and induced to adopt a preferred screw sense, either by selective differential protection of the two enantiotopic termini, or by enantioselective coordination of a symmetrical structure to a chiral carboxylate anion.

Acknowledgements

This work was supported by ERC Advanced Investigator Grant ROCOCCO, by the EPSRC, and by the Conseil Regional d'Aquitaine (Project 20091102003). The authors acknowledge computational facilities provided by the Pôle Modélisation of the Institut des Sciences Moléculaires in Bordeaux and thank Dr Simon Webb for helpful discussions.

Keywords: foldamer, urea, helix, conformation, symmetry, NMR

[30] CCDC Deposition numbers: 8c; 1477892; 6d; 1477896; 7d; 1477894; 9c; 1477893.
[31] It is well established that axial protons appear upfield of equatorial protons in substituted cyclohexanes: H. Günther, NMR Spectroscopy, Wiley, Chichester, 2013.
Urea oligomers of meso cyclohexane-1,2-diamine form a dynamic racemic mixture of 2.512/14 helices in which screw-sense inversion is coupled with reversal of hydrogen bond directionality. Desymmetrisation by enantioselective terminal differentiation or complexation to a chiral carboxylate induces a preferred directionality and screw sense.

Romina Wechsel, James Raftery, Dominique Cavagnat, Gilles Guichard and Jonathan Clayden*

The meso helix: symmetry and symmetry-breaking in dynamic oligourea foldamers with reversible hydrogen-bond polarity