
Peer reviewed version
License (if available):
CC BY-NC-ND
Link to published version (if available):
10.1016/j.crci.2015.06.006

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Elsevier at http://www.sciencedirect.com/science/article/pii/S1631074815001599. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Figure 1.

(a) Graph showing the % NO reduction over time for different samples and conditions.

(b) Bar chart comparing % NO reduction at various temperatures and conditions.

Figure 1.
Figure 3

![Graph showing NO conversion (%) vs Temperature (°C) for different SCR conditions (5% V sulphated SCR w/o O₂, 5% V fresh. SCR w/o O₂, 5% V sulphated SCR O₂, 5% V fresh. SCR O₂).]
Figure 5.
Figure 6.
Figure 7.
Figure 8.

(a) Mass activity / A·g$^{-1}$

(b) Mass activity / A·g$^{-1}$

Figure 8.
Figure 9.

(a) Current density / mA cm$^{-2}$ vs. Potential / V vs. RHE for PtRu/CXG-FAM, PtRu/CXG-SBM, PtRu/CXG-ME, PtRu/CXG-SUL, and PtRu/CXG-SUL-TT400.

(b) Mass activity / A·g$^{-1}$ vs. Potential / V vs. RHE for PtRu/CXG-FAM, PtRu/CXG-SBM, PtRu/CXG-ME, PtRu/CXG-SUL, and PtRu/CXG-SUL-TT400.
Figure 10.
Figure 11.
Figure 12

![Graph showing current density and ionic current as a function of potential for different materials.](image)

- **Current density (A/mg Fe⁻¹)**
- **Ionic Current (a.u.)**

Potential (V vs Ag/AgCl)

- **Fe/Vulcan**
- **Fe/Vulcan NSTa0.5**
- **Fe/Vulcan NcTb0.5**
- **Fe/Vulcan NcTb2**
Figure 13.
Figure 14.