Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

CMS Collaboration*

CERN, 1211 Geneva 23, Switzerland

Received: 28 February 2016 / Accepted: 15 June 2016 / Published online: 4 July 2016
© CERN for the benefit of the CMS collaboration 2016. This article is published with open access at Springerlink.com

Abstract A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at $\sqrt{s} = 8$ TeV. The data correspond to an integrated luminosity of 19.7 fb$^{-1}$. The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and $t\bar{t}$ events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95% confidence level for the product of the production cross section and branching fraction $(\sigma(aa \rightarrow X)B(X \rightarrow HH \rightarrow b\bar{b}b\bar{b}))$ range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with a mass scale $\Lambda_R = 1$ TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV.

1 Introduction

The production of pairs of Higgs bosons (H) in the standard model (SM) has a predicted cross section in gluon–gluon fusion at $\sqrt{s} = 8$ TeV [1,2] for the Higgs boson mass $m_H \approx 125$ GeV [3] of only 10.0±1.4 fb. Many BSM theories suggest the existence of narrow heavy particles X that can decay to a pair of Higgs bosons [4–12]. The natural width for such a resonance is expected to be a few percent of its pole mass m_X, which corresponds to a typical detector resolution. In contrast, the SM production of Higgs boson pairs results in a broad distribution of effective mass, falling mainly in the range from 300 to 600 GeV. Thus the presence of a narrow state would be readily detected, even if produced with a cross section as small as that for the SM process.

Searches for narrow particles decaying to two Higgs bosons have already been performed by the ATLAS [13–15] and CMS [16–19] collaborations in pp collisions at the CERN LHC. Until now their reach was limited to $m_X \leq 1.5$ TeV. Because longitudinal W and Z states are provided by the Higgs field in the SM, any HH resonance potentially also decays into WW and ZZ final states. Searches for $X \rightarrow WW, ZZ, and WZ$ states were performed by ATLAS and CMS [20–24]. The combinations of these results [24–27] indicate that the region around $m_X \approx 2$ TeV is particularly interesting to explore.

This paper reports on a search for $X \rightarrow HH$ covering the mass range $1.15 < m_X < 3.0$ TeV, significantly extending the reach of the present results beyond 1.5 TeV. The final state that provides the best sensitivity in this mass range is $HH \rightarrow b\bar{b}b\bar{b}$, which benefits from the expected large branching fraction (B) of 57.7% for $H \rightarrow b\bar{b}$ [28] and a relatively low background from SM processes.

Many BSM proposals explicitly considered in this paper postulate the existence of a warped extra dimension (WED) [6] and predict the existence of a scalar radion [7–9]. The radion is a spin-0 resonance associated with the fluctuations in the length of the extra dimension. The production cross section as a function of m_X is proportional to $1/\Lambda_R^2$, where Λ_R is the scale parameter of the theory. In this paper we consider two cases: $\Lambda_R = 1$ and 3 TeV. In the first case, the WED theory predicts a cross section that can be detected at the LHC [17], but is challenged by the constraints derived from the electroweak precision measurements [29]. This specific model is excluded up to $m_X = 1.1$ TeV by the previous $X \rightarrow HH$ searches [14,17]. In contrast, the predicted cross section for $\Lambda_R = 3$ TeV is a factor of 9 times smaller, but the theory is less constrained by these searches. We consider that the radion is produced exclusively via gluon-gluon fusion processes, with $B($radion $\rightarrow HH) \approx 25$% above 1 TeV.

In the mass range of this search, the topology of the $b\bar{b}b\bar{b}$ final state is constrained by the size of the Lorentz boost of
the Higgs bosons that is typically $\gamma_H \approx m_X/2m_H \gg 1$ and defines the so-called boosted regime [30–32]. In this regime each Higgs boson is produced with a large momentum and its decay products are collimated along its direction of motion. The hadronization of a pair of narrowly separated b quarks will result in a single reconstructed jet of mass compatible with m_H. The H candidates are selected by employing jet substructure techniques to identify jets containing constituents with kinematics consistent with the decay of a highly boosted Higgs boson. These candidates are then required to be consistent with decays of B hadrons, based on our b tagging algorithms. The signal is identified in the dijet mass (m_{jj}) spectrum as a peak above a falling background which originates mainly from multijet events and $t\overline{t}$ production.

4 Event reconstruction and selections

The analysis is based on data from pp interactions observed with the CMS detector at $\sqrt{s} = 8$ TeV. The data correspond to an integrated luminosity of 19.7 fb^{-1}. Events are collected using at least one of the two specific trigger conditions based on jets reconstructed online: the first trigger requires a large m_{jj} calculated for the two jets of highest transverse momentum (referred to as leading jets); the second trigger requires a large value of $H_T = \sum_i p_T^i$, where the sum runs over the reconstructed jets in the event with transverse momenta $p_T > 40$ GeV. The lower thresholds applied to m_{jj} and the H_T triggers were changed during the data-taking period to maintain a constant trigger rate while the LHC peak luminosity steadily increased. More than half of the data were collected with $m_{jj} > 750$ GeV and $H_T > 650$ GeV. The remaining data were collected with the requirement $H_T > 750$ GeV.

Events are required to have at least one reconstructed pp collision vertex within $|z| < 24$ cm of the center of the detector along the longitudinal beam directions. Many additional vertices, corresponding to pileup interactions, are usually reconstructed in an event using charged particle tracks. We assume that the primary interaction vertex corresponds to the one that maximizes the sum in p_T^2 of these associated tracks. Individual particles are reconstructed using a particle-flow (PF) algorithm [40,41] that combines the information from all the CMS detector components. Each such reconstructed particle is referred to as a PF candidate. The five classes of PF candidates correspond to muons, electrons, photons, and charged and neutral hadrons. Charged hadron candidates not originating from the primary vertex of the event are discarded to reduce contamination from pileup [42].

The Cambridge–Aachen (CA) algorithm [43], implemented in FASTJET [44], clusters PF candidates into jets using a distance parameter $R = 0.8$. An event-by-event jet area-based correction [42,45,46] is applied to each reconstructed jet to remove the remaining energy originating from pileup vertices primarily consisting of neutral particles. The jet four-momenta are also corrected to account for the difference between the measured and the expected momentum at the particle level, using the standard CMS correction procedure described in Refs. [47,48].

Events are required to have at least two jets, and the two leading jets each to have $p_T > 40$ GeV and pseudorapidity $|\eta| < 2.5$. In addition, identification criteria are applied to remove spurious jets associated with calorimeter noise [40]. To reduce the contribution from multijet events, the two leading jets must be relatively close in η, $|\Delta\eta_{jj}| < 1.3$, a selection discussed in Refs. [23,49]. Events with $m_{jj} < 1$ TeV
are rejected. Above this mass threshold, the efficiency of the trigger requirement for the chosen selections exceeds 99.5%.

The mass and b flavour properties of the leading jets are used to suppress the multijet and t\bar{t} backgrounds. Soft gluon radiation and a fraction of the remaining neutral pileup particles are first removed from each jet through the implementation of a jet-grooming algorithm called jet pruning [50,51]. This technique reduces significantly the mass of jets originating from quarks and gluons [52], while improving the resolution of the jets resulting from the hadronic decays of a heavy SM boson [53]. The invariant mass m_{j}^{pr} is calculated for the two leading pruned jets. In Fig. 1, the m_{j}^{pr} distribution of the two leading jets is shown for data, signal, and background events. For jets initiated by a quark or a gluon, m_{j}^{pr} peaks around 15 GeV, while jets from high-momentum Higgs boson decay usually have a pruned mass around 120 GeV. The difference of \approx5 GeV relative to the nominal m_{H} value is related to the presence of neutrinos produced by the semileptonic decays of B mesons, and the inherent nature of the pruning procedure. A small peak near 15 GeV is also observed for signal events, and corresponds mainly to asymmetric decays in which the jet pruning algorithm removes the decay products of one of the two B mesons. Each of the leading jets has to satisfy $110 < m_{j}^{\text{pr}} < 135$ GeV, a requirement that is chosen to maximize the sensitivity of the analysis to the presence of a narrow resonances. Some differences are observed between the data and background estimated from simulation.

These discrepancies do not affect the results of this analysis since the background is estimated using techniques based on data only.

The identification of jets likely to have originated from the hadronization of a pair of b quarks exploits the combined secondary vertex (CSV) b jet tagger [54]. This algorithm combines the information from track impact parameters and secondary vertices within a given jet into a continuous output discriminant [54,55]. The working point used in this paper corresponds to an efficiency of 80% for identifying b jets and a rate of 10% for mistagging jets from light quarks or gluons as originating from b quarks. This working point was chosen to maximize the sensitivity of the analysis, while retaining a sufficient number of events to allow a reliable estimation of the background.

In the first step of the procedure used to select H jet candidates, the pruned jets are split into two subjets by reversing the final iteration in the jet clustering algorithm. The angular separation between the subjets is $\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$, where η is the pseudorapidity and ϕ the azimuthal angle. Two cases are considered, with the transition between them occurring at $m_{X} \approx 1.6$ TeV:

1. $\Delta R > 0.3$; in this group the jet is considered to be b tagged if at least one subjet satisfies the requirements of the CSV working point. Moreover, the jet is considered as “double b tagged” if both subjets satisfy the CSV requirement.

2. $\Delta R < 0.3$; here the subjet b tagging selection is inefficient [55]. The b tagging algorithm is therefore applied directly to the jet. In this case it is not possible to distinguish between b-tagged and double b-tagged jets, and therefore either of these two possibilities are accepted.

In summary, a jet is considered an H jet candidate if it satisfies the mass and b tagging requirements. Events are selected when both leading jets are H jets, and at least one of them is double b tagged. The simulated results are corrected to match the H and b tagging efficiencies observed in data [55].

A final selection is based on the kinematic properties of the constituents of H jets. The quantity N-subjettiness [56–58] τ_N is used to quantify the degree to which constituents of a jet can be arranged into N subjets. The ratio $\tau_{21} = \tau_2/\tau_1$ is calculated for each of the two H jet candidates. High- (HP) and low-purity (LP) Higgs boson candidates are defined as having $\tau_{21} < 0.5$ and $0.5 \leq \tau_{21} < 0.75$, respectively. Events are required to have at least one HP H jet and another H jet that passes either the HP or LP requirements.

The sample of events satisfying the previously defined criteria is subsequently divided into three categories. Events with two high-purity H jets form the HPHP category. Among the remaining events, those for which the high-purity H jet...
is the leading jet constitute the HPLP category. The rest of the sample constitutes the LPHP category.

The selection criteria applied to reduce the background are summarized in Table 1. The region of phase space defined by all these criteria is referred to as the signal region. The fraction of the simulated signal and $t\bar{t}$ samples, satisfying these criteria, as well as the number of data events passing the selections is also provided.

The fiducial selection is defined by the two leading jets having $|\eta| < 2.5$, $p_T > 40$ GeV, and a separation $|\Delta \eta_{jj}| < 1.3$. The fraction of the signal within this fiducial region depends on its spin, and is $\approx 60\%$ for a spin-0 resonance. The efficiency of the combined H mass and b tagging criteria for events within the fiducial region, for signal and data, is shown in Fig. 2. The number of data events is reduced by four orders of magnitude while the signal efficiencies range from 10 to 20% with a weak dependence on m_X, and are observed to be independent of the spin of the resonance. Finally, the total acceptance times efficiency is provided in Table 1, and varies between 4.0 and 8.8%, with the largest fraction of events populating the HPHP category.

Figure 2 shows that the probability of incorrectly identifying multijet or $t\bar{t}$ events as events with two Higgs bosons is less than 0.1%, and appears to be independent of m_{jj} within statistical uncertainties. A more precise quantification is provided in Table 1 for $t\bar{t}$ events. In particular, we observe that the dijet mass, the pruned jet mass, and b tagging criteria are each sufficient for reducing the $t\bar{t}$ background by an order of magnitude. In contrast, the N-subjettiness criterion is inefficient in reducing it.

Table 1

<table>
<thead>
<tr>
<th>Selection criteria</th>
<th>Efficiency for m_X (TeV)</th>
<th>$t\bar{t}$ (%)</th>
<th>Observed events (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiducial acceptance</td>
<td>1.3 (%) 2.0 (%) 3.0 (%)</td>
<td>63 61 59 29</td>
<td>2677 308</td>
</tr>
<tr>
<td>Analysis selections</td>
<td>59 59 58 3.5 9977</td>
<td>12 12 8.5 0.29 9 977</td>
<td>217</td>
</tr>
<tr>
<td>$m_{jj} > 1$ TeV</td>
<td>9.0 8.5 4.5 0.05 217</td>
<td>8.6 8.1 4.0 0.04 162</td>
<td></td>
</tr>
<tr>
<td>\geq1 jet with $\tau_{21} < 0.5$ and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m_{jj} > 1$ TeV</td>
<td>6.3 5.5 2.4 0.03 63</td>
<td>1.1 1.2 0.9 0.007 48</td>
<td></td>
</tr>
<tr>
<td>HHPH</td>
<td>1.2 1.4 0.7 0.004 51</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 Signal extraction

The signal is identified in the binned m_{jj} spectrum in bin widths chosen to match the resolution of the dijet mass, as
described in Ref. [59]. This resolution is \(\approx 50 \text{ GeV} \) at \(m_X = 1.15 \text{ TeV} \), increasing slowly to \(\approx 100 \text{ GeV} \) for \(m_X = 3 \text{ TeV} \).

The analysis defines a likelihood, for each \(m_X \) hypothesis, based on the total number of events in data, signal, and background counted in a mass window in each category. These mass windows have a typical size of three or four bins centered approximatively around \(m_X \) (see Table 2) and contains more than 95 % of signal events. The amount of signal is estimated in the mass window using MC simulation, while the amount of background is estimated as the integral of a parameterized model. The total likelihood combines the information from the three event categories.

Table 2: Mass windows used for different signal hypotheses

<table>
<thead>
<tr>
<th>(m_X) (GeV)</th>
<th>Mass window (GeV)</th>
<th>(m_X) (GeV)</th>
<th>Mass window (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1150</td>
<td>[1058, 1246]</td>
<td>1700</td>
<td>[1607, 1856]</td>
</tr>
<tr>
<td>1200</td>
<td>[1118, 1313]</td>
<td>1800</td>
<td>[1687, 1945]</td>
</tr>
<tr>
<td>1300</td>
<td>[1181, 1455]</td>
<td>1900</td>
<td>[1700, 2037]</td>
</tr>
<tr>
<td>1400</td>
<td>[1313, 1530]</td>
<td>2000</td>
<td>[1856, 2132]</td>
</tr>
<tr>
<td>1500</td>
<td>[1383, 1607]</td>
<td>2500</td>
<td>[2231, 2775]</td>
</tr>
<tr>
<td>1600</td>
<td>[1455, 1770]</td>
<td>3000</td>
<td>[2775, 3279]</td>
</tr>
</tbody>
</table>

6 Parameterization of background

After event selection, \(\approx 75, 90, \) and \(95 \% \) of the total background is expected to originate from multijet events in HHPH, HLP, and LHP categories, respectively. The remaining contribution is from \(\bar{t}t \) production, which is modelled in simulation, and rescaled to the total next-to-next-to-leading order cross section [60]. All other backgrounds containing Higgs bosons or \(W/Z \) bosons decaying into jets represent less than 1 % of the total background.

The total background is estimated from data, without separating the multijet or \(\bar{t}t \) fractions. The expected \(m_{jj} \) background spectrum is approximated by a falling exponential for \(1 < m_{jj} < 3 \text{ TeV} \),

\[
\frac{dN_{\text{Background}}}{dm_{jj}} = N_B a e^{-a(m_{jj} - \text{1000 GeV})},
\]

where the parameterization has been chosen to minimize the correlation between the normalization \(N_B \) and slope \(a \). We obtain \(a \) from a fit to the \(m_{jj} \) distribution in a control region, defined as the portion of phase space where one of the jets satisfies \(110 < m^P_j < 135 \text{ GeV} \) and the other jet is required to have \(60 < m^P_j < 100 \text{ GeV} \). This choice of the window for \(m^P_j \) results from a compromise between limited signal contamination, sufficiently large statistics, and similarity in substructure properties between the sideband jet and the H jet. To use this control region we assume that there is no resonant signal in the ZH final state.

The control region contains between 1.1–2 times the number of events in the signal region depending on the category. The result of the fit and the uncertainty band associated with the uncertainty in the parameter \(a \) are shown in Fig. 3.

The effect of a residual contamination of the control region by the signal is explicitly checked by adding an HH signal to the control region at different masses, with a typical \(\sigma(gg \to X \to HH)B(X \to HH \to b\bar{b}b\bar{b}) \), corresponding to the sensitivity of the analysis at a given \(m_X \). The change in the slope parameter \(a \) is observed to be negligible.

We extract \(N_B \) for each signal hypothesis from the fit to the data that excludes events in the counting window described in Sect. 5. This background extraction procedure motivates the choice of the lower value of the \(m_X \) window for which the search is performed. In order to improve the constraint on \(N_B \), there must be at least one bin on the left side of the mass window to be retained.

This background estimation procedure assumes, on the one hand, that the \(m_{jj} \) spectrum is similar in the signal and the control regions, and on the other hand, that it is similar for multijet and \(\bar{t}t \) event samples. The following cross-checks are performed to validate these hypotheses:

- The similarity of distributions for the signal and control regions are confirmed in the simulated multijet sample.
- The parameters \(a \) and \(N_B \) are extracted from the signal region (using an approach similar to that of Ref. [23]), and found to be compatible within statistical uncertainties with the parameters obtained through the normal method of background estimation.
- The bin-by-bin normalization between the signal and control regions is calculated using a sideband obtained by inverting the b tagging criterion on one of the jets (using a technique similar to that in Ref. [61]), and the normalization factor found to be independent of \(m_{jj} \), within the statistical uncertainties.
- The \(\bar{t}t \) contribution in the signal region obtained from simulation is fitted by the function in Eq. (1) and the resulting fit is found to be consistent with the distribution of the overall background within the statistical uncertainties.

Closure checks of the background-estimation procedure are performed using simulated multijet events. These are also performed directly in data in the control region. For this purpose, the control region is split in two, a low mass control region with \(60 < m^P_j < 90 \text{ GeV} \), and a pseudo-signal region with \(90 < m^P_j < 100 \text{ GeV} \). In both cases, the predicted background is found to be compatible with that observed, within the statistical uncertainties.
7 Systematic uncertainties

The largest contributions to the systematic uncertainty in the signal yields are the uncertainties associated with the classification of the events into the purity categories, the estimation of the efficiency to identify a H jet, and the calculation of the total integrated luminosity (2.6 %) [62], as well as with the determination of the jet energy scale (JES) and resolution (JER). The major systematic uncertainties are summarized in Table 3.

The uncertainty in the b tagging efficiency originates from the uncertainty in the data-to-simulation scale factors that

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background (statistical)</td>
<td>15 – 100 %</td>
</tr>
<tr>
<td>Signal (systematic)</td>
<td></td>
</tr>
<tr>
<td>Luminosity</td>
<td>2.6 %</td>
</tr>
<tr>
<td>b tagging</td>
<td>3.8–14.4 %</td>
</tr>
<tr>
<td>Mass tagging</td>
<td>5.2 ⊕ 3.0 %</td>
</tr>
<tr>
<td>JES ⊕ JER</td>
<td>1.0 ⊕ 1.0 %</td>
</tr>
<tr>
<td>Categorization</td>
<td>⊕25 % (HPHP), ⊕59 % (HPLP), ⊕59 % (LPHP)</td>
</tr>
</tbody>
</table>

Table 3 Typical uncertainties in different categories
are applied to the simulated signal [55]. The scale factors are $\approx 90\%$ with an absolute uncertainty between $\pm 3.8\%$ and $\pm 14\%$, depending on the value of m_X. The uncertainty increases at large m_X because of the limited amount of data available to constrain the scale factors.

The uncertainty in the mass selection efficiency is 2.6% for each jet and 5.2% for the event. This uncertainty is estimated by studying high p_T W bosons in a $t\bar{t}$ data control sample [53] and comparing to MC predictions. It includes the effect of the difference in fragmentation between light and b quarks. This uncertainty is fully correlated for all H jets. In addition, the impact of the pileup modelling uncertainty in the Higgs boson mass-tagging efficiency is assumed to be 1.5% per jet, i.e., 3% for the event [23].
An uncertainty accounting for possible migration of signal events from the HPHP to the HPLP and LPHP categories results in uncertainties of +25 and −19%, and of +59 and −37% in the normalization of the HPHP category, and of both the HPLP and LPHP categories, respectively. These uncertainties are estimated by comparing the τ_{21} distribution in measured and simulated $t\bar{t}$ events [23,53]. It also includes a quantification of the difference between the fragmentation of W and Higgs bosons decaying hadronically. The fraction of signal events that do not enter any of the three categories changes from 2% at 1.1 TeV to 20% at 3.0 TeV. The uncertainty associated with migration out of the three categories is estimated to be much smaller than that associated with migration within them.

The uncertainties in the JES (1–2%) [48] and JER (10%) [47] impact the signal acceptance in the m_{jj} counting window. Each of these systematic contributions provide less than 1% uncertainty in the normalization of the expected signal events.

In summary, the uncertainty in the signal normalization associated with the migration of signal events between categories is larger than the total contribution of all other uncertainties, which varies from 7% at $m_X = 1.1$ TeV to 15% at $m_X = 3$ TeV.

The statistical uncertainty in the total background ranges from 15% at 1.3 TeV up to 100% at 3 TeV. It is calculated by generating pseudo-experiments in the signal and control regions, assuming Poisson fluctuations in the num-
number of events in each bin about its central value. For low m_{jj}, the statistical precision is limited by the uncertainty in the parameter N_R, and for high masses, by the uncertainty in the slope parameter a. The impact of the choice of the functional form used in the parameterization of the background distribution is evaluated by comparing the results from the exponential fit to those from an alternative power-law function, and is found to be negligible compared to the statistical uncertainty.

The uncertainty related to the efficiency of the τ_{21} tagger is assumed to be fully correlated between the HPLP and LPHP categories and anticorrelated with the HPHP category. The uncertainties in the background estimate are uncorrelated between categories, while all other uncertainties are expected to be fully correlated among all three categories.

8 Results

The observed data are shown separately for the three event categories in Fig. 4. For comparison, we also show the predictions obtained for the background-only hypothesis. The N_R normalization parameter is extracted for all events in the signal region with $1 < m_{jj} < 3$ TeV. The bottom panel of each plot shows the difference between the observed data and the predicted background, divided by the statistical uncertainty estimated in the data. The background model describes the data within their statistical uncertainties. The events with the largest masses in the HPHP, HPLP, and LPHP categories are at $m_{jj} = 1780$, 1560, and 1800 GeV, respectively.

Upper limits on the cross section for the production of resonances are extracted using the asymptotic approximation of the CLs method [63,64]. Figure 5 shows the observed and expected 95% confidence level (CL) upper limits on the product of the cross section and the branching fraction $\sigma (gg \to X) B(X \to HH \to b\bar{b}b\bar{b})$ obtained for each event category. The HPHP category is always the most sensitive, nevertheless above 2 TeV the HPLP and LPHP categories are also important because of inefficiencies in N-subjetness at high p_T. Figure 6 and Table 4 provide the combined limits. The excluded cross sections at 95% CL vary from 10 fb at 1.15 TeV to 1.5 fb at 2 TeV. Above 2 TeV the excluded cross sections increase to 2.8 fb at 3 TeV, since the sensitivity is limited by the increasing inefficiency of H jet identification, as described in Sect. 4.

Figure 7 extends the $X \to HH \to b\bar{b}b\bar{b}$ search down to $m_X = 260$ GeV by including limits from Ref. [17]. This search, referred to as the resolved analysis, considers a case where the decay products from two Higgs bosons are reconstructed as four jets. It is interesting to observe that the sensitivity of the resolved analysis starts to degrade at $m_X \approx 1$ TeV. At this point the typical angular distance between two jets from one Higgs boson reaches $\Lambda_R = 4m_H/m_X \approx 0.5$ and the two jets overlap [30]. Above 1.1 TeV the boosted analysis becomes more sensitive.

To quantify the sensitivity of this analysis to new physics, the limits are compared to predictions of radion production for $\Lambda_R = 1$ and 3 TeV, as shown in Fig. 6. We find that a radion corresponding to $\Lambda_R = 1$ TeV is excluded by the boosted analysis alone, for masses between 1.15 and
1.55 TeV. This result extends the limits already set by the resolved analysis from 0.3 to 1.1 TeV.

9 Summary

A search is presented for narrow heavy resonances decaying into a pair of Higgs bosons in proton-proton collisions collected by the CMS experiment at √s = 8 TeV. The full data sample of 19.7 fb⁻¹ is explored. The background from multi-jet and t̅t̅ events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. No significant excess of events is observed above the background expected from the SM processes. The results are interpreted as exclusion limits at 95% confidence on the production cross section of a narrow resonance and the branching fraction \(X \rightarrow HH \rightarrow b\overline{b}b\overline{b} \). Theory predictions corresponding to WED models with a radion are also shown. Results from the resolved analysis of Ref. [17] are shown by blue squares. For clarity, only a representative subset of the points are provided from the resolved analysis. The result from this paper is shown in black dots.

References

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3."

55. CMS Collaboration, Performance of b tagging at $\sqrt{s} = 8$ TeV in multijet, $t\bar{t}$ and boosted topology events. CMS Physics Analysis Summary CMS-PAS-BTV-13-001, CERN (2013). http://cdsweb.cern.ch/record/1581306

CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A. M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Vienna, Austria

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossovlov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerp, Belgium

Vrije Universiteit Brussel, Brussels, Belgium

Université Libre de Bruxelles, Brussels, Belgium

Springer
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran10,11, A. Ellithi Kamel12, M. A. Mahrous13, A. Radi11,14

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
B. Calpas, M. Kadjastik, M. Murumaa, M. Raidal, A. Tiko, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Peltola, J. Tuominiemi, E. Tuovinen, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Villeurbanne, France

Georgian Technical University, Tbilisi, Georgia
T. Torishvili17

Tbilisi State University, Tbilisi, Georgia
L. Rurua

I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany

III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
University of Puerto Rico, Mayaguez, USA
S. Malik

Purdue University, West Lafayette, USA

Purdue University Calumet, Hammond, USA
N. Parashar, J. Stupak

Rice University, Houston, USA

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K. H. Lo, P. Tan, M. Verzetti

Rutgers, The State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA
M. Foerster, G. Riley, K. Rose, S. Spanier, K. Thapa

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA

Wayne State University, Detroit, USA
C. Clarke, R. Harr, P. E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy

University of Wisconsin-Madison, Madison, WI, USA

† Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
5: Also at Universidade Estadual de Campinas, Campinas, Brazil
6: Also at Centre National de la Recherche Scientifique (CNRS)-IN2P3, Paris, France
7: Also at Université Libre de Bruxelles, Brussels, Belgium
8: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
9: Also at Joint Institute for Nuclear Research, Dubna, Russia
10: Also at Suez University, Suez, Egypt
11: Now at British University in Egypt, Cairo, Egypt
12: Also at Cairo University, Cairo, Egypt
13: Now at Helwan University, Cairo, Egypt
14: Now at Ain Shams University, Cairo, Egypt
15: Also at Université de Haute Alsace, Mulhouse, France
16: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
17: Also at Tbilisi State University, Tbilisi, Georgia
18: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
19: Also at University of Hamburg, Hamburg, Germany
20: Also at Brandenburg University of Technology, Cottbus, Germany
21: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
22: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
23: Also at University of Debrecen, Debrecen, Hungary
24: Also at Indian Institute of Science Education and Research, Bhopal, India
25: Also at University of Visva-Bharati, Santiniketan, India
26: Now at King Abdulaziz University, Jeddah, Saudi Arabia
27: Also at University of Ruhuna, Matara, Sri Lanka
28: Also at Isfahan University of Technology, Isfahan, Iran
29: Also at University of Tehran, Department of Engineering Science, Tehran, Iran
30: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
31: Also at Università degli Studi di Siena, Siena, Italy
32: Also at Purdue University, West Lafayette, USA
33: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
34: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
35: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
36: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
37: Also at Institute for Nuclear Research, Moscow, Russia
38: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
39: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
40: Also at California Institute of Technology, Pasadena, USA
41: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
42: Also at INFN Sezione di Roma; Università di Roma, Rome, Italy
43: Also at National Technical University of Athens, Athens, Greece
44: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
45: Also at National and Kapodistrian University of Athens, Athens, Greece
46: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
47: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
48: Also at Gaziosmanpasa University, Tokat, Turkey
49: Also at Adiyaman University, Adiyaman, Turkey
50: Also at Mersin University, Mersin, Turkey
51: Also at Cag University, Mersin, Turkey
52: Also at Piri Reis University, Istanbul, Turkey
53: Also at Ozyegin University, Istanbul, Turkey
54: Also at Izmir Institute of Technology, Izmir, Turkey
55: Also at Marmara University, Istanbul, Turkey
56: Also at Kafkas University, Kars, Turkey
57: Also at Istanbul Bilgi University, Istanbul, Turkey
58: Also at Yildiz Technical University, Istanbul, Turkey
59: Also at Hacettepe University, Ankara, Turkey
60: Also at Rutherford Appleton Laboratory, Didcot, UK
61: Also at School of Physics and Astronomy, University of Southampton, Southampton, UK
62: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
63: Also at Utah Valley University, Orem, USA
64: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
65: Also at Facoltà Ingegneria, Università di Roma, Rome, Italy
66: Also at Argonne National Laboratory, Argonne, USA
67: Also at Erzincan University, Erzincan, Turkey
68: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
69: Also at Texas A&M University at Qatar, Doha, Qatar
70: Also at Kyungpook National University, Daegu, Korea