
Peer reviewed version

Link to published version (if available): 10.1136/jmedgenet-2016-104144

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via BMJ at http://jmg.bmj.com/content/54/1/38. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
New insights into the genetic component of non-infectious uveitis through an Immunochip strategy

Ana Márquez¹, Miguel Codero-Coma², José Manuel Martín-Villa³, Marina Begoña Gorroño-Echebarria⁴, Ricardo Blanco⁵, David Díaz Valle⁶, María José del Rio⁷, Ana Blanco⁸, Jose Luis Olea⁹, Yolanda Cordero¹⁰, María José Capella¹¹, Manuel Díaz-Llopis¹², Norberto Ortego-Centeno¹³, Ioana Ruiz-Arruza¹⁴, Víctor Llorenç¹⁵, Alfredo Adán¹⁵, Alejandro Fonollosa¹⁶, Josianne ten Berge¹⁷, Denize Atan¹⁸, Andrew D. Dick¹⁸, Joke H. De Boer¹⁹, Jonas Kuiper¹⁹, Aniki Rothova¹⁷ and Javier Martín¹.

1 Instituto de Parasitología y Biomedicina "López-Neyra," CSIC, PTS Granada, Granada, Spain. 2 Ophthalmology Department, Hospital de León, IBIOMED, Universidad de León, León, Spain. 3 Immunology Department, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain. 4 Ophthalmology Department, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain. 5 Rheumatology Department, Hospital Marqués de Valdecilla, IDIVAL, Santander, Spain. 6 Ophthalmology Department, Hospital Clínico San Carlos, Madrid, Spain. 7 Ophthalmology Department, Hospital Carlos Haya, Málaga, Spain. 8 Ophthalmology Department, Hospital Donostia, San Sebastián (Guipúzcoa), Spain. 9 Ophthalmology Department, Hospital Son Espases, Palma de Mallorca, Spain. 10 Ophthalmology Department, Hospital Universitario Rio Hortega, Valladolid, Spain. 11 Institut Universitari Barraquer, Universitat Autònoma de Barcelona, Barcelona, Spain. 12 Ophthalmology Department, Hospital La Fe, Universidad de Valencia, Valencia, Spain. 13 Systemic Autoimmune Diseases Unit, Hospital Clínico San Cecilio, Granada, Spain. 14 Autoimmune Diseases Research Unit, Internal Medicine Department, BioCruces Health Research Institute, Hospital Universitario Cruces, Barakaldo, Spain. 15 Ophthalmology Department, Hospital Clinic, Barcelona, Spain. 16 Ophthalmology Department, BioCruces Health Research Institute, Hospital Universitario Cruces, Barakaldo, Spain. 17 Department of Ophthalmology, Erasmus University Medical Centre, Rotterdam, The Netherlands. 18 School of Clinical Sciences, Bristol Eye Hospital, Bristol, United Kingdom. 19 Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, The Netherlands; Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands.

Word count: 3870

Correspondence to: Ana Márquez PhD, Instituto de Parasitología y Biomedicina López-Neyra. Consejo Superior de Investigaciones Científicas. Parque Tecnológico Ciencias de la Salud. Avenida del Conocimiento s/n 18016-Armilla (Granada), Spain. E-mail: anamaort@ipb.csic.es
ABSTRACT

Background. Large-scale genetic studies have reported several loci associated with specific disorders involving uveitis. Our aim was to identify genetic risk factors that might predispose to uveitis per se, independent of the clinical diagnosis, by performing a dense genotyping of immune-related loci.

Methods. 613 cases and 3,693 unaffected controls from three European case/control sets were genotyped using the Immunochip array. Only patients with non-infectious non-anterior uveitis and without systemic features were selected. To perform a more comprehensive analysis of the human leucocyte antigen (HLA) region, single-nucleotide polymorphisms (SNPs), classical alleles and polymorphic amino acid variants were obtained via imputation. A meta-analysis combining the three case/control sets was conducted by the inverse variance method.

Results. The highest peak belonged to the HLA region. A more detailed analysis of this signal evidenced a strong association between the classical allele HLA-A*2902 and birdshot chorioretinopathy (p=3.21E-35, OR=50.95). An omnibus test yielded HLA-A 62 and 63 as relevant amino acid positions for this disease. In patients with intermediate and posterior uveitis, the strongest associations belonged to the rs7197 polymorphism, within HLA-DRA (p=2.07E-11, OR=1.99), and the HLA-DR15 haplotype (DRB1*1501: p=1.16E-10, OR=2.08; DQA1*0102: p=4.37E-09, OR=1.77; DQB1*0602: p=7.26E-10, OR=2.02). Outside the HLA region, the MAP4K4/IL1R2 locus reached statistical significance (rs7608679: p=8.38E-07, OR=1.42). Suggestive associations were found at five other loci.

Conclusions. We have further interrogated the association between the HLA region and non-infectious non-anterior uveitis. In addition, we have identified a new non-HLA susceptibility factor and proposed additional risk loci with putative roles in this complex condition.
KEYWORDS: non-infectious uveitis, non-anterior uveitis, human leukocyte antigen, meta-analysis, Immunochip.
INTRODUCTION

Non-infectious uveitis is an immune-mediated condition characterized by intraocular inflammation, which mainly affects the uveal tract but also adjacent structures, including the retina and its vessels, the vitreous and the optic nerve.¹ This term comprises a heterogeneous group of disorders diagnosed according to their clinical phenotype that may be confined to the eye or associated with systemic manifestations. Based on the location of the inflammation, uveitis can be classified as anterior, posterior, intermediate and panuveitis.² While anterior uveitis has the best visual prognosis, non-anterior uveitis patients have a greater risk of permanent vision loss, and often require systemic immunosuppressive therapy.³ Nowadays, non-infectious uveitis is considered a major cause of visual impairment in the working age population, which is responsible for up to 10% of cases of blindness in developed countries.⁴ In recent years, there have been substantial advances in our understanding of the pathogenic mechanisms leading to non-infectious uveitis.⁵ Although the precise pathogenesis remains unclear, accumulating evidence points to the interplay between a complex genetic background together with a deregulated immune response in its development. In this regard, large-scale genetic studies have been performed in several systemic diseases associated with uveitis, including Behçet's disease (BD),⁶⁻¹２ Vogt-Koyanagi-Harada syndrome (VKH),¹³ and sarcoidosis,¹⁴⁻¹⁹ as well as in inflammatory disorders confined to the eye, such as birdshot chorioretinopathy (BSCR).²⁰ This approach has identified several genetic risk loci, mainly immune/inflammatory response genes and genes of the human leukocyte antigen (HLA) region, many of which (such as IL23R, STAT4 or ERAP1/ERAP2) are shared by the different uveitic syndromes as well as by other immune-mediated diseases. All large-scale genotyping scans published to date have investigated specific systemic syndromes without considering the shared genetic determinants that might predispose to uveitis per se, independent of the clinical diagnosis. Therefore, to further discover the genetic component of non-infectious uveitis, we decided to perform a dense
genotyping of immune-related loci using the Immunochip platform in patients with non-infectious non-anterior uveitis without systemic features.
METHODS

Study population
Three independent case/control sets of European ancestry, 360 cases and 1517 unaffected controls from Spain, 142 cases and 1173 unaffected controls from the Netherlands and 111 cases and 1003 unaffected controls from the United Kingdom (UK) were included in the study. Spanish and British cohorts have been used in previous association studies. Only patients diagnosed with non-infectious and non-anterior uveitis (the most severe form of uveitis) were selected. In addition, to avoid the identification of signals associated with other clinical manifestations, a total of 91 patients with uveitis related to systemic diseases (including BD, sarcoidosis, systemic lupus erythematosus (SLE), ulcerative colitis, multiple sclerosis, psoriasis, Sjögren's syndrome and polymyalgia rheumatica), except VKH, were excluded from the study. VKH was included considering that uveitis appears in 100% of the patients, with or without systemic involvement. Non-anterior uveitis patients were classified according to the anatomical location of the inflammation as posterior uveitis, intermediate uveitis and panuveitis. Informed written consent from all participants and approval from the local ethical committees were obtained in accordance with the tenets of the Declaration of Helsinki. Supplementary Table 1 shows the main characteristics of the case cohorts included in the study.

Genotyping
Genomic DNA was extracted from saliva samples or whole blood by standard methods. The genotyping was performed at a single center on the Illumina iScan system with the Immunochip platform, which allows a dense analysis of single-nucleotide polymorphisms (SNPs), rare variants, and insertion/deletion (indel) polymorphisms. All the Spanish samples (cases and controls) as well as unaffected subjects from the Netherlands and the UK were genotyped using the HumanImmunov1.0 BeadChip (196,524 genetic markers), whereas uveitis samples from the Netherlands and the UK
were genotyped using the Infinium ImmunoArray-24 v2.0 BeadChip (253,702 genetic markers). Genetic variants included in both platforms overlap by 80%.

Quality control and imputation
Data quality control was performed for each sample set separately prior to imputation. SNPs and subjects with successful call rates lower than 98% and 95%, respectively, were removed using PLINK v.1.7.23 SNPs with minor allele frequencies lower than 0.01 and those that were not in Hardy-Weinberg equilibrium (HWE; p < 0.001) were also excluded. In addition, one subject per duplicate pair and per pair of first-degree relatives was also removed via the Genome function in PLINK v.1.7 with a Pi-HAT threshold of 0.4.

IMPUTE v.2. software was used to perform imputations,24 with The 1000 Genomes Phase 3 as reference panel.25 Imputed data were subsequently subjected to stringent quality filters inPLINK v.1.7; i.e., individuals who generated genotypes <98% were removed, and SNPs with call rates <95% and those that deviated from HWE (p < 0.001) were also discarded. Principal-component (PC) analyses were performed to identify and exclude outliers based on their ethnicity in PLINK v.1.7 and the gcta64 and R-base under GNU Public license v.2. With this software, we calculated the ten first PCs using the markers informative of ancestry that were included in the Immunochip. Those subjects showing more than four standard deviations from the cluster centroids were excluded as outliers.

Imputation of the HLA region
HLA imputation was performed for 8,961 common SNPs, representing classical HLA alleles, amino acids, and SNPs, across the extended major histocompatibility complex region. We used the SNP2HLA method with the Beagle software package26 and a reference panel collected by the Type 1 Diabetes Genetics Consortium comprised of 5,225 individuals of European origin.27
Statistical analysis

The statistical analyses were performed with PLINK v.1.7 and R. First, each case/control cohort was independently analyzed by logistic regression on the best-guess genotypes (>0.9 probability) assuming an additive model with the first ten PCs as covariates. Subsequently, the three case/control sets were combined by inverse variance weighted fixed effects meta-analysis. Heterogeneity of the ORs across studies was estimated by Cochran's Q and I² tests. The presence of independent effects was examined using a stepwise logistic regression by conditioning on a lead SNP, the first ten PCs and the country of origin as covariates.

For the HLA region, an omnibus association test was also performed to determine the influence of the polymorphic amino acid positions on disease susceptibility. For each amino acid position, a null generalized linear model, including the first ten PCs and the country of origin as covariates, was built and compared with an alternative model, including the same variables and all the possible alleles in the analyzed amino acid positions, by a likelihood ratio test (LRT). Additionally, we also conducted conditional analyses controlling by the most associated positions by including them as covariates in the models.

The Manhattan plots were obtained with an in-house modification of the R script written by Stephen Turner. Results of the imputed regions were plotted using the online tool LocusZoom v.1.133 (http://locuszoom.sph.umich.edu/locuszoom/).

Contrary to genome-wide association studies (GWASs), the Immunochip platform is not based on SNPs tagging the whole genome, but on a fine mapping of candidate disease-associated loci. Thus, it has been proposed that, since tests are correlated, using the strict genome-wide significance threshold (5x10⁻⁸) could be an over correction. Taking this into account, we estimated the appropriate Bonferroni-based statistical threshold for our study using the Genetic type 1 Error Calculator (GEC) software, which calculates the effective number of independent tests. A significant
threshold of 1.14×10^{-6} was obtained and, therefore, p-values below this threshold were considered as statistically significant. A suggestive tier of association (2.29×10^{-5}) was also calculated using this software.

The statistical power of the study was estimated by using CaTS Power Calculator for Genetic Studies,31 setting the significance level at 1.14×10^{-6} (Supplementary Table 2).

Functional annotation

After meta-analysis, the associated SNPs, as well as those in high linkage disequilibrium (LD) ($r^2 > 0.8$) with them (using the European populations of the 1000 Genomes Project Phase III data), were interrogated for potential regulatory function. The HaploReg v4.1 database32 was used to evaluate whether they were located within regulatory DNA elements, including regions of DNAase hypersensitivity, binding sites of transcription factors or chromatin marks. Their effect on gene expression was also explored using HaploReg v4.1 by means of *in silico* expression quantitative trait locus (eQTL) analysis.
RESULTS

Following SNP and sample quality control, we analysed a total of 187,951 genetic variants in 579 cases of non-infectious and non-anterior uveitis and 3,676 controls of European ancestry.

As shown in Figure 1, two signals reached the established significance threshold (1.14x10^-6) in the inverse-variance meta-analysis including the three cohorts. These peaks lied within the HLA region and the chromosomal region 2q11.2.

HLA associations

After imputation, a high association peak was observed within the HLA class I region (Supplementary Figure 1). Specifically, the top associated signal belonged to the classical allele HLA-A*2902 (p=1.04E-16, OR=2.41). The strong association between this HLA allele and BSCR is well established, and many patients with this condition (n=78/579) were included in our analysis. Therefore, in order to determine whether this signal was due to a strong association with the BSCR subgroup of patients, we decided to further stratify our analyses of the HLA region by considering the BSCR patients on one hand and the remaining uveitis patients on the other hand.

HLA analyses in the subgroup of patients with BSCR. When BSRC patients were independently analyzed, a stronger association between the classical allele HLA-A*2902 and this disease was evident (p=3.21E-35, OR=50.95) (Figure 2 and Supplementary Table 3). Although several SNPs, linked to this classical allele, also showed strong associations, HLA-A*2902 had the greatest effect size (Supplementary Table 3). Signals within the HLA-B, -C and class II regions were also observed; however, no independent secondary effects were found after controlling for the effect of HLA-A*2902 (Figure 2 and Supplementary Table 3).

Subsequently, we examined whether a specific amino acid position could be responsible for the association observed for this classical allele by means of an omnibus test (Supplementary Figure 2 and Supplementary Table 4). The most
relevant amino acid positions for disease risk were the positions 63 and 62 of the HLA-A molecule \(P_{LRT}=1.44E-58 \) and \(P_{LRT}=3.99E-57 \), respectively. After performing the omnibus test conditioning on either of these two polymorphic positions, none of the other signals remained significant (Supplementary Figure 2 and Supplementary Table 4).

Table 1 shows the most associated amino acid residues in both positions, Leu in position 62 and Gln in position 63 \(p=5.33E-35 \), OR=49.48), which are in complete LD. Both residues showed statistically nearly indistinguishable effects compared to the classical allele HLA-A*2902 (OR=50.95). When we performed a logistic regression analysis adjusting for HLA-A*2902, the association of Leu-62/Gln-63 with BSCR was lost \(p=0.111 \). Similarly, after controlling for either of these two residues, the association between HLA-A*2902 and BSCR also lost its statistical significance \(p=0.294 \) (Figure 2 and Supplementary Table 3).

HLA analyses in non-infectious non-anterior uveitis patients excluding BSCR.

Subsequently, we considered the remaining uveitis patients who did not have BSRC \(n=503 \) (Supplementary Figure 3 and Supplementary Table 5). No signals in the class I region were observed, thus indicating that the association between HLA-A*2902 and uveitis observed in our initial analysis was due to the strong association of this allele with BSCR. However, a peak within the HLA class II region was evident, with a set of SNPs, located within the *HLA-DRA* gene and in close LD, showing the strongest signal (highest hit rs3129888: \(p=6.33E-09 \), OR=1.65) (Supplementary Figure 3 and Supplementary Table 5). Additionally, these SNPs were strongly linked to the classical alleles forming the HLA-DR15 haplotype, DRB1*1501, DQA1*0102 and DQB1*0602, which also appeared to be associated with disease \(p=3.23E-08 \), OR=1.72; \(p=6.86E-08 \), OR=1.57; and \(p=3.03E-08 \), OR=1.73, respectively).

Since an association between the DR15 haplotype and idiopathic intermediate uveitis has been reported previously,\(^{34} 35\) we reanalysed the HLA region stratifying patients according to the anatomical location of their inflammation (Supplementary Figure 4).
In the group of patients with intermediate uveitis (n=154), a peak within the HLA class II region was observed, although no significant associations were found. The largest signals corresponded to the set of SNPs located within HLA-DRA (highest hit rs7197: \(p=8.91\times10^{-5}, \text{OR}=1.78 \)). As previously described, the classical alleles DRB1*1501, DQA1*0102 and DQB1*0602, also appeared between the most significant variants (\(p=8.92\times10^{-4}, \text{OR}=1.72; p=9.26\times10^{-4}, \text{OR}=1.58; \) and \(p=2.06\times10^{-3}, \text{OR}=1.67 \), respectively).

Interestingly, when we analyzed the group of patients with posterior uveitis (n=194), a similar pattern was evident. Again, the highest signals arose from DRA polymorphisms (highest hit rs3135388: \(p=2.06\times10^{-9}, \text{OR}=2.38 \)) and the DRB1*1501 (\(p=2.93\times10^{-9}, \text{OR}=2.36 \)) and DQB1*0602 (\(p=8.08\times10^{-9}, \text{OR}=2.30 \)) alleles. Indeed, in this subgroup of patients, these class II signals reached the genome-wide significance level.

Finally, when we analyzed the last subgroup of uveitis patients, those with panuveitis (n=141), we did not observe any peak within the HLA region.

HLA analyses in patients with intermediate and posterior uveitis. Since a similar pattern of association between HLA-DR and -DQ alleles and either intermediate and posterior uveitis was observed, we next combined both subgroup of patients to better define the association between this HLA region and these clinical phenotypes. As expected, the strongest signals corresponded to HLA-DRA variants (highest hit rs7197: \(p=2.07\times10^{-11}, \text{OR}=1.99 \)) and the HLA-DRB1*1501 classical allele (\(p=1.16\times10^{-10}, \text{OR}=2.08 \)) (**Figure 3 and Supplementary Table 6**). We next carried out a step-wise conditional logistic regression analysis to identify HLA alleles that independently influenced the susceptibility. No additional independent associations were observed after conditioning on either of the top signals, rs7197 or DRB1*1501 (**Figure 3 and Supplementary Table 6**).

After performing the omnibus test, the positions 133 and 142 of the HLA-DRβ1 molecule (which are completely linked) appeared to be the most associated with posterior and intermediate uveitis (\(P_{\text{LRT}}=1.64\times10^{-9} \)) (**Supplementary Figure 5 and Supplementary Table 7**). All the remaining associated positions were explained by
linkage to HLA-DRβ1 133/142 after performing the conditioned omnibus test (Supplementary Figure 5 and Supplementary Table 7).

Table 2 shows the most associated amino acid residues with intermediate and posterior uveitis. Positions 133 and 142 were biallelic in the analysed cohort, with two possible amino acid residues present at each of them, leucine and arginine in position 133 and valine and methionine in position 142. Of these, Leu-133 and Met-142 appeared to confer risk to the disease (p=4.79E-10, OR=1.94). Interestingly, these amino acids correlated with two other residues of the HLA-DRβ molecule, proline in position 11 and arginine in position 13 (Table 2). Therefore, the conditional analysis adjusting for each of the amino acid residues (Leu-133, Met-142, Pro-11 or Arg-13) could not statistically distinguish which of them was driving the effect.

Finally, functional annotation analysis indicated that most of the SNPs linked to the HLA-DRA gene (including the SNP with the strongest association, rs7197) have a regulatory role in immune cell lines, modulating the expression of a large number of genes, including DRB1 and DQB1 (Supplementary Table 8).

Non-HLA associations

Outside the HLA region, a novel signal was observed in chromosome 2q11.2 (Figure 1). The rs7608679 genetic variant, located in an intergenic region between the MAP4K4 (mitogen-activated protein kinase kinase kinase kinase 4) and IL1R2 (interleukin 1 receptor type 2) genes, reached the established significance threshold in the meta-analysis (p=8.38E-07, OR=1.42) (Table 3). In addition, several other genetic variants in tight LD with it also showed strong associations. However, stepwise logistic regression analyses, conditioned on the most highly associated polymorphism, showed there were no other variants with independent effects (Supplementary Figure 6).

When we evaluated the potential regulatory role of rs7608679 and its proxies, several SNPs (rs13011687, rs12473090, rs12990046 and rs1541435) overlapped with histone
marks enriched at promoters and enhancers in different immune cell lines (monocytes, neutrophils and primary B cells) (Supplementary Table 9). Furthermore, all of them appeared to influence the expression levels of both the IL1R2 and the MAP4K4 genes in whole blood (PMID: 24013639).

Finally, we also evaluated signals reaching our suggestive tier of association (2.29x10^{-5}). Genetic variants in five regions passed this statistical threshold (Figure 1 and Table 3). The third strongest signal belonged to a SNP (rs76649453) in an intronic region of the KIAA1109 locus (p=4.07E-06, OR=2.31). This gene, located within a large haplotype block encompassing the autoimmunity-associated genes IL2 and IL21, has been previously associated with BD 36. Suggestive associations were also found for SNPs in close proximity to RCL1/JAK2 (RNA terminal phosphate cyclase like 1/janus kinase 2) (rs7862852: p=8.82E-06, OR=1.35), CASP10/TRAK2 (caspase 10/trafficking kinesin protein 2) (rs17672977: p=1.02E-05, OR=2.07), ERC2 (ELKS/RAB6-interacting/CAST family member 2) (rs13098621: p=1.23E-05, OR=1.50) and HHEX/EXOC6 (hematopoietically expressed homeobox/exocyst complex component 6) (rs11187157: p=1.96E-05, OR=1.33).

For all these loci, except for ERC2, the top associated SNPs, or those showing high LD with them (r^2 > 0.8), seemed to have potential functional roles (Supplementary Table 9). Enrichment for histone marks, Dnase hypersensitive sites and/or eQTLs were evident using publicly available functional annotation data. Interestingly, the lead SNP within the HHEX/EXOC6 region influenced gene expression levels of EXOC6 in dendritic cells (PMID: 22233810) and KIF11 (kinesin family member 11) in lung (PMID: 25954001). Regarding CASP10/TRAK2, several proxy SNPs correlated with the expression in lymphoblastoid cell lines (PMID: 24037378) of two genes located in the same haplotype block, CFLAR (CASP8 and FADD like apoptosis regulator) and PPIL3 (peptidylprolyl isomerase like 3). Finally, the associated SNP within the RCL1/JAK2 locus was highly correlated with the expression of JAK2 in whole blood (PMID: 24013639).
DISCUSSION

By conducting the first large-scale genotyping study in non-infectious uveitis, we have confirmed the HLA locus as the most strongly associated region with this inflammatory condition. We have explored subphenotype associations, both shedding light into the previously reported HLA signals and identifying possible mechanisms by which these molecules are involved in the development of uveitis. Furthermore, outside the HLA region, we have detected a new risk locus, MAP4K4/IL1R2, and five suggestive associations with KIAA1109, RCL1/JAK2, CASP10/TRAK2, ERC2 and HHEX/EXOC6. The correlation between BSCR and the classical allele HLA-A*2902 represents one of the strongest associations between the HLA region and disease reported to date. In this regard, our results suggest that this effect could be driven by the amino acid Leu62/Gln63. Indeed, in our study cohort, both residues, Leu62 and Gln63, are specific to the classical alleles HLA-A*2902 and *2901. The lack of association between HLA-A*2901 and BSCR in our dataset (p=0.201) was probably due to the lower frequency of this classical allele (0.002) compared with HLA-A*2902 (0.057). Indeed, a nominal association between HLA-A*2901 and BSCR was reported in a previous GWAS (in which part of the BSCR samples overlapped with those included in the present study).

It should be noted that the amino acid positions 62 and 63 of the HLA-A protein are likely to be involved in the antigen presentation process. On one hand, the position 62 within the antigen binding site is positioned to make direct contact with the T cell receptor, whereas the position 63 faces into the antigen binding site and is likely to be involved in peptide binding. Therefore, these amino acid positions could be responsible for the effect of the HLA-A molecule on the BSCR susceptibility.

Our study confirms the previously reported association between the HLA-DR15 haplotype and idiopathic intermediate uveitis. Interestingly, this haplotype represents the primary HLA genetic susceptibility factor for multiple sclerosis (MS), an immune-mediated disease often associated with intermediate uveitis. However, our data revealed for first time that the classical alleles forming this haplotype (DRB1*1501,
DQA1*0102 and DQB1*0602) have an even stronger influence on susceptibility to posterior uveitis compared with the intermediate form of the disease. The combined analysis of both intermediate and posterior uveitis patients pointed toward positions 133 and 142 of the HLA-DRβ1 molecule as the most relevant for disease susceptibility. None of these positions have been reported to be involved in antigen presentation; however, amino acid residues conferring risk to the disease (Leu-133 and Met-142) were almost completely linked to Pro-11 and Arg-13. Both proxy positions lie within the peptide binding groove of the HLA-DR molecule and therefore, a functional role can be more reliably ascribed to them. Indeed, these same amino acid positions have been reported to be the most relevant for SLE susceptibility. Additionally, a previous fine-mapping of the HLA region in MS identified the position 71 of DRβ1 as the most significant conferring risk. This is also located in the peptide groove of the HLA-DR molecule and is tightly correlated with positions 11 and 13 \((r^2=0.90)\). Indeed, in our dataset, the amino acid alanine in position 71 also showed high statistical significance, as shown in Supplementary Table 6.

On the other hand, the highest signals associated to intermediate and posterior uveitis belonged to a set of highly linked genetic variants located in the HLA-DRA gene. Many of these SNPs appeared to act as eQTLs affecting the expression levels of a number of genes, some of which encodes HLA molecules, such as DQB1 and DRB1. Therefore, a potential functional effect of these polymorphisms on the pathogenesis of posterior and intermediate uveitis cannot be discounted. In this instance, polymorphisms of the HLA region in this subgroup of patients could be altering the expression of certain genes rather than directly influencing the antigen presentation process. Nevertheless, the high LD between the associated SNPs, classical alleles and amino acid residues makes it difficult to determine the true causal variant.

Outside the HLA region, we identified the MAP4K4/IL1R2 locus as a new genetic risk factor for non-infectious non-anterior uveitis. In silico eQTL analysis showed several proxy SNPs affecting the expression levels of these two genes in whole blood.
MAP4K4 encodes a member of the serine/threonine protein kinase family, which is involved in the tumour necrosis factor-alpha (TNF-α) signalling pathway, whereas **IL1R2** encodes a cytokine receptor that inhibits the activity of its ligands (IL-1A, IL-1B and IL1R1). Both proinflammatory cytokines, TNF-α and IL-1, have been detected in the eye during active inflammation.43 Interestingly, two recent clinical trials have demonstrated an effective response to adalimumab treatment, a TNF-α inhibitor, in patients with non-infectious intermediate, posterior, or panuveitis.44 45 Similarly, treatment with gevokizumab, a monoclonal antibody inhibiting the activation of IL-1 receptors, has also shown therapeutic efficacy in patients with Behçet’s disease uveitis.46 Moreover, this region has been previously associated with ankylosing spondylitis (AS),47 an inflammatory disorder that frequently presents acute anterior uveitis (30-40% of AS patients).

Evidence for eQTLs was found for three of the five loci showing suggestive associations with uveitis and may help annotate these signals. In this regard, the association observed in the **HHEX/EXOC6** region seemed to be due to an eQTL influencing the expression of **EXOC6** and **KIF11**. **EXOC6** is one of three genes included in a chromosomal microdeletion leading to an autosomal dominant form of non-syndromic optic nerve aplasia;48 whereas mutations in **KIF11** cause an autosomal dominant disorder characterised by chorioretinopathy.49 SNPs within the **CASP10/TRAK2** locus were found to affect the expression of two genes located in the same haplotype block; **CFLAR**, a regulator of apoptosis, and **PPIL3**, involved in protein folding. Finally, eQTL analysis showed that **JAK2** was the most likely causal gene within the **RCL1/JAK2** locus. **JAK2** encodes a signal transducer that plays an important role in the differentiation of Th1 and Th17 lymphocytes and both cell types are heavily implicated in the pathogenesis of autoimmune uveitis.50

In summary, our study has revealed new associations with non-infectious uveitis, both within and outside the HLA region, thus shedding light into the pathogenesis of this condition. Our results highlight the existence of common molecular mechanisms, such
as the TNF-α or IL-1 signalling, influencing the pathophysiology of the different uveitic entities. The identification of genetic pathways implicated in these disorders will lead to more specific and effective therapeutic procedures.
ACKNOWLEDGEMENTS

The authors thank Sofía Vargas, Sonia García and Gema Robledo (from the Instituto de Parasitología y Biomedicina 'López-Neyra', CSIC, Spain) for their excellent technical assistance and all of the patients and healthy controls for kindly providing their essential collaboration. Banco Nacional de ADN (University of Salamanca, Spain), Biobanco Vasco para la Investigación (Fundación Vasca de Innovación e Investigación Sanitarias, Bizkaia, Spain) and The Combined Ophthalmic Research Rotterdam Biobank (CORRBI) (Rotterdam, The Netherlands) are thanked for supplying a portion of the samples.

FUNDING

This study was supported by AbbVie Pharmaceutical. AM is recipient of a Juán de la Cierva fellowship (IJCI-2014-20322) from the Spanish Ministry of Economy and Competitiveness.

Contributors: AM, JM and MCC were involved in the conception and design of the study and contributed in the analysis and interpretation of data. AM drafted the manuscript. MCC, JMMV, MBGE, RB, DDV, MJR, AB, JLO, YC, MJC, MDL, NOC, IRA, VL, AA, AF, JTB, DA, ADD, JHDB, JK and AR collected samples and participated in analysis and interpretation of data. MCC, JMMV, MBGE, RB, DDV, MJR, AB, JLO, YC, MJC, MDL, NOC, IRA, VL, AA, AF, JTB, DA, ADD, JHDB, JK, AR and JM revised critically the manuscript draft. All authors approved the final version of the manuscript.

Competing interest: none declared

Data sharing statement: All meta-analysis results of this project are available
REFERENCES

23. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. *Am J Hum Genet* 2007;81(3):559-75.

30. Li MX, Yeung JM, Cherny SS, Sham PC. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. *Hum Genet* 2012;131(5):747-56.

Table 1. Amino acid residues of the HLA-A molecule showing the strongest associations with birdshot chorioretinopathy.

<table>
<thead>
<tr>
<th>Amino acid residue</th>
<th>Binding Pocket</th>
<th>Classical HLA Alleles</th>
<th>Residue frequency</th>
<th>Meta-analysis</th>
<th>Spain</th>
<th>Netherlands</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Birdshot</td>
<td>Controls</td>
<td>P-value</td>
<td>OR [95% CI]</td>
</tr>
<tr>
<td>Leu62</td>
<td>Yes</td>
<td>*29:01 and *2902</td>
<td>0.519</td>
<td>0.059</td>
<td>5.33E-35</td>
<td>49.48 [26.63-91.93]</td>
</tr>
<tr>
<td>Gln63</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OR, odds ratio; CI, confidence interval.
Table 2. Amino acid residues of the HLA-DRβ1 molecule showing the strongest associations with intermediate and posterior uveitis.

<table>
<thead>
<tr>
<th>Amino acid residue</th>
<th>Binding pocket</th>
<th>r² with Pro11</th>
<th>Classical HLA alleles</th>
<th>Residue frequency</th>
<th>Meta-analysis</th>
<th>Spain</th>
<th>Netherlands</th>
<th>UK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IU+PU Controls</td>
<td>P-value</td>
<td>OR [95% CI]</td>
<td>P-value</td>
<td>OR [95% CI]</td>
</tr>
<tr>
<td>Pro11</td>
<td>Yes</td>
<td>NA</td>
<td></td>
<td>0.210</td>
<td>0.131</td>
<td>4.43E-10</td>
<td>1.94 [1.58-2.40]</td>
<td>5.12E-09</td>
</tr>
<tr>
<td>Arg13</td>
<td>Yes</td>
<td>1</td>
<td>15:01, 15:02 and 15:03</td>
<td>0.210</td>
<td>0.131</td>
<td>4.43E-10</td>
<td>1.94 [1.58-2.40]</td>
<td>5.12E-09</td>
</tr>
<tr>
<td>Leu133</td>
<td>No</td>
<td>0.995</td>
<td></td>
<td>0.210</td>
<td>0.132</td>
<td>4.79E-10</td>
<td>1.94 [1.58-2.39]</td>
<td>5.55E-09</td>
</tr>
<tr>
<td>Met142</td>
<td>No</td>
<td>0.995</td>
<td></td>
<td>0.210</td>
<td>0.132</td>
<td>4.79E-10</td>
<td>1.94 [1.58-2.39]</td>
<td>5.55E-09</td>
</tr>
</tbody>
</table>

NA, not applicable; OR, odds ratio; CI, confidence interval; IU, intermediate uveitis; PU, posterior uveitis.
Table 3. Non-HLA loci associated with non-infectious non-anterior uveitis at the established significance level ($p<1.14 \times 10^{-6}$) (bold) and at the suggestive significance level ($p<2.29 \times 10^{-5}$).

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Loci</th>
<th>Most significant SNP</th>
<th>Minor allele</th>
<th>Spain</th>
<th>Netherlands</th>
<th>UK</th>
<th>Meta-analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Uveitis</td>
<td>Controls</td>
<td>Uveitis</td>
<td>Controls</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p-value</td>
<td>OR [95% CI]</td>
</tr>
<tr>
<td>2</td>
<td>MAP4K4 / IL1R2</td>
<td>rs7608679</td>
<td>C</td>
<td>0.301</td>
<td>0.234</td>
<td>0.357</td>
<td>0.240</td>
</tr>
<tr>
<td>4</td>
<td>KIAA1109</td>
<td>rs76649453</td>
<td>A</td>
<td>0.047</td>
<td>0.018</td>
<td>0.040</td>
<td>0.020</td>
</tr>
<tr>
<td>9</td>
<td>RCL1/JAK2</td>
<td>rs7862852</td>
<td>C</td>
<td>0.388</td>
<td>0.327</td>
<td>0.401</td>
<td>0.375</td>
</tr>
<tr>
<td>2</td>
<td>CASP10/TRA2</td>
<td>rs17672977</td>
<td>G</td>
<td>0.033</td>
<td>0.020</td>
<td>0.075</td>
<td>0.033</td>
</tr>
<tr>
<td>3</td>
<td>ERC2</td>
<td>rs13098621</td>
<td>A</td>
<td>0.160</td>
<td>0.108</td>
<td>0.147</td>
<td>0.102</td>
</tr>
<tr>
<td>10</td>
<td>HHEX/EXOC6</td>
<td>rs11187157</td>
<td>C</td>
<td>0.442</td>
<td>0.388</td>
<td>0.528</td>
<td>0.445</td>
</tr>
</tbody>
</table>

OR, odds ratio; CI, confidence interval.
FIGURE LEGENDS

Figure 1. Manhattan plot of the meta-analysis of the three analysed cohorts. The red and blue lines represent the established \((p=1.14 \times 10^{-6}) \) and the suggestive \((p=2.29 \times 10^{-5}) \) significance levels, respectively.
Figure 2. Manhattan plot representing the results of the conditional logistic regression analysis of the HLA region in patients with birdshot chorioretinopathy. (A) Unconditioned test of the HLA region. (B) Results after conditioning on the HLA-A*2902 classical allele. (C) Results after conditioning on the amino acid residue Leu62/Gln63. The red/green color gradient represents the effect direction of each analyzed variant (red for risk and green for protection). The size of the diamonds indicates the degree of linkage disequilibrium with the classical allele HLA-A*2902. The red line represents the established significance threshold (p<1.14x10^{-6}).
Figure 3. Manhattan plot representing the results of the conditional logistic regression analysis of the HLA region in patients with posterior and intermediate uveitis. (A) Unconditioned test of the HLA region. (B) Results after conditioning on the rs7197 polymorphism. (C) Results after conditioning on the HLA-DRB1*1501 classical allele. The red/green color gradient represents the effect direction of each analyzed variant (red for risk and green for protection). The size of the diamonds indicates the degree of linkage disequilibrium with the classical allele HLA-DRB1*1501. The red line represents the established significance threshold ($p<1.14\times10^{-6}$).