
Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.1016/j.trd.2015.06.003

Link to publication record in Explore Bristol Research

PDF-document

This is the final published version of the article (version of record). It first appeared online via Elsevier at http://www.sciencedirect.com/science/article/pii/S1361920915000772. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Use of a novel dataset to explore spatial and social variations in car type, size, usage and emissions

Tim Chatterton a,*, Jo Barnes a, R. Eddie Wilson b, Jillian Anable c, Sally Cairns d

a University of the West of England, UK
b University of Bristol, UK
c University of Aberdeen, UK
d Transport Research Laboratory, University College London, UK

Article info

Keywords:
Emissions
Vehicle
Energy
Household
Spatial
Socio-demographic

Abstract

The 'MOT' vehicle inspection test record dataset recently released by the UK Department for Transport (DfT) provides the ability to estimate annual mileage figures for every individual light duty vehicle greater than 3 years old within Great Britain. Vehicle age, engine size and fuel type are also provided in the dataset and these allow further estimates to be made of fuel consumption, energy use, and per vehicle emissions of both air pollutants and greenhouse gases. The use of this data permits the adoption of a new vehicle-centred approach to assessing emissions and energy use in comparison to previous road-flow and national fuel consumption based approaches. The dataset also allows a spatial attribution of each vehicle to a postcode area, through the reported location of relevant vehicle testing stations. Consequently, this new vehicle data can be linked with socio-demographic data in order to determine the potential characteristics of vehicle owners.

This paper provides a broad overview of the types of analyses that are made possible by these data, with a particular focus on distance driven and pollutant emissions. The intention is to demonstrate the very broad potential for this data, and to highlight where more focused analysis could be useful. The findings from the work have important implications for understanding the distributional impacts of transport related policies and targeting messaging and interventions for the reduction of car use.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Efforts to reduce greenhouse gases in the UK are regularly framed in terms of the overall 'legally binding' commitment for an 80% reduction in greenhouse gas emissions relative to 1990 levels that is set out in the 2008 Climate Change Act. 24% of current domestic UK GHG emissions are from transport (DECC, 2013). Car travel contributes 58% of this, whilst light vans contribute 12.5% and motorbikes/mopeds contribute 0.5% (DfT, 2011). Due to the inability of some source sectors to make an 80% reduction, such as agriculture, waste and domestic aviation, it will be necessary for other sectors, particularly domestic surface transport, to decarbonise almost entirely (Committee on Climate Change, 2010; DECC, 2011). In addition to the problem of greenhouse gases and climate change, road transport is responsible for over 95% of the Air Quality Management...
Areas declared under the UK’s Air Quality Strategy and Local Air Quality Management (LAQM) framework (Longhurst et al., 2011).

This paper sets out how new data released by the UK Department for Transport (DfT) can offer a radically new perspective on these emissions, and on energy use, through calculations at the level of the individual vehicle. The data is acquired from the UK annual road worthiness vehicle inspection data (known as the ‘MOT (Ministry of Transport) test’) which provides information on vehicle characteristics, annual mileage and the (presumed) location of the vehicle owner (via the location of the Vehicle Test Station – see below). By attributing energy and emissions across the country to a relatively local level, based upon actual vehicle mileages, the methodology set out in this paper offers completely novel calculations that have been impossible to date. Although there is existing work that links energy use and emissions to household location (see for example Hatzopoulou et al., 2007, 2011), the methodologies used in these studies employ modelled trip data and have only been undertaken at the level of individual cities. The point of the methodology set out in this paper is not to presume that vehicles are driven at the point of registration or VTS, but instead to link fuel use and emissions to vehicle ownership.

In addition, by linking the MOT data spatially with socio-demographic data, it is possible to work towards an assessment of who is responsible for energy and emissions (in terms of area of residence and general demographic characteristics), rather than why they are emitted (e.g. journey purpose – see, for example, DfT (2008), Chapter 3) or source calculations of where they are emitted (e.g. emissions calculations based on flows for road links, as used in the UK National Atmospheric Emissions Inventory – see Waygood et al. (2013) for a short description of the NAEI and similar methodologies). Whilst the spatial location of greenhouse gas emissions, unlike ‘conventional’ air pollutants, is largely immaterial in terms of ambient concentrations due to the global nature of climate change (see Tiwary et al., 2013), it is relevant to climate mitigation policy in order to identify emitters and appropriately target reduction measures. Spatial location of vehicle owners is also relevant with regard to energy use where, in a future when Plug-In Vehicles may have become established, the majority of energy required by the Light Duty Vehicle (LDV) fleet may need to come from the local electricity distribution grids of the owners rather than in liquid/gas form from filling stations.

The use of local data, linking emissions to location of vehicle owners, allows links to be made between responsibility for emissions and exposure to local-scale public health and environmental problems. This need not be limited just to the consideration of conventional air pollutants as done here (particulate matter (PM) and nitrogen oxides (NOx)) but could be extended to other public health issues associated with car use such as noise, road safety, and use of public space for which distances driven can be seen as a proxy variable. The approach also affords a new method for assessing environmental and social justice issues around air pollution, building on work such as Mitchell and Dorling (2003). In particular, this work highlights the difference between a potentially dirty car (i.e. one with high emissions or fuel consumption per km) and an actually dirty car (i.e. based on total emissions from the vehicle in any given per year).

This paper demonstrates the potential value and diversity of analyses afforded by the MOT dataset, including estimations of commonly used statistics (e.g. vehicle km/year for private vehicles) but from a novel data source. A review of vehicle inspection and maintenance programmes (Cairns et al., 2014) has indicated the extent to which these tests are carried out globally, and therefore the potential for the work presented here to be carried out elsewhere. Since 31st December 2011, all 27 European Member states (under European Directive 2010/48/EU) are required to undertake vehicle inspection tests at least every two years (once vehicles are four years old or over). In the US, 17 states have compulsory periodic (annual or biennial) safety inspection programmes, whilst 32 states have either partial or full emissions inspection programmes (Wikipedia, 2015). In Asia at least 17 countries were testing for roadworthiness and/or emissions (UNEP, 2011a). Although vehicle inspection data have been used for certain types of analysis previously, to date, we are not aware of any similar work of the scale and nature described here, although, given the widespread nature of such testing, there is considerable potential for such work.

Data description and methodology

The MOT dataset

In 2010, DfT began publishing results from the annual MOT tests. Around 38 million test records (including test passes and test failures) relating to some 27 million vehicles are stored in the database each year (DfT, 2013a). With the application of some mathematics (see, for example, Cairns et al., 2013; Wilson et al., 2013a, 2013b), it is possible to estimate the annual distance driven for the majority of LDVs in the UK. DfT have undertaken some analysis of this dataset focussing primarily on vehicle age and mileage (DfT, 2013a). In addition to the odometer reading of the vehicle at each test, the dataset includes details of the make and model of the vehicle, engine size, fuel type, date of first registration and colour. The primary unit in the current public release of the data is the vehicle test (rather than the vehicle). Each test (and therefore the vehicle undergoing the test) is spatially attributed to the Postcode Area (PCA – see below) of the relevant Vehicle Testing Station (VTS) where the vehicle...
inspection is carried out (DfT, 2014a). The VTS location can therefore be used as a proxy for the location of the vehicle owner in the absence of any other locational information. Key caveats around this data are:

- The location of the VTS is not an ideal proxy for the location of the owner of the vehicle. People are able to take their car to any testing station, however due to rules regarding where and how failed vehicles can be retested (Gov.uk, 2015) there is a reasonable likelihood that people will have their cars tested at a testing station close to their home. Moreover, the probability that the VTS and home location both fall within a PCA is relatively high, given that PCAs are relatively large (see below).
- The dataset does not include the majority of vehicles <3 years of age as these are not currently required to undergo an annual MOT test.³ Around 13% of all cars in the UK fleet were estimated to be under 3 years old (DfT, 2014b). Work is currently being undertaken to identify and utilise additional datasets to improve the knowledge of these – although it should be noted that many of these vehicles will be owned by rental or leasing fleets, or individuals with a strong preference for new vehicles – and may therefore have atypical usage patterns.
- Vehicles disappear from the dataset after their last test, so an unknown distance is driven between a vehicle's last test and when it is scrapped or taken off the road. Exact details of how many vehicles are actually taken off the road and scrapped each year are surprisingly hard to obtain, but estimates indicate it is usually somewhere between 1 and 2 million (Car Recycling, 2012)
- A certain number of vehicles will not have an MOT test and will therefore be driven on the roads illegally. Due to the increasing computerisation of the system, this is a decreasing number. The Driver and Vehicle Licensing Authority (DVLA) carry out annual number plate surveys which estimate the scale of this problem to be small. Only 0.6% of vehicles, around 210,000, were calculated to be unlicensed in 2013, and those without valid MOT certificates are a subset of this (DfT, 2013b).
- The current dataset contains a range of vehicle types, including cars, Light Goods Vehicles <3.5 tonnes (LGVs), motorbikes and private buses. Our analysis has not differentiated between different vehicle types – instead, variance in engine size is considered as an important differentiator.

The dataset used is from the September 2013 release (VOSA, 2013). Following processing of the data, information was available for 24,391,789 individual vehicles, including an estimate of the annual distance driven by each in 2012.

Calculating emissions and energy use

Per kilometre emissions and energy use are calculated here as an outcome of three key variables from the MOT dataset: date of registration (indicating likely pollution control technologies), engine size, and fuel type (impacting on both fuel economy⁴ and emissions). These are then multiplied by the calculated annual distance travelled in order to estimate annual emissions and energy usage for each individual vehicle.

The MOT dataset categorises vehicles according to fuel type under the classes: Petrol, Diesel, Liquefied Petroleum Gas (LPG), Liquefied Natural Gas (LNG), Compressed Natural Gas (CNG), Steam, Fuel Cell, and Other. For the purposes of this analysis, steam-powered vehicles have been removed and, following examination of make/model information, 'Fuel Cell' and 'Other' have been grouped together and treated as Hybrid (petrol electric). Due to the very small proportion of 'alternative fuel vehicles' (i.e. vehicles which are not petrol or diesel), the spatial presentation of fuel type has focussed on the proportion of diesel vehicles for each PCA.

In terms of the relative environmental impacts of petrol and diesel vehicles, although diesel vehicles have been heavily incentivised by UK national and local government policies (i.e. Vehicle Excise Duty and the congestion charge) on the basis of lower CO₂ emissions, the higher emissions of PM from diesel engines lead to increased short-term warming and significantly higher human health impacts compared to petrol (Uherek et al., 2010; UNEP, 2011b). Table 1 shows recent figures (Defra, 2010) which found that monetisation of these impacts indicates monetised equivalence in the combined air quality and climate impacts between petrol and diesel cars, highlighting the importance of considering both greenhouse gases and conventional air pollutants. No account has been taken in this analysis of differentiation between vehicle types (e.g. car, LGV, two-wheeler). Initial attempts were made to manually categorise the vehicles using appropriate vehicle classes, including sub-groupings (e.g. 'city-car', 'saloon', etc.) but this has proved impractical with over 33,000 unique combinations of make and model within the dataset. Provision of an indicator of 'body type' in future data sets will allow better treatment of this. It is also anticipated that future releases of the data may also include vehicle manufacturers' values for emissions and fuel economy which will allow for an assessment of uncertainty to be made with regard to the calculations presented here. However, it is of note that numerous studies show that manufacturers' reported emissions do not accurately reflect in-use emissions (e.g. Carslaw et al., 2011; Mellios et al., 2011; Sileghem et al., 2014).

³ In the DfT data release in September 2013, <0.1% of vehicles listed were less than three years old (i.e. registered in 2010–12).
⁴ Fuel economy is the measure of fuel consumption in relation to distance travelled. This is represented here in litres of fuel consumed per 100 km travelled (l/100 km). This results in a higher figure the more inefficient the vehicle is, as opposed to older measures of fuel economy in the UK and US which used miles per gallon. The figure also has a linear relationship between fuel consumed and distance travelled (unlike miles per gallon).
Emissions and energy use have been calculated on the basis of vehicle age, fuel type, engine size and derived km/year. All cars reported as ‘Fuel Cell’ or ‘Other’ have been treated as petrol hybrids. Steam vehicles have been discounted from the analysis (n = 62). There has been a mis-attribution of hybrid vehicles to other fuel types (including steam, n = 14) which has been possible to partially identify by searching for “PRIUS”. This highlights some potential issues with the data quality which merit further attention. However it has been impractical in this exploratory work to focus on identifying these misclassifications and calculations have been based on engine size and fuel type as stated.

Emissions of NOx, PM_{10} and CO_{2} have been calculated from a set of generic emission factors developed by the Air Quality Management Resource Centre at the University of the West of England (Barnes and Bailey, 2013). These are based on the currently best available data for the UK from a range of sources (primarily COPERT 4 (v8.1) (Ntziacharistos et al., 2009), TRL (2009), NAEI (2013a) and EMEP/EEA (EEA, 2013)). The emission factors for NOx, PM_{10} and CO_{2} used were for cars of different fuel types: Petrol (<1400 cc, 1400–2000 cc, and >2000 cc: Pre-Euro and Euro 1–6), Diesel (<2000 cc and >2000 cc: Pre-Euro and Euro 1–6), LPG (all engine sizes: Euro 1–6 (pre-Euro 1 treated as Euro 1)), Hybrid (single factor). These emission factors were available for urban, rural and motorway driving. A compound emission factor was calculated based on figures from Transport Statistics Great Britain (DfT, 2012) that split total mileage for cars, motorbikes and LGVs between motorways (19%), urban (28%) and rural (43%). Euro standards for the vehicles have been based on date of first registration in relation to the EU compliance date for the relevant standards (see Table 2). As described above, due to the absence of data on body type, all vehicles have been treated as cars.

Due to a lack of information on emission factors for light duty CNG and LNG vehicles, NOx and PM_{10} emissions for these were based on LPG, by km travelled. CO_{2} emissions from LNG were also set on the basis of LPG. However, CO_{2} emissions for CNG were calculated on a g/l basis, given the significantly different volume:energy ratio due to the compressed nature of the fuel. This is described below. Details of final emissions factors for each fuel type are given in Table 3.

Fuel economy and fuel consumption calculations

Fuel economy figures for petrol and diesel vehicles were derived from data for Ireland (CSO, 2013) due to the likely similarity of the vehicle fleet and the quality and availability of the data, which gives average fuel economy figures for petrol and diesel vehicles sold between 2000 and 2011 breaking vehicles down into 100 cc bands between 900 cc and 3000 cc. Similar data was sought for the UK, however, government guidance (WebTAG) on calculating fuel consumption only provides data for fuel consumption for cars split into petrol car/diesel car (DfT, 2014c) with no distinction between engine sizes, and ret-
rospective changes in fuel efficiency, and with data only going back as far as 2004. All vehicles registered before 2000 were treated as 2000, which may lead to some bias from underestimating older vehicles, however <15% of the vehicles in the dataset were registered before 2000. It is anticipated that future work with an improved dataset will enable further analysis of this ‘old vehicle’ subset. It is recognised that there may be significant differences in vehicle purchasing patterns between the UK and Ireland, and further work is planned to validate and improve these initial assumptions and will be aided by the anticipated addition of manufacturers’ figures within future releases of the MOT dataset.

Due to lack of suitable fuel economy figures for LPG and LNG vehicles, these have currently been set as for petrol, although usually LPG is 5–10% less efficient. Fuel economy for CNG vehicles has been calculated by taking an average g CO₂/km from the two CNG vehicles on the carfueldata.gov website (VCO, 2013) of 156.5 g CO₂/km. On the basis that the carbon content of 1 l of CNG is emitted as 2252 g CO₂ (Ecoscore, 2013), the fuel use of CNG vehicles has been estimated at 6.95 l/100 km. Fuel economy for hybrids has been calculated by taking an average 122.7 g CO₂/km from the 70 hybrid vehicles on the carfueldata.gov website (VCO, 2013) and, on the basis that 1 l of petrol emits 2211 g CO₂ (DfT, 2014d), fuel use of hybrids is estimated as 5.55 l/100 km. These fuel economy figures of l/100 km were then multiplied by the estimated annual vehicle mileage to generate fuel consumption figures – specifically, a figure of litres of fuel per year for each vehicle. Details of figures for fuel economy for each fuel type are given in Table 3.

As with any estimation of vehicle emissions, these calculations represent a notional value that, irrespective of details such as the bandings of engine size, can only ever loosely reflect precise in-use emissions which will depend on a variety of factors such as power/acceleration, engine temperature and engine condition. However, the most representative figures available for in-use emissions and fuel economy have been used. Future work will try to improve these further and, should they become available in future releases of the dataset, will utilise manufacturers’ emission and fuel economy figures. It is also acknowledged that whilst the current approach varies emissions of pollutants for vehicles based on a provisional urban/rural/motorway split, this has not been possible for fuel consumption and therefore energy usage (nor for CO₂ emissions for CNG or hybrid vehicles). It is hoped that further improvements to the dataset in future releases may include further information on these.

Energy use calculations

Energy use of all vehicles, other than electric, has been calculated on the basis of UK Department for Environment, Food and Rural Affairs (Defra) Greenhouse Gas Reporting Guidelines (Defra, 2013a). These provide the calorific value for all relevant fuels (kW h/kg) along with a density (l/tonne) from which a calorific value of kW h/l was calculated. This was then multiplied by the fuel used per year to estimate total energy usage per vehicle. Electric vehicle energy use was set at 0.211 kW h/km with CO₂ emissions of 70 g/km (Wilson, 2013), however no emissions of PM or NOx were attributed for these.

Postcode areas (PCAs)

The vehicle data presented in this paper are primarily attributed to Postcode Areas (PCAs), the largest geographical postcode domain which splits Great Britain (GB) into 120 unequal areas. Within the process set out in earlier work (Cairns et al., 2013; Wilson et al., 2013b), each calculation of annual mileage for a vehicle results in two PCAs being attributed per vehicle, one for the first test and one for the second. Within this paper, the final (second) PCA has been used to represent the location of the vehicle (for over 19 million (≈80%) of the 24.4 million vehicles, the first and second PCA were the same). Environmental impacts (pollution emissions and energy use) are calculated for each individual vehicle in the MOT dataset and then averaged over each PCA to provide an indication of the average vehicle characteristics for each area. We recognise that this level of spatial aggregation may be considered too large to derive a valid depiction of an average vehicle on which to determine meaningful relationships with socio-economic data over the same areas. However, we present this as exploratory work, setting out a range of possible analyses as a proof-of-concept. We acknowledge not only the limitations that this spatial resolution brings, but conversely the advantages associated with the initial presentation and analysis of the spatial data for Great Britain divided over only 120 PCAs as opposed to tens of thousands of smaller spatial areas such as census Lower-layer Super Output Areas (LSOAs). Within the data presented below, there is a clear indication of patterns that merit further research and exploration at a depth that is impossible within a single paper. To aid readers unfamiliar with the geography of Great Britain, Fig. 1 shows key urban areas and regions that will be useful in interpreting the analysis and results.

Table 4 provides descriptive information highlighting the varied nature of PCAs. As discussed above, PCAs are often very large and, unlike census geographies, have not been defined to represent socially homogeneous populations. The PCA boundaries are used to present results in various maps produced below, such as Fig. 2.

Statistical approach

Analysis of the data has been undertaken through a combination of mapping, bivariate correlation and multiple regression analyses.
Results

Spatial variations and relationships in key vehicle parameters

Five key parameters have been taken for each vehicle in the MOT dataset for 2012 and then a mean calculated for each PCA to represent an 'average vehicle'. These parameters are:

Odometer reading: The odometer reading from the second test provides an indication of the total distance driven by the vehicle over its lifetime. This could be taken as a proxy for wear and tear in addition to vehicle age, but only accounts for how far a vehicle has been driven, not how hard it has been driven or how well it has been maintained.

Engine size: The average engine size (in cc) taken from the MOT record. These have been screened to exclude obviously erroneous recordings for engine sizes above 9000 cc. As described above, for the fuel consumption calculations, there are 100 cc bins for all vehicles ≥900 cc and ≤3100, and single bins for all vehicles below or above these sizes.

Vehicle age: This is taken to be the number of years between 2012 (the year of the ‘straddling date’ used to estimate calendar year annual distance driven) and the year of first registration.

Annual distance driven per vehicle (km driven): This is the estimated annual distance driven calculated from the interval between vehicle test results. A straddling date of 1st July 2012 has been set to represent vehicle usage for the calendar year 2012.

Fuel economy: Although this data is not (currently) available within the MOT dataset itself, this has been calculated for each vehicle as described above, and has been included within these parameters as a vehicle characteristic, and not an energy or emission outcome. As described above, the fuel consumption calculations treat pre-2000 as 2000, and so there is likely to be an underestimation of fuel consumption of older vehicles.
The spatial variation in the mean values for these parameters by PCA are presented in Fig. 2 alongside three further values: the number of ‘cars’ in each PCA, the density of ‘cars’ per km², and the proportion of diesel vehicles within the PCA. Fig. 3 presents bivariate scatterplots for six of these parameters indicating the varying relationship between them (including linear regression lines and R values calculated in the statistics package R (R Core Team, 2012)).

From the data presented in Figs. 2 and 3, a number of patterns can be seen. These are described below in relation to the regions and urban areas shown in Fig. 1.

- Density of vehicles is greatest around the main conurbations (London, Birmingham, Cardiff, Liverpool, Brighton, Southampton, etc.).
- Vehicles with highest odometer readings are mainly in the East of England, Wales, West and East Midlands and the South West.
- Engine size is greatest in northern Scotland, the South East and mid-Wales.
- The oldest vehicles are in the East of England, the South West and South Coast (including South East and South West).
- The greatest proportions of diesel vehicles are in Wales, northern and southern Scotland (but not central Scotland near Edinburgh and Glasgow) and the South West. As might be expected, the relationship between fuel economy and the percentage of diesel vehicles is negative ($R = -0.65$).
- Fuel economy of vehicles (l/100 km) is worst in South East England and in Scotland around Aberdeen.
- Greatest mean annual distance driven per vehicle is in northern and southern Scotland, the northeast of England, and an area in central England where the East and West Midlands, and the East and South East of England meet. Places with higher annual per vehicle distance also tend to have better fuel economy ($R = -0.56$).
- The strongest relationship is between engine size and fuel economy ($R = 0.75$), which has a stronger relationship than vehicle age and fuel economy ($R = 0.47$).

As the purpose of this paper is to demonstrate the potential for this dataset to reveal patterns of interest rather than to undertake detailed analyses, we do not go into these further here. However, all these points merit far more analysis than is possible within this paper.
Spatial variations in emissions and energy consumption

As with the key vehicle parameters above, annual emissions for NOx, PM10 and CO2 have been calculated for each individual vehicle before deriving the mean value for each PCA. Fig. 4 shows the spatial variations in these. The highest values across both sets of pollutants tend to be in northern and southern Scotland (but not the ‘central belt’ containing the main Scottish conurbations (Edinburgh and Glasgow)) and an area in central England where the East and West Midlands, and the East and South East of England meet. Wales and the South West have higher relative emissions of NOx and PM10 than they do emissions of CO2 and energy consumption. Analysis of the relationship between the variables shown in this figure, conducted on a similar basis to that reported above, shows that emissions of NOx and PM10 are strongly correlated (R = 0.99), as are CO2 and energy consumption (R = 0.99). NOx and PM10 are less well correlated with CO2 and energy, although there is still a strong correlation, with R values between 0.74 and 0.81.

Determinants of average CO2 emissions

Fig. 5 shows the bivariate relationships between the mean vehicle CO2 emissions and eight key vehicle parameters for each PCA. For the purpose of this paper, CO2 has been chosen as being, to some extent, illustrative of all emissions and energy use given the strong relationships demonstrated above. Again, it should be noted that this paper provides an overview of the data and spatial differences in the means of these parameters. Further work is justified in exploring the variance and relationships between these parameters at the level of individual vehicles. However, some interesting points can be noted:

- The strongest relationship is between average CO2 per vehicle and average annual distance driven per vehicle (km driven) – indicating that in terms of environmental impacts, it is not necessarily the type of car that is important but the distance travelled, at least at this level of spatial aggregation.
CO₂ emissions per vehicle appear to increase with the proportion of diesel vehicles in the PCA. This is counter-intuitive given that diesel vehicles tend to have lower emissions per distance travelled. However, it appears that this may be because, due to better fuel economy, diesel vehicles are often driven further than petrol vehicles. Again, further analysis at the level of individual vehicles may reveal more about this.

Vehicle age in years is only weakly correlated with CO₂. However, the further the vehicle has been driven over its lifetime, i.e. the total distance on the odometer, the higher the annual CO₂ emissions ($R = 0.61$). This suggests that there are complex factors relating historical distances driven with distance travelled in the current year.

As average fuel economy worsens (l/100 km increases), average CO₂ emissions decrease. This initially appears counter-intuitive, but is likely to be because less economic vehicles are driven shorter distances.

At the aggregate level, average engine size is not clearly related to average emissions of CO₂, and this is likely to be due to a combination of historical distance driven, vehicle age, fuel type and, most importantly, average distance driven exerting a much stronger influence on these emissions.

To further explore the complex relationships underlying these parameters, a further analysis was undertaken using multiple regression using R. The eight parameters illustrated in Fig. 5 were put into a multiple regression model and analysed in a stepwise manner to produce a minimal adequate model, retaining parameters on the basis of significance ($p < 0.001$). Engine size was discarded due to poor significance of its bivariate relationship (see Fig. 5). This poor relationship may be due to the tendency for diesel vehicles, which emit less CO₂ per km, to have larger engines than equivalent petrol vehicles.
The stepwise process also led to the rejection of the number of cars per PCA, the percentage of diesel vehicles per PCA, and the odometer reading on the basis of poor significance.

The remaining variables were then tested for collinearity by examining variance inflation factors (VIF). The VIFs were all less than 3, indicating acceptable levels of collinearity. Key statistics for the regression model are given in Table 5. The overall R-squared value for the model, showing goodness of fit, is extremely high at 0.9981. This is due, at least in part, to the strong relationship between km driven and CO₂. Notably, in this model, all parameters are showing a positive relationship with CO₂ (unlike in the bivariate analysis). A further model run, excluding the km driven parameter, produced an R-squared value of only 0.2691, indicating the over-riding significance of this variable.

Relationships between vehicle type, emissions and socio-demographic data

Not only can the spatial attribution of data help to identify the general geographical location of the owners of vehicles generating relatively high levels of emissions or energy consumption, but it can be combined with data from the census (and other sources) to identify a picture of the average socio-demographic profile of the populations likely to be responsible for these vehicles. Fig. 6 shows eight key socio-demographic parameters. Six of these have been taken directly from the 2011 Census (ONS, 2011): number of persons per PCA, mean age, percentage of households containing a ‘Household Reference Person’ of social grade AB (i.e. employed in higher & intermediate managerial, administrative or professional occupations).

Table 5
Regression results for influence of vehicle parameters on CO₂.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>b</th>
<th>Beta</th>
<th>Std. error</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>−1.998</td>
<td></td>
<td>0.033</td>
<td>−33.35</td>
<td><0.001</td>
</tr>
<tr>
<td>km driven</td>
<td>1.54E−04</td>
<td>1.117</td>
<td>7.38E−07</td>
<td>208.26</td>
<td><0.001</td>
</tr>
<tr>
<td>Fuel economy</td>
<td>0.133</td>
<td>0.175</td>
<td>0.005</td>
<td>29.17</td>
<td><0.001</td>
</tr>
<tr>
<td>Vehicle age</td>
<td>0.016</td>
<td>0.065</td>
<td>0.001</td>
<td>13.34</td>
<td><0.001</td>
</tr>
<tr>
<td>Car density</td>
<td>6.68E−06</td>
<td>0.022</td>
<td>1.68E−06</td>
<td>3.98</td>
<td><0.001</td>
</tr>
</tbody>
</table>

R-squared = 0.9981.
percentage of households with no access to a car, average number of cars per household (for those households with a car), and percentage of workers driving to work. Population density has been calculated from the PCA area and total census population. Average income has been calculated using a median household income figure obtained from Experian, a private business data provider (Experian, 2011). All data has been aggregated upwards from data for Lower-layer Super Output Areas. As with the aggregation of the vehicle parameters, the intention is to provide an indication of the average qualities of an area, rather than making statements about what any individual person/household may be like (and therefore risk ecological fallacy). Due to differences in census data collection and geographies for Scotland, socio-demographic data have currently only been analysed for England and Wales.

As with the plots in Fig. 3, bi-variate relationships have been investigated between these parameters. However, as the focus of this paper is on demonstrating the use of the MOT dataset and not the socio-demographic patterns these are not presented here. The most notable feature, though, is that each of these variables is also significantly spatially variant, and the patterns of variance do not necessarily correspond with those shown in Fig. 2 for vehicle parameters.

Fig. 7 shows the relationships between both mean km driven per vehicle for each PCA, and the eight socio-demographic characteristics shown in Fig. 6. Due to the strong correlations between average km driven per vehicle and CO₂, energy consumption, NOx and PM₁₀ (described above) the similar plots for the other outcome parameters have not been presented here.

Four socio-demographic parameters were found to have strong correlations ($R > 0.6$). The percentage of people who drive to work, and the mean number of cars per household were both found to have strong positive correlations. Population density and the percentage of households with no access to a car were found to have strong negative correlations. Moderate correlations ($0.3 \leq R < 0.6$) were found for mean age (positive), household income and percentage of households in social grade AB (both negative). There was no significant ($p < 0.05$) correlation found with the population of the PCA.

These eight parameters were then put into a multiple regression model and parameters discarded in a stepwise fashion on the basis of significance ($p < 0.001$). This resulted in only income, age and the percentage of households with no car remaining. Regression statistics are shown in Table 6. These indicate that the average distance travelled by each vehicle in each PCA decreases with both income and age, and increases as more households own a car. Together these explain

Table 6

Regression statistics for average distance travelled per vehicle as a function of socio-demographic parameters.

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>Beta</th>
<th>Std. error</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>24330.00</td>
<td>-</td>
<td>1763</td>
<td>13.804</td>
<td><0.001</td>
</tr>
<tr>
<td>% Households with No car</td>
<td>-83.12</td>
<td>-0.91</td>
<td>7.284</td>
<td>-11.412</td>
<td><0.001</td>
</tr>
<tr>
<td>Income (median)</td>
<td>-0.08</td>
<td>-0.58</td>
<td>0.009</td>
<td>-8.438</td>
<td><0.001</td>
</tr>
<tr>
<td>Age (mean)</td>
<td>-201.20</td>
<td>-0.50</td>
<td>36.33</td>
<td>-5.537</td>
<td><0.001</td>
</tr>
</tbody>
</table>

R-squared = 0.6642.
66% of the variation in the mean distance travelled by vehicles for each area. The importance of the proportion of households without (or with) a car may reflect the general accessibility characteristics or car dependency of the area, i.e. where a higher proportion of households do not own cars, it is likely that those households which do own cars need to use them less to access services.

Linking to air pollution emissions and exposure

In addition to socio-demographic data, it is also possible to analyse the MOT data in relation to environmental datasets, such as air pollution emissions from road transport and levels of exposure to air pollutants, for which are available for the whole of the UK as a 1 km2 resolution grid (Defra, 2013b; NAEI, 2013b). This type of analysis might present interesting opportunities in relation to improving aspects of emissions inventory construction (e.g. variations in the significance of additional cold start emissions based on residential location), as well as investigating issues of social and environmental justice regarding relationships between responsibility for emissions and exposure (c.f. Mitchell and Dorling, 2003). Such work would be improved given better spatial resolution for the MOT dataset. An initial comparison of total emissions for road transport from the NAEI (aggregated to PCA level), and total emissions from the vehicles in the MOT dataset for each area show very strong correlations ($R = 0.96–0.98$), despite being based on completely different methodologies (road flows vs. individual vehicles). This strongly suggests that there may be some relationship between location of vehicles based on the PCA of VTS and location of use.

Longitudinal change across postcode areas (2009–2012)

It is also possible to look at longitudinal changes using the data. The dataset presented here for 2012 has been compared with a similar snapshot for 2009, allowing changes in the vehicle parameters at each PCA to be considered over the period since the onset of the global recession. Although it must be remembered that these datasets do not contain many vehicles under three years old, this is an issue for both sample years, and is therefore unlikely to invalidate the comparison.

The comparison showed that the number of vehicles, density of vehicles, their age, the odometer readings and the proportion of diesels have all tended to increase over this period. Meanwhile, aside from a small number of areas, the distance travelled per vehicle reduced. Fuel economy improved in all areas, but there has been a mixed pattern with regard to increase or decreases in engine size. There is considerable spatial variation present within these patterns. Hence, this initial analysis suggests that the dataset has something to offer to the further exploration of the ‘Peak Car’ debate (see Goodwin et al., 2012; Le Vine and Jones, 2012; Headicar, 2013). In particular, it should be possible to explore the extent to which the peak car phenomenon is universal across the UK, or whether it is limited to certain geographical areas or demographic groups.

Discussion and conclusions

The range of analyses presented in this paper clearly demonstrates the great potential for the MOT dataset to contribute to our understanding of patterns of car ownership and use, and their consequent impacts. One potentially interesting finding is the relatively small influence of engine size and fuel type on overall energy use and emissions compared with that of distance driven. There are many policy initiatives focused on vehicle type (encouraging people to buy newer cars, to choose diesel rather than petrol, to buy smaller vehicles, etc.). However, if it is true that differences in distances driven contribute to a substantially greater proportion of the overall variation in energy use and emissions from vehicle use than do variations in vehicle type, this could have considerable implications for the relative balance of spending on different transport policies. More analysis (including spatial regression analysis) would be needed to attach greater certainty to these conclusions.

It has only been possible within this paper to give the briefest of descriptions of the patterns found, but it has set out the key areas that future work will explore. The work as presented here has represented examples of insights into the patterns across very large (PCA) areas by Vehicle Testing Station. If future releases of data are able to attribute cars (by registered keeper) to finer areas such as census LSOAs, different, and potentially more meaningful, patterns may become visible. Other aspirations for better data include improving the knowledge about vehicles less than three years old, acquiring more information on vehicle body types, the addition of manufacturers’ values on emissions and fuel consumption for individual vehicles, and information on whether the vehicle is in private household or business ownership.

Work is also underway to link this information on transport-related emissions and energy use to data on domestic energy usage from gas and electricity in order to estimate overall household carbon footprints from direct energy usage (Chatterton et al., 2015). Further analyses are also planned to examine these spatial differences in relation to a range of other factors such as per capita investment in public transport, accessibility indicators, and a range of other economic and health indicators. Work will also be undertaken in relation to the census travel to work origin–destination datasets in order to explore the component of distance driven that might be attributable to commuting journeys. Future work, could seek to also consider estimates of household footprints associated with non-direct energy usage, such as emissions relating to the consumption of water and other goods and services including public transport.
Data from vehicle inspection and maintenance tests are collected in a large number of different countries, meaning that these types of records form a significant untapped global data resource on patterns of car usage. In many cases, to fully exploit this data, countries may need to amend existing methods of collecting and recording data, and the information held on vehicles. The relevance of data based on location of vehicle ownership may also differ between countries. For example, in the UK (and other island nations) the total distance driven by domestically registered vehicles is more likely to dominate total distance driven within that country. Conversely, in non-island countries, a smaller proportion of km travelled on the national roads is likely to be undertaken by domestically registered vehicles. The approach proposed here, looking at the registered location of the vehicle, may provide one interesting perspective for considering national responsibility for emissions, even where vehicles are driven in neighbouring countries.

Acknowledgements

The work has been undertaken under EPSRC Grant EP/K000438/1. Grateful thanks to members of DfT, VOSA, DVLA and DECC, who have provided advice and support for this work, and Dr Rose Bailey (previously at UWE) for assistance with the emission factors. We would also like to thank the reviewers for their helpful contributions, and other members of the project team, Simon Ball (TRL), Dr Oliver Turnbull (Bristol University) and Dr Godwin Yeboah (Aberdeen University).

MOT Project website http://www.abdn.ac.uk/ctr/research/currentbr-research-projects/mot/.

References

DfT, 2014b. Licensed Cars by Make and Model, by Year of First Registration, Great Britain, Annually (as at 31st December): 1900 to 2012, Table VEH0124, Vehicle Licensing Statistics, Department for Transport, August 2014.

