Feeding Mechanics in Spinosaurid Theropods and Extant Crocodilians

Andrew R. Cuff*, Emily J. Rayfield

School of Earth Sciences, University of Bristol, Bristol, United Kingdom

Abstract

A number of extant and extinct archosaurs evolved an elongate, narrow rostrum. This longirostrine condition has been associated with a diet comprising a higher proportion of fish and smaller prey items compared to taxa with broader, more robust snouts. The evolution of longirostrine morphology and a bulbous anterior rosette of premaxillary teeth also occurs in the spinosaurid theropod dinosaurs, leading to suggestions that at least some members of this clade also had a diet comprising a notable proportion of fish or other small vertebrates. Here we compare the rostral biomechanics of the spinosaurs Baryonyx walkeri and Spinosaurus c.f. S. aegyptiacus to three extant crocodilians: two longirostrine taxa, the African slender-snouted crocodile Mecistops cataphractus and the Indian gharial Gavialis gangeticus; and the American alligator Alligator mississippiensis. Using computed tomography (CT) data, the second moments of area and moments of inertia at successive transverse slices along the rostrum were calculated for each of the species. Size-independent results tested the biomechanical benefits of material distribution within the rostra. The two spinosaur rostra were both digitally reconstructed from CT data and compared against all three crocodilians. Results show that African slender-snouted crocodile skulls are more resistant to bending than an equivalent sized gharial. The alligator has the highest resistances to bending and torsion of the crocodiles for its size and greater than that of the spinosaurs. The spinosaur rostra possess similar resistance to bending and torsion despite their different morphologies. When size is accounted for, B. walkeri performs mechanically differently from the gharial, contradicting previous studies whereas Spinosaurus does not. Biomechanical data support known feeding ecology for both African slender-snouted crocodile and alligator, and suggest that the spinosaurids were not obligate piscivores with diet being determined by individual animal size.

Editor: Andrew A. Farke, Raymond M. Alf Museum of Paleontology, United States of America

Received January 12, 2012; Accepted April 28, 2013; Published May 28, 2013

Copyright: © 2013 Cuff, Rayfield. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: These authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Andrew.Cuff@bristol.ac.uk

Introduction

Extant crocodilian rostral morphology has often been used as an indicator of feeding ecology due to a link between head-shape and prey type or feeding behaviour [1–7]. These principles have been extended to various fossils with similar rostral morphologies in an attempt to determine diets [8–11]. Large, flattened skull morphologies tend to utilise lunge/ambush methods to capture food, with ‘death roll’ inertial feeding being used to break down terrestrial prey whilst narrower rostra often using slashing behaviours to capture fish [1–11]. Testing these correlations biomechanically has become important in attempting to understand not only extant crocodilians, but also reptilian feeding ecology in general [12–17]. Two distinct snout morphologies occur within archosaurs. Oreinostral morphologies are high, tall domed snouts (as found in dinosaurs, pterosaurs, and many extinct archosaurs), and platyrostral morphologies are broad and flat snouts (common to most extant crocodilians and some extinct cruritarsans [18]). Most research shows that the oreinostral snouts are stronger (or equivalent to platyrostral snouts) under tensile, compressive and rotational forces [18]. Crocodilians appear to have evolved a snout that was less tolerant to feeding related loads but potentially more suited to specialised hunting methods such as ambush [9] and hydrodynamic efficiency [5,6].

Within platyrostral morphologies, there is a spectrum of morphological forms. At one extreme, the Gavialoidea (gharials and relatives) develop narrow and tubular longirostral snouts, whilst Alligatoroidea develop broad blunt snouts [19,20]. The longirostrine snout has long been associated with piscivory, with the gharial (Gavialis gangeticus) being the most highly derived and almost exclusively piscivorous [21], using rapid, swiping lateral strikes of the head to capture prey [22]. At the other extreme, the American alligator (Alligator mississippiensis) has the broadest snout of extant crocodilians, and mature individuals are able to feed on mammals (81.4% of the diet, with fish comprising 15.1%) and crush large turtles [23,24].

Mecistops cataphractus (also known as Crocodylus cataphractus, commonly known as the African slender-snouted crocodile) is perhaps the most basal of extant crocodylid species [25,26]. It lives in freshwater habitats in central and western Africa and possesses a longirostrine snout with terminal rosette, bearing some resemblance to the gharial. Unlike gharials, the nasals are not separated from the premaxillae by the maxillae (similar to that of other extant crocodilians and spinosaur rostra), and the rostrum tapers from the posterior skull to the terminal rosette (contrary to the gharial rostrum, which is a fairly uniform width along the entire length from the orbits to the terminal rosette). The diet of M. cataphractus varies widely throughout the crocodiles’ range. Reports vary from...
exclusively piscivorous in some geographical areas, to a highly
diverse diet including crabs, snakes, and even a small artiodactyl
taken by a large individual [27].

The spinosaurs are a group of large theropod dinosaurs [28]
that have been found in Africa, Asia, Europe and South America
[29–32]. These “crocodile-mimic” dinosaurs possess an elongate,
medially compressed ‘oreinirostral’ skull with a terminal
rosette of subconical teeth, and posteriorly displaced internal and
external nares [14]. The spinosaurid rostrum is distinct from that
of other theropod dinosaurs and has been compared to that of
modern crocodiles, especially that of the gharial. Such similarities
in skull form have led to suggestions of piscivorous feeding
behaviour in spinosaurs [14,33–35]. Other evidence for piscivory
includes a large claw on manual digit I in B. walkeri that may have
functioned as a gaff for catching fish [35] and gastric acid etched
Lepidotes fish scales in the rib cage of B. walkeri [32,36]. Evidence
suggests that spinosaurs were not exclusively piscivorous [26].
Juvenile Irritator bones were also found in the stomach region of
B. walkeri [36,37], and a South American spinosaur (likely Irritator)
was not found embedded within a pterosaur cervical vertebra [38].

Using a biomechanical approach, Rayfield et al. [33] tested the
cranial biomechanics of B. walkeri, gharial and alligator specimens
using finite element (FE) models. A hypothetical theropod (based

Figure 1. Species tested for second moments of area and
moment of inertia. (A) G. gangeticus (gharial) – NHMUK 2005.1605
(specimen used here), (B) M. cataphractus – NHMUK 1924.5.10.1
(specimen used here), (C) A. mississippiensis (American alligator) for
reference – Chicago Zoological Society 31321. Scale bars = 5 cm.
doi:10.1371/journal.pone.0065295.g001

methods

imaging

Computed tomography (CT) data was obtained for each of the
five species. The American alligator data (from a juvenile, Texas
Memorial Museum, University of Texas at Austin, Austin, Texas,
USA [TMM] TMM m-983, skull length 21.7 cm) were obtained
from ‘Digital Atlas of the Alligator’ (available in [40]), scanned at a
slice thickness of 480µm. The gharial skull (The Natural History
Museum, London, United Kingdom (NHMUK) NHMUK
2005.1605 – a very large adult with a skull total length of
86 cm) was scanned at the Royal Veterinary College, Potters Bar,
UK 120 kV, 200 mA, Field of View (FOV) = 320×320 pixels,
5 mm slice thickness, and M. cataphractus (NHMUK 1924.5.10.1 –
an adult skull of 62 cm) 120k V, 150 mA, FOV = 280×280 pix-
els, 5 mm slice thickness. B. walkeri (NHMUK PV R9951 –
probably subadult) co-joined premaxillae and left maxilla were
scanned at University of Ohio O’Bleness Memorial Hospital;
FOV = 151×151 mm (premaxilla); 188×188 mm (maxilla) at a
slice thickness of 1.25 mm. The Spinosaurus rostra (NHMUK
16655) was scanned at Royal Veterinary College, Potters Bar,
UK, 120 kV, 150 mA, FOV = 200×200 mm with a slice thickness
of 5 mm.

Digital preparation of spinosaurs

The CT scans of B. walkeri and Spinosaurus were visualised using
AVIZO 6.1.1 (VSG SAS, Bordeaux, France). Using the labelling
function, the matrix was virtually removed from the scans, leaving
only bone. The B. walkeri rostrum is missing the anterior portion of
the right maxilla (Figure 2, Video S1), so this was reproduced by
creating a mirror clone of the equivalent portion of left maxilla
(Figure 2, Video S2). The Spinosaurus rostrum is heavily damaged,
and the premaxilla is especially fragmented (Figure 3, Video S3).
To compensate for this damage, the skull was digitally recon-
structed (Figure 3, Video S4) as accurately as possible, using the
existing material and images from other known specimens (e.g.
Museo Civico di Storia Naturale di Milano, Milan, Italy (MSNM)
MSNM V4047, [28]).

Application of Beam Theory

Beam theory is an engineering method that allows for the study
of simple cantilever beams, those fixed at one end. A number of
studies have approximated the rostra of tetrapods as cantilever
beam in order to calculate rostral resistance to dorsoventral and mediolateral bending, and torsion about the longitudinal axis [3,41–44]. In these instances it is assumed that rostra meet the criteria for deflection of a cantilever beam under load, namely that load is applied to the free end of the beam, the structure is longer than it is thick or wide, and material properties are constant (isotropic and heterogeneous) along the length of the beam. It is assumed here (as has been the case in previous studies) that these criteria are met; however, the implications of such assumptions are considered further in the discussion. Here we calculate the second moment of area and the polar moment of inertia of successive slices through the rostra of our selected taxa, from the tip of the snout to just anterior to the orbital margin. Using this method, it is possible to quantify how the distribution of bony material within a rostral cross-section affects its resistance to bending and torsion. For example, if two cylinders with the same amount of material are compared, the one with the greatest overall radius will withstand larger forces before buckling (Figure 4).

Second moments of area are calculated using the equation:

$$I = \sum d^2 \Delta A$$

where I = second moment of area, d = distance from neutral or centroidal axis (where there is no compressive or tensile load), and ΔA = strip of material within the structure. If I is multiplied by

Figure 2. Lateral and ventral views of *Baryonyx walkeri* (NHMUK VP R9951) through the stages of digital preparation. (A) The original specimen in left lateral view, (B) the original specimen in ventral view, (C) the digitally prepared original in left lateral view, (D) the digitally prepared original in ventral view, (E) final specimen with teeth removed and alveoli levelled, (F) final specimen with teeth removed and alveoli levelled showing cloned right maxilla. See Video S1 and S2 for more detailed visualisations of the preparation and reconstruction. Scale bar = 5 cm.

doi:10.1371/journal.pone.0065295.g002

Figure 3. The digital preparation of *Spinosaurus* indet. (NHMUK 16665) in lateral and ventral views. The original specimen – lateral view (A), and ventral view (B). The digitally prepared specimen with no matrix – lateral view (C), and ventral view (D). The rostral reconstruction is based on other specimens of *Spinosaurus* (e.g. [28]) and the *B. walkeri* rostra - lateral view (E) and ventral view (F). Video S3 and S4 for more detailed visualisations of preparation and reconstruction. Scale bar = 5 cm.

doi:10.1371/journal.pone.0065295.g003
the Young’s modulus of the material the result is the flexural stiffness of the structure. The sum of the second moments of area in the dorsoventral (Ix) and mediolateral (Iy) directions give the polar moment of inertia (J). When J is multiplied by the shear modulus, the result is the torsional stiffness of the structure, also known as the resistance to torsion. Where structures share the same material properties, the relative values of I and J indicate relative flexural and torsional stiffness.

(1) Testing comparative biomechanical properties of the crocodilian rostrum. For each of the species (A. mississippiensis, G. gangeticus, M. cataphractus), we analysed Ix, Iy and J for 25 equally spaced CT slices from the anterior portion of the premaxillae to the slice immediately anterior to the orbits (Figure 5). CT images were first converted to black and white images. Teeth influence second moment calculations by changing the apparent area of cortical bone in any cross section, which can lead to an increase in I and J values in any given CT slice. Thus, to standardize the effects of teeth and their alveoli, all teeth were removed and alveoli filled to the level of the alveolar socket to create a closed section [45].

(2) Comparing spinosaur and crocodilian rostra. Both spinosaurs have only a small portion of the rostrum intact in the specimens. Only the premaxillae and the anterior portion of the maxilla encircling the anterior border of the external nares are preserved and the nasals are missing in both taxa. We estimated the total length of the skull (rostral tip of premaxilla to posterior edge of quadrate) for both specimens, we used data manipulation tools in MomentMacroJ [46]. MomentMacroJ v1.3, a free macro available from http://www.hopkinsmedicine.org/FAE/MMacro.htm [47], was used to calculate Ix and Iy. MomentMacro calculates second moment of area for all pixels within a user-defined greyscale threshold (rostral bone in this case). Ix and Iy were summed to calculate J.

To then correct for size discrepancy between our chosen specimens, we used data manipulation tools in AVizo to scale all CT data to the length of the skull of G. gangeticus. The aspect ratio of each slice was maintained. This resulted in a modified scan dataset representing the three crocodilian and two spinosaur skulls scaled to equal length dimensions (rostral tip of premaxilla to posterior edge of quadrate, as before).

Data acquisition and manipulation

The prepared image files were opened in ImageJ, free and open source software downloadable from http://rsb.info.nih.gov/ij/ [48]. MomentMacroJ v1.3, a free macro available from http://www.hopkinsmedicine.org/FAE/MMacro.htm [47], was used to calculate Ix and Iy. MomentMacro calculates second moment of area for all pixels within a user-defined greyscale threshold (rostral bone in this case). Ix and Iy were summed to calculate J.

Tests

To test if any of the crocodilian or dinosaurian species are similar in their resistances to bending or torsion, paired comparisons of Ix, Iy and J were carried out between the crocodilian rostra and the dinosaur rostra. For all crocodilians, no combinations of pairings both passed normality tests, so the data were tested with a non-parametric Wilcoxon paired test (in STATISTICA v.6, StatSoft Inc. 2003), to test for similarities in resistances to bending and torsion along the rostra lengths at equivalent locations. Only the tests for both absolute and size-corrected data with the B. walkeri Iy were not normal and pairings containing these data were tested as before with Wilcoxon paired tests. The other pairings were tested using a two-tailed t test. Due to the number of tests carried out, the p values for significance were adjusted for each test using a Sidak correction [48]. This is the equation from which the Bonferroni correction is derived and is more accurate. The new probability for each test is calculated by:

\[\beta = 1 - (1 - \alpha)^{1/n} \]

where \(\alpha \) is the original probability (in this case 0.05) and n is the number of tests carried out.

Results

Crocodilians

Resistance to dorsoventral bending (Ix) for raw (Table S1) and size-corrected (Table S2) data shows the same trends for all species; all taxa show a minor peak at slice 4 (16% of the rostra) and then a slight increase in Ix values towards the posterior of the rostrum (Figures 6a and 6b). The raw values for the gharial are generally highest, with the alligator approximately 100 times larger (Figure 6a), reflecting the actual size of the specimens. When size-corrected, the order is flipped with the alligator having the highest Ix values by a factor of 10, whilst the gharial has the lowest values (Figure 6b).

Values of Iy, mediolateral resistance, are greater than those of Ix, dorsoventral bending (Figures 6c and 6d). All species exhibit steady rises to the posterior of the rostra. Unlike the
resistances to dorsoventral bending, the mediolateral results between the gharial and *M. cataphractus* are much similar, with *M. cataphractus* having several locations where the resistances to bending are greater than that of the gharial. When size-corrected, the alligator again has the largest I_y values by a factor of 10 to 100 (Figure 6d). The gharial has greater I_x values than *M. cataphractus* for the anterior 24% of the skull, but further posterior *M. cataphractus* exhibits greater I_y values.

As the J values (resistance to torsion) are the sum of I_x and I_y, trends in the magnitude of J tend to follow those of the largest resistances, in this case the I_y values (Figure 6e). This is also true for the size-corrected values (Figure 6f). Hence when size-corrected, material distribution in the alligator reflects the greatest resistance to torsion.

After carrying out pair tests, the raw data for the gharial I_y vs. *M. cataphractus* I_y are not significantly different, as are gharial J vs. *M. cataphractus* J (although only after the Šidák correction for multiple tests). All other raw data pairings for I_x, I_y and J are not significantly different showing no statistical differences between the taxa (Table 1). When corrected for size, all data pairings are significantly different (Table 1).

Spinosaur

For the raw I_x data, both the spinosaurs have similar values and have resistances to dorsoventral bending that are higher than all of the crocodilian species (Figure 7a, Table S3). When size-corrected, the *B. walkeri* resistances to dorsoventral bending remain higher than all other species, but the *Spinosaur* falls between the alligator and the gharial (Figure 7b, Table S4).

When raw data are considered, *B. walkeri* still has greater I_y (mediolateral bending resistance) values than all other taxa, yet *Spinosaur* has similar and in some cases lower resistance than the
large gharial skull used in this study (Figure 7c). For both spinosaurs, values of Iy are closer in value to those of the crocodile species than are values for Ix (Figure 7c). The size-corrected values show that an alligator of the same skull length as a spinosaur has a greater Iy values and therefore a greater resistance to mediolateral bending. *Spinosaurus* values are lower than those for all crocodilians, whilst the *B. walkeri* resistance to bending falls between the alligator and the gharial (Figure 7d).

The raw data for resistance to torsion show higher values for the spinosaurs compared to the crocodilian species, except at 11% along the jaw for the *Spinosaurs* when compared to the gharial.

The higher values of J are due to the much higher resistance to dorsoventral bending in spinosaurs compared to crocodilians (Figure 7e). When corrected for size, the *Spinosaurs* rostra performs equal to, or slightly worse than both the gharial and *M. cataphractus*. *B. walkeri*, however, is intermediate between the alligator and the other crocodilians (Figure 7f).

After Sidak correction only the *Spinosaurs* Ix vs gharial Ix, alligator Ix and *M. cataphractus* Ix are significantly different. For size corrected data all pairing p-values become non-significant after correcting for multiple tests (Table 2).
Discussion

Results for the raw uncorrected data tend to reflect the differences in skull sizes. The alligator skull was the smallest at 21.7 cm length, *M. cataphractus* measured 62 cm and the gharial was the longest skull at 86 cm. The size order is reflected in the relative resistance to bending and torsion in the absolute raw data. Even the platyrostral alligator skull has lower Iy values than the tubular gharial and *M. cataphractus*, due to its small size. Thus, inferences for the functional morphology of crocodilians and spinosaurs are best interpreted from the size-corrected data. The gharial specimen represents an extremely large mature individual, and the *M. cataphractus* skull is interpreted as belonging to an adult based on its large size. In a comparison of ontogenetic trajectories in four crocodilian taxa, the gharial and *M. cataphractus* had the lowest covariation between rostrum shape and size (when considered alongside *Tomistoma* and *Crocodylus acutus*) [49]. Hence the size-corrected *M. cataphractus* may be a reasonable interpretation of the outline shape of a 80-plus centimetre long specimen. *A. mississippiensis*, however, shows snout elongation and narrowing through ontogeny [50] yet scaling of bite force to head and jaw length reveals positive allometry [51]. These data suggest that our scaling of a sub-adult alligator to very large adult size probably does not fully reflect the morphological changes that occur during ontogeny. One further issue is that the length-scaling method, although retaining the aspect ratio of the transverse slices, will not account for increases in cortical bone thickness and increased ornamentation that may occur in older, larger specimens. These issues should be borne in mind. However, our analysis will still capture the main differences in morphology between the crocodilian taxa.

The wider, more robust alligator skull possesses higher Iy and J values that increase to the broadest part of the skull, whilst the gharial results reflect its regular, tubular rostrum. *M. cataphractus* results show fairly regular values (close to that of the gharial) for the anterior 40% of the snout. By standardizing the datasets, it can be inferred that the alligator has the most biomechanically efficient rostra for resisting bending and torsion, the gharial the least, and *M. cataphractus* intermediate between the two extremes, but closer to the gharial than the alligator.

Busbey [9] recognised three behaviours that have the potential to exert the greatest stresses on the rostrum of platyrostral crocodilians. These were (1) biting down on prey in the mouth; (2) rolling; (3) pitching (up/down) or yawing (side-to-side) of the head. Biting and pitching generate dorsoventral bending and stresses along the dorsal and ventral aspects of the rostrum. Rolling generates axial torsion along the rostrum, whilst yawing results in mediolateral bending. As well as being an adaptation for feeding behaviour, rostral shape may be influenced by mechanical constraints to minimize feeding-induced stress, developmental and phylogenetic constraints, and hydrodynamic demands [2,5,6,9,13]. Our study shows that for similar sized specimens, alligators have a greater second moment of area and moment of inertia than gharials and *M. cataphractus* along the length of their skull. Our results are consistent with those of Busbey [9] who found the largest second moment of area in *A. mississippiensis* compared to other crocodilians of similar skull length, including *M. cataphractus*. The higher resistance to torsional loading in alligator may be related to their feeding strategy. The alligator is well known for its twist feeding strategy, the so called “death roll”, of which even young alligators are capable [52,53]. Such spinning behaviour reduces large or tough prey into manageable pieces, and imparts a shear force to enable dismemberment or breakdown of the prey item. In turn, the rostrum is subject to large torsional loading and our results are consistent with resistance to such loads.

The alligator in our study has a skull length of 21.7 cm, so the total length of the animal was approximately 140 cm—160 cm [54]. For an individual of this size, the primary food source varies depending on location, from fish to birds and small mammals, although it is possible that medium-sized mammals and turtles may be taken [22,23]. Hence, twist feeding is a possibility for an animal of this size. A broader comparison using finite element modelling of the mechanical performance of *A. mississippiensis* and other short, broad crocodilian taxa suggests that the platyrostral morphology of alligator is far from optimal at torsion resistance [5] but performs reasonably well in comparison to all extant crocodilian species [6]. Our results support the suggestion that alligator cranial morphology may represent a compromise between feeding behaviour and hydrodynamic efficiency [5,6].

The gharial uses a slashing motion through the water to stun and capture fish [21]. Its longirostrine morphology leads to greater angular acceleration and therefore greater speed at the end of the rostrum [5,22], and a narrow tubular morphology reduces surface drag [6]. Gharials are morphologically distinct [6,49] and have a diet consisting almost entirely of fish [22]. Prey capture may be expected to impart mediolateral and dorsoventral loads on the rostrum during prey capture and inertial feeding. This is reflected in the tubular rostral morphology. The large size of our gharial specimen leads to large second moment and moment of inertia values. However, when size-corrected, the gharial is the poorest performing of the three crocodilian taxa.

In comparison *M. cataphractus* performs slightly better than the gharial when size-corrected. Evidence of prey choice and feeding behaviour in this latter taxon is sparse. All six of the individuals from Lake Divangui (Gabon) were between 200 cm and 235 cm in total length (smaller than the individual used in this test) and contained exclusively fish in their stomachs [27]. However, a larger individual from another region of Gabon had the remains of a small artiodactyl in its stomach [27]. In the absence of known methods of prey capture, it appears that *M. cataphractus* prey selection may, as in alligators, be determined by the size of the individual, which in turn affects the size of the rostrum and overall

Table 1. Wilcoxon tests for the upper jaw pairings of the crocodilian species for both size-corrected data and residuals.

<table>
<thead>
<tr>
<th>Taxon 1</th>
<th>Taxon 2</th>
<th>Raw</th>
<th>Size-corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>z</td>
<td>p value</td>
</tr>
<tr>
<td>Alligator</td>
<td>Gharial</td>
<td>4.37</td>
<td><0.001</td>
</tr>
<tr>
<td>Alligator</td>
<td>M. cataphractus</td>
<td>4.37</td>
<td><0.001</td>
</tr>
<tr>
<td>Gharial</td>
<td>M. cataphractus</td>
<td>4.35</td>
<td><0.001</td>
</tr>
<tr>
<td>J</td>
<td>Alligator</td>
<td>Gharial</td>
<td>4.37</td>
</tr>
<tr>
<td>J</td>
<td>M. cataphractus</td>
<td>4.37</td>
<td><0.001</td>
</tr>
<tr>
<td>J</td>
<td>Gharial</td>
<td>1.76</td>
<td><0.001</td>
</tr>
<tr>
<td>J</td>
<td>M. cataphractus</td>
<td>2.70</td>
<td>0.00685*</td>
</tr>
</tbody>
</table>

Results that shift from significant to non significant after Šidák test are marked with an asterisk (*).
doi:10.1371/journal.pone.0065295.t001
absolute resistance to bending and torsion. The slight increase in bending and torsion resistance in the rostrum of *M. cataphractus* may reflect this fact.

Despite the differences in the size and morphology of the tested regions between the *Spinosaurus* (estimate skull length 117.6 cm; longer, more gracile and a small terminal rosette relative to length) and *B. walkeri* rostra (97.1 cm estimated length; therefore shorter, relatively more robust with a larger terminal rosette), both spinosaur rostra perform in a similar manner, and due to their large size absolutely outperform all crocodilian taxa. This points to spinosaurid feeding methods potentially being very similar, at least between these two species. When size is accounted for, the larger spinosaur, *Spinosaurus*, performs worse than *B. walkeri*. Relative to the crocodilians, the spinosaurs generally both have higher absolute resistances to bending and torsion. In terms of absolute resistance to torsion and mediolateral bending, the large gharial is the closest functional analogue of the living crocodilians studied here. However, when the effects of size are removed, the pattern changes somewhat. The large dorsoventral second moment values for *B. walkeri* are consistent with previous studies documenting greater dorsoventral bending resistance in orienirostral taxa such as the extinct crocodylomorph *Sebecus ichaeorhinus*, and the extant

Figure 7. Log of absolute and log of size-corrected second moments of area and moments of inertia for crocodilians and spinosaurid rostra. (A) log absolute I_x, (B) log size-corrected I_x (C) log absolute I_y, (D) log size-corrected I_y, (E) log absolute J, (F) log size-corrected J. Blue = alligator, red = gharial, black = *M. cataphractus*, green = *Spinosaurus*, orange = *B. walkeri*. doi:10.1371/journal.pone.0065295.g007
Conclusion

It appears that the spinosaur theropod dinosaurs studied here achieved superiority in resistance to bending and torsion over representative crocodilians by nature of their large size. When size is corrected for, *Spinosaurus* performs relatively poorly compared to the other taxa. In comparison, *B. walkeri* performs surprisingly well, its orenirostral morphology conferring greater resistance to dorsoventral bending and torsion than *Spinosaurus* and the gharial, to which *B. walkeri* has been compared in the past. Whether influenced by hydrodynamic or feeding related constraints, a combination of both, or other factors, the size-corrected alligator rostrum is well-equipped to resist mediolateral and torsional loads, compared to our other study taxa. Our results only consider the portion of the skull anterior to the external naris, and a more complete understanding of rostral function can be obtained.

In conclusion, the unusual rostral morphology of spinosaurs conferred some advantage in dorsoventral bending resistance, particularly in *B. walkeri*, yet both species studied here were poorly equipped to resist mediolateral and torsional loads. *Spinosaurus* represents one of the biggest, if not the biggest theropod dinosaur [58], yet scaled to the size of an alligator, gharial or slender-snouted crocodilian, it performs poorly, especially in resistance to torsion. For a taxon such as *Spinosaurus*, the ability to feed on larger, struggling prey was not conferred by the possession of a snout that was relatively well equipped to deal with associated feeding loads, but may have been achieved by simple size-related advantages.

Supporting Information

Table S1 Resistances to bending and torsion in absolute values for crocodilian upper jaws. All values are metres $\times 10^{-17}$.

(DOC)
Table S2 Resistances to bending and torsion in size-corrected, crocodilian upper jaws. All values are metres $\times 10^{-6}$. (DOC)

Table S3 Absolute values for resistances to bending and torsion in dinosaurian and crocodilian rostra. All values are metres $\times 10^{-6}$. (DOC)

Table S4 Resistances to bending and torsion in size-corrected dinosaurian and crocodilian rostra. All values are metres $\times 10^{-6}$. (DOC)

Video S1 The original Baryonyx walkeri specimen digitally prepared from the CT data. The broken rostro-medial processes of the maxillae can be seen as a bone shard extending anteriorly from the premaxilla-maxilla suture. (WMV)

Video S2 The final Baryonyx walkeri specimen. The right maxilla is cloned and mirrored to the left side, teeth removed and alveoli levelled. The expected positions of the rostromedial processes can be seen. The broken portion of the premaxilla above the external nares was not corrected as it did not affect the area being studied. (WMV)

Video S3 The digital prepared specimen of Spinosaurus indet. The highly fragmented and distorted nature of the specimen can be seen. (WMV)

Video S4 The rostral reconstruction of Spinosaurus indet. This was based on the existing material, other specimens of Spinosaurus (e.g. [29]) and the B. walkeri rostra. (WMV)

Acknowledgments
Special thanks go to Chris Lamb at the Royal Veterinary College for scanning several of the crocodilian specimens and the Spinosaurus snout, Lawrence Witmer for scanning B. walkeri, and to Angela Milner who provided the scan datasets for use in the project. Thanks go to Phil Crabb of the Natural History Museum Photographic Unit for photographs of the spinosaurus specimens. I also thank Phil Anderson and two anonymous reviewers for comments and feedback on earlier drafts.

Author Contributions
Conceived and designed the experiments: EJR. Performed the experiments: ARC. Analyzed the data: ARC. Contributed reagents/materials/analysis tools: ARC EJR. Wrote the paper: ARC EJR.

References