
Early version, also known as pre-print

Link to published version (if available):
10.5220/0004248000770088

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
EXPLORING ASSIGNMENT-ADAPTIVE (ASAD) TRADING AGENTS IN FINANCIAL MARKET EXPERIMENTS

Steve Stotter, John Cartlidge and Dave Cliff
Department of Computer Science, University of Bristol
Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, UK
steve.stotter.2008@my.bristol.ac.uk, john@john-cartlidge.co.uk, dc@cs.bris.ac.uk

Keywords: Software agents, auctions, financial markets, automated trading, computational finance, ExPo.

Abstract: Automated trading systems in the global financial markets are increasingly being deployed to do jobs previously done by skilled human traders: very often a human trader in the markets simply cannot tell whether the counter-party to a trade is another human, or a machine. Clearly, automated trading systems can easily be considered as “intelligent” software agents. In this paper we report on experiments with software trader-agents running the well-known “AA” and “ZIP” strategies, often used as reference benchmarks in previously published studies; here we suggest disambiguated standard implementations of these algorithms. Then, using Exchange Portal (ExPo), an open-source financial exchange simulation platform designed for real-time behavioural economic experiments involving human traders and/or trader-agents, we explore the impact of introducing a new method for assignment adaptation in ZIP. Results show that markets containing only assignment-adaptive (ASAD) agents equilibrate more quickly after market shocks than markets containing only “standard” ZIP agents. However, perhaps counter-intuitively, in mixed heterogeneous populations of ASAD agents and ZIP agents, ZIP agents outperform ASAD agents. Evidence suggests that the behaviour of ASAD agents act as a new signal in the market that ZIP agents then use to beneficially alter their own behaviour, to the detriment of the ASAD agents themselves.

1 INTRODUCTION

In 2001, a team of researchers at IBM reported on a series of experiments to test the efficiency of two adaptive trading-agent algorithms, MGD (Gjerstad & Dickhaut, 1998) and ZIP (Cliff, 1997), when competing directly against human traders (Das, Hanson, Kephart, & Tesauro, 2001). Previous studies using homogeneous trader populations of all-humans or all-agents had indicated that, in both cases, trading interactions within the populations rapidly and robustly converged toward theoretically optimal, and stable, dynamic equilibria. IBM’s results demonstrated for the first time that, in heterogeneous populations mixing human traders with trader-agents, both MGD and ZIP consistently out-performed the human traders, achieving greater efficiency by making more profitable transactions. The IBM authors concluded with a prescient statement, predicting that “in many real marketplaces, agents of sufficient quality will be developed such that most agents beat most humans”. Hindsight shows that they were correct: in many of the world’s major financial markets, transactions that used to take place between human traders are now being fulfilled electronically, at super-human speeds, by automated trading (AT) and high frequency trading (HFT) systems. AT and HFT systems are typically highly autonomous and dynamically adapt to changes in the market’s prevailing conditions: for any reasonable definition of software agent, it is clear that AT/HFT systems can be considered as software agents, even though practitioners in the finance industry typically do not make much use of the phrase.

However, as the number of AT and HFT systems has increased, and as the billions of dollars worth of daily transaction volumes that they control has steadily risen, a worrying gap has emerged between theory and practice. Commercial deployments of AT/HFT continue to proliferate (some major financial markets are currently reporting that 50% or more of transactions are now executed by automated agents), yet theoretical understanding of the impact of trading agent technologies on the system-level dynamics of financial markets is dangerously deficient. To address this problem, in 2010 the UK Government’s Office for Science (UKGoS) launched a two year “Foresight”
One report commissioned by that project (and published by UKGoS as De Luca, Szostek, Cartlidge, & Cliff, 2011) attempted a replication of IBM’s study, but with two extensions: firstly, trading agents used the Adaptive Aggressive (AA) strategy, developed by Vytelingum (2006), which had previously been shown by De Luca and Cliff (2011b) to outperform both MGD and ZIP; secondly, to increase the experimental “realism”, order assignments to trade were continuously replenished, thus producing a continuous “drip-feed” market that more closely approximates the real world, rather than a discrete, periodic market as had been used in almost all prior experimental studies (De Luca et al., 2011). Results showed that, under these experimental conditions, agents were less efficient than human traders, with slower markets hindering agent performance but enhancing human performance.

In this paper, we perform two sets of experiments. Firstly, we replicate the continuous replenishment experiments of De Luca et al. (2011) using ExPo: The Exchange Portal (ExPo, 2012), an open-source platform designed to facilitate financial trading experiments between humans, agents, or both. However, unlike De Luca et al. (2011), we study agent-only markets. Perhaps surprisingly, we believe that this is the first time agent-only markets have been studied using continuous replenishment of order assignments. For our trading agents, we use two well-known “reference” algorithms from the trading-agent literature, AA (Vytelingum, 2006) and ZIP (Cliff, 1997).

In our second set of experiments, we introduce “market shocks” to the system and explore a novel extension to the reference algorithms, designed to enable agents to take advantage of market shocks (assignment-adaptive, or ASAD, agents). We demonstrate that if all agents in the market are ASAD, then the market is more efficient in the presence of market shocks than if all agents are non-ASAD. However, somewhat counter-intuitively, when the market is a heterogenous mixture of ASAD and non-ASAD, non-ASAD agents outperform ASAD agents by adapting to the new price signals generated by ASAD agents.

The paper is organised as follows. In Section 2 we review the literature on financial trading agent experiments and the agent algorithms. In Section 3 we introduce ExPo, our experimental platform, and describe our experimental design. In Section 4 we present the results from our two sets of experiments. Conclusions are drawn in Section 5.

1The final report from that investigation was published in Oct. 2012, and is available at: http://bit.ly/UVGE4Q.

2 BACKGROUND

2.1 The Continuous Double Auction

An auction is a mechanism whereby sellers and buyers come together and agree on a transaction price. Several different auction mechanisms exist, each governed by a different set of rules. In this paper, we focus on the Continuous Double Auction (CDA), the most widely used auction mechanism and the one used to control all the world’s major financial exchanges. The CDA enables buyers and sellers to freely and independently exchange quotes at any time. Transactions occur when a seller accepts a buyer’s “bid”, or when a buyer accepts a seller’s “ask”. Although it is possible for any seller to accept any buyer’s bid, and vice-versa, it is in both of their interests to get the best deal possible at any point in time. Thus, transactions execute with a counter party that offers the most competitive quote.

Vernon Smith (1962) explored the dynamics of CDA markets in a series of Nobel Prize winning experiments using small groups of human participants. Splitting participants evenly into a group of buyers and a group of sellers, Smith handed out a single card (an assignment) to each buyer and seller with a single limit price written on each, known only to that individual. The limit price on the card for buyers (sellers) represented the maximum (minimum) price they were willing to pay (accept) for a fictitious commodity, with strict instructions that they could not bid (ask) a price higher (lower) than that shown on their card. They were encouraged to bid lower (ask higher) than this price, regarding any difference between the price on the card and the price achieved in the market as profit.

Experiments were split into a number of “trading days”, each typically lasting a few minutes. At any point during the trading day, a buyer or seller could raise their hand and announce a quote. When a seller and a buyer agreed on a quote, a transaction was made. At the end of each trading day, all stock (sellers assignment cards) and money (buyer assignment cards) was recalled, and then reallocated anew at the start of each new trading day. By controlling the limit prices allocated to participants, Smith was able to control the market’s supply and demand schedules. Smith found that, typically after a couple of trading days, human traders achieved very close to 100% allocative efficiency; a measure of the percentage of profit in relation to the maximum theoretical profit available (see Section 2.2.2). This was a significant result: few people had believed that a very small number of inexperienced, self-interested participants...
could effectively self-equilibrate.

2.2 Measuring Market Performance

An “ideal” market can be perfectly described by the aggregate quantity supplied by sellers and the aggregate quantity demanded by buyers at every price-point (i.e., the market’s supply and demand schedules). As prices increase, in general there is a tendency for supply to increase, with increased potential revenues from sales encouraging more sellers to enter the market; while, at the same time, there is a tendency for demand to decrease as buyers look to spend their money elsewhere. At some price-point, the quantity demanded will equal the quantity supplied. This is the theoretical market equilibrium. An aggregate quantity supplied by sellers and the aggregate demand schedules determine the theoretical market equilibrium price, \(P_0 \). As prices increase, in general there is a tendency for supply to increase, with increased potential revenues from sales encouraging more sellers to enter the market; while, at the same time, there is a tendency for demand to decrease as buyers look to spend their money elsewhere. At some price-point, the quantity demanded will equal the quantity supplied. This is the theoretical market equilibrium. An aggregate quantity supplied by sellers and the aggregate demand schedules determine the theoretical market equilibrium price, \(P_0 \).

\[E = \frac{1}{n} \sum_{i=1}^{n} \pi_i \]

(2)

As profit values cannot go below zero (traders in these experiments are not allowed to enter into loss-making deals), a value of 1.0 indicates that the group has earned the maximum theoretical profit available, \(\pi^*_i \), on all trades. A value below 1.0 indicates that some opportunities have been missed. Finally, a value above 1.0 means that additional profit has been made by taking advantage of a trading counterparty’s willingness to trade away from \(P_0 \). So, for example, a group of sellers might record an allocative efficiency of 1.2 if their counterparties (a group of buyers) consistently enter into transactions at prices greater than \(P_0 \); in such a situation, the buyers’ allocative efficiency would not be more than 0.8.

2.2.3 Profit Dispersion

Profit dispersion is a measure of the extent to which the profit/utility generated by a group of traders in the market differs from the profit that would be expected of them if all transactions took place at the equilibrium price, \(P_0 \). For a group of \(n \) traders, profit dispersion is calculated as the root mean square difference between the profit achieved, \(\pi_i \), by each trader, \(i \), and the maximum theoretical profit available, \(\pi^*_i \):

\[\pi_{disp} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\pi_i - \pi^*_i)^2} \]

(3)

Low values of \(\pi_{disp} \) indicate that traders are extracting actual profits close to those available if all trades take place at the equilibrium price \(P_0 \); while higher values of \(\pi_{disp} \) indicate that traders’ profits differ from those expected at equilibrium. The attraction of this statistic is that it is not masked by zero-sum effects between buyers and sellers (Gode & Sunder, 1993).

2.3 Algorithmic Traders

2.3.1 Zero-Intelligence Plus (ZIP)

Zero-Intelligence-Plus (ZIP) traders were developed to overcome the provable shortcomings of Gode and Sunder’s (1993) ZI-C agents (Cliff, 1997). ZIP agents are profit-driven traders that adapt using a simple learning mechanism: adjust profit margins based on the price of other bids and offers in the market, and decide whether to make a transaction or not. When a decision to raise or lower a ZIP trader’s profit margin, \(\mu_i(t) \), is taken, ZIP modifies the value using market data and an adaptation rule based on the Widrow and Hoff (1960) “delta” rule:
\[\Delta_i(t) = \beta_i(t) \times (\tau_i(t) - p_i(t)) \]
(4)

where \(\beta_i \) is the learning rate, \(p_i \) is the quote price and \(\tau_i \) is the target price (based on the price of the last quote in the market). At time \(t \), an update to the profit margin, \(\mu_i \), takes the form:

\[\mu_i(t + 1) = \frac{p_i(t) + \Gamma_i(t + 1)}{l_i - 1} \]
(5)

\[\Gamma_i(t + 1) = \gamma_i(t) + (1 - \gamma_i)\Delta_i(t) \]
(6)

where \(\Gamma_i(t + 1) \) is the amount of change on the transition from \(t \) to \(t + 1 \), and \(\gamma_i \) is the momentum coefficient. Given the limit price, \(l_i \), of the current assignment, ZIP then updates its profit margin, \(\mu_i(t) \), based on these trading rules, where the final quote price, \(p_i \), is given as:

\[p_i = \frac{l_i(1 + \mu_i(t))}{p_i} \]
(7)

The ZIP strategy has become a popular benchmark for CDA experiments. In their IBM study, Das et al. (2001) concluded that ZIP was a dominant strategy, beating humans in experimental trials and matching the performance of their own modified GD (Gjerstad & Dickhaut, 1998) algorithmic trader. More recently, ZIP has again been shown to outperform humans (De Luca & Cliff, 2011a, 2011b). However, it is no longer considered the dominant agent strategy (having been shown to be beaten by AA; see Section 2.3.2). ZIP has also been tested against humans in a continuous “drip-feed” market, where ZIP was shown to be less efficient than humans (a result that surprised the authors: De Luca et al., 2011; Cartlidge, De Luca, Szostek, & Cliff, 2012). However, we believe that De Luca’s implementation of ZIP (OpEx, 2012) may have played some part in this result.

The original implementation of ZIP (Cliff, 1997) was designed to handle only one limit price, had no explicit notion of time and no persistent orders. So, when Das et al. (2001) used ZIP to conduct their human vs. agent experiments, they adapted ZIP for their platform. ZIP was altered to handle persistent orders, and implemented an out-bid (for buyers) or under-cut (for sellers) decision when an order reached the platform. ZIP has also been tested against humans in experimental trials and matching the performance of their own modified GD (Gjerstad & Dickhaut, 1998) algorithmic trader. More recently, ZIP has again been shown to outperform humans (De Luca & Cliff, 2011a, 2011b). However, it is no longer considered the dominant agent strategy (having been shown to be beaten by AA). ZIP has also been tested against humans in a continuous “drip-feed” market, where ZIP was shown to be less efficient than humans (a result that surprised the authors: De Luca et al., 2011; Cartlidge, De Luca, Szostek, & Cliff, 2012). However, we believe that De Luca’s implementation of ZIP (OpEx, 2012) may have played some part in this result.

The original implementation of ZIP (Cliff, 1997) was designed to handle only one limit price, had no explicit notion of time and no persistent orders. So, when Das et al. (2001) used ZIP to conduct their human vs. agent experiments, they adapted ZIP for their platform. ZIP was altered to handle persistent orders, and implemented an out-bid (for buyers) or under-cut (for sellers) decision when an order reached the platform. ZIP has also been tested against humans in experimental trials and matching the performance of their own modified GD (Gjerstad & Dickhaut, 1998) algorithmic trader. More recently, ZIP has again been shown to outperform humans (De Luca & Cliff, 2011a, 2011b). However, it is no longer considered the dominant agent strategy (having been shown to be beaten by AA). ZIP has also been tested against humans in a continuous “drip-feed” market, where ZIP was shown to be less efficient than humans (a result that surprised the authors: De Luca et al., 2011; Cartlidge, De Luca, Szostek, & Cliff, 2012). However, we believe that De Luca’s implementation of ZIP (OpEx, 2012) may have played some part in this result.

Developed by Vytelingum (2006), the Adaptive-Aggressive (AA) agent explicitly models “aggressiveness”; trading the opportunity of extra profit for the certainty of transacting. Aggressive agents enter competitive bids (or asks) for a quick trade, while passive agents forgo the chance of a quick trade in order to hold out for greater profit. To control the level of aggressiveness, AA uses the Widrow and Hoff (1960) delta learning rule that is also used in ZIP (equation 4). However, whereas ZIP uses learning to update profit margin, AA updates an aggression parameter based on previous market information. At time, \(t \), AA estimates the competitive equilibrium price, \(p^* \), based on a moving window of historic market transaction prices; \(p^* \) is then used in AA’s long-term adaptivity component, which updates \(\theta \), a property of the aggressiveness model. In this long-term adaptivity component, an internal estimate of Smith’s \(\alpha \) is calculated, enabling the agent to detect and react to price volatility. AA was developed to perform well in dynamic markets. Short-term learning is used to react to the current state of the market, while long-term learning is used to react to market trends. AA has been shown to dominate other agent strategies in the literature (Vytelingum, 2006; De Luca & Cliff, 2011b), however, unlike ZIP, which has been independently re-implemented by many different researchers, we believe the only replication of AA in the literature is De Luca’s OpEx implementation (OpEx, 2012).
In Vytelingum’s original AA implementation, it is unclear how an agent should quote when the market first opens and is empty. However, De Luca uses the maximum bid or ask price allowed in the market, \(P_{\text{max}} = 400 \), to determine an agent’s initial quote price, \(p_{\text{init}} \), such that \(p_{\text{init}} \) is a random variable from a uniform distribution with range \([0.15P_{\text{max}}, 0.85P_{\text{max}}]\). In the absence of any “real” market data, the value \(p_{\text{init}} \) is essentially constrained to a value of 15% for a quick transaction. However, in OpEx version 1 (see Cartlidge & Cliff, 2012, a contemporary publication exposed an unexpected “max spread rule” in De Luca’s AA code). This issue was raised by Cartlidge and Cliff (2012), a previous trader agent that Vytelingum eventually developed into AA. The max spread rule encourages De Luca’s AA agents to “jump the spread” for a quick transaction. However, in OpEx version 1, \(\text{maxSpread} \) was hard-coded to a value of 15%. Following Cartlidge and Cliff (2012), we believe that this value is unrealistically large and therefore casts a question of doubt on the validity of previous experimental results gathered using these agents. In this paper, we explore the effect of the spread jumping rule. Unless otherwise stated, we remove the \(\text{maxSpread} \) condition (i.e., set \(\text{maxSpread} = 0\% \) for our AA agents). All other AA parameters are set to those suggested by Vytelingum (2006). Following the literature, we also use the rule of updating only the most profitable bid (for buyers) or ask (for sellers) at any one time (similar to ZIP).

3.1 ExPo: Exchange Portal Platform

Exchange Portal (ExPo, 2012) is a real-time online financial trading exchange platform designed to run controlled scientific trading experiments between human traders and automated trader robots (see Figure 1). ExPo was developed at the University of Bristol as both a teaching and research platform and has been open-sourced as a gift to the wider research community. ExPo can be run on a network (e.g., the internet), with human and/or automated trader agents messaging the exchange via HTTP. Alternatively, ExPo can be run on a single machine, with all clients running locally. For all experiments detailed...
3.2 Experiment Design

Typical market environments used in previous experiments typically follow the “trading day” model of Smith’s original experiments (notable exceptions include De Luca et al., 2011; Cartlidge et al., 2012; Cartlidge & Cliff, 2012, 2013). The problem with this is that it assumes traders only get new assignments at the start of each trading day – typically only one assignment each. Platforms like ExPo help to model markets in a more realistic way. By modelling a market as a continuous replenishment auction, we are able to model in real time, allowing assignments to drip feed into the market like they would if you were a sales trader on a financial trading desk, receiving assignments from clients throughout the day.

Each agent strategy in the market was split into 3 buyers and 3 sellers. The running time for each auction was 1152 seconds, similar to the 20 minute length of time that was used in De Luca et al. (2011). In that time, exactly 64 trading rounds would occur, with 3 seconds between each assignment in the market. Only one assignment was supplied at a time, and assignment schedules were looped – i.e. continuously replenished. There were exactly 6 assignments per loop distributed to each agent, with exactly 3 buyer assignment sequences and 3 seller assignment sequences. All assignments arrived sequentially and were exactly 20 apart in price from each other. As assignments belonging to an agent are grouped by limit price, when an agent receives a new assignment the assignment quantity for that limit price was incremented. All agents treat current holdings of assignments as a single entity, increasing or decreasing their quote price as a group. However, one or multiple assignments may be traded from a group at any time if only a certain number are able to transact on the order book. No retraction of assignments was permitted, and once assignments were distributed, their limit prices could not be modified. For all experiments, equilibrium was set at 230, and raised to 300 when a “market shock” occurred. We do not use the NYSE spread-improvement rule, thus enabling traders to submit quotes at any price.

When a new assignment is provided to an agent, that agent has the ability to put it straight on the order book.
book. Although agents can create new orders immediately, each agent can only update their orders once a sleep-time, \(s\), has expired. While the agent is asleep (we can think of this as a “thinking” period), it is still actively able to calculate a new order price using shouts and transactions in the marketplace. Once sleep-time has elapsed, an agent is able to update their order price. The ability to put new assignments on the order book as soon as they are received is an important difference to previous implementations of sleep-time. An order placed immediately on the book is more advantageous than delaying a trade by waiting. The sleep-time of each agent was set randomly within a boundary of \(\pm (0 - 25)\%\) of the sleep-time provided. This is the same “jitter” setting implemented by Das et al. (2001). For all experiments reported here, we set sleep-time \(s = 4\) seconds. While it is not strictly necessary to enforce a period of sleep time in agents (on the scale of human reaction times) when the market contains no humans, we do this to replicate the experimental method of De Luca et al. (2011) and Cartlidge et al. (2012). This enables us to directly compare results, and hence challenge or confirm any of their conclusions.

All experiments were repeated 5 times and results analysed using the non-parametric Robust Rank-Order (RRO) statistical test (Feltovich, 2003, 2005). The number of trials was necessarily restricted due to the real-time nature of experiments, with each run taking approximately 20 minutes.

4 RESULTS

4.1 AA Modifications

Here, we present results from a series of experiments between the “reference” AA agents from the literature, and the modifications we suggested in Section 2.3.2.

4.1.1 The effect of \(P_{\text{max}}\) on AA

In De Luca’s implementation of AA (OpEx, 2012), agents use the OpEx system parameter \(P_{\text{max}} = 400\). For the majority of OpEx experiments, markets were engineered to have an equilibrium value of \(P_0 = 200\), exactly half the value of \(P_{\text{max}}\) (e.g., De Luca et al., 2011; Cartlidge et al., 2012). We believe that the use of this system parameter by AA agents may produce artifactual dynamics and favourably bias AA agents (when compared with other agents, such as ZIP, that do not make use of this system parameter). Here, we test three implementations of AA to observe the effect \(P_{\text{max}}\) has on AA dynamics: \(AA_L\), with low value \(P_{\text{max}} = 500\); \(AA_H\) with high value \(P_{\text{max}} = 2000\); and \(AA_D\), with dynamic \(P_{\text{max}} = 2 \times \text{max(limit price)}\). The value used for \(AA_L\) was purposely set to be approximately twice equilibrium (set to \(P_0 = 230\) in all experiments, here) to enable comparison with OpEx results. Note that, since limit price is exogenously assigned to agents via the supply and demand permit schedules, \(P_{\text{max}}\) will vary between \(AA_D\) agents. For example, if an agent, \(a\), receives 2 sell assignments with limit prices 250 and 350, then \(P_{\text{max}} = 700\) for that agent, \(a\). For buy assignments, quote prices are implicitly bounded by zero.

Figure 3 displays mean Smith’s \(\alpha\) across 5 runs of homogeneous \(AA_L\), \(AA_H\) and \(AA_D\) markets. We see that a lower value of \(P_{\text{max}}\) encourages better market equilibration by constraining the “exploration” of initial equilibrium values. This suggests that \(P_{\text{max}}\) introduces an artificial system bias. In heterogeneous markets (containing 3 \(AA_L\) and 3 \(AA_H\) on each side) \(AA_L\) agents gained greater efficiency in 4 of the 5 experiments. However, using Robust Rank Order (RRO; Feltovich, 2005) this result was not statistically significant at the 10.3% level.

Table 1 summarises the performance of homogeneous \(AA_L\), \(AA_H\) and \(AA_D\) markets. We see that \(P_{\text{max}}\) has virtually no effect on efficiency, but has a large effect on Smith’s \(\alpha\) and profit dispersion. There is no

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Efficiency</th>
<th>Alpha</th>
<th>Profit Disp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AA_L)</td>
<td>0.999372</td>
<td>0.0114</td>
<td>97.3</td>
</tr>
<tr>
<td>(AA_H)</td>
<td>0.999365</td>
<td>0.0436</td>
<td>204.4</td>
</tr>
<tr>
<td>(AA_D)</td>
<td>0.999323</td>
<td>0.0469</td>
<td>253.4</td>
</tr>
</tbody>
</table>

Table 1: Performance of AA with varying values of \(P_{\text{max}}\). While efficiency varies little between the three settings, \(AA_L\) produces significantly lower Smith’s alpha and profit dispersion. This verifies that market dynamics are affected by the spurious variable \(P_{\text{max}}\).
Figure 4: Trades in homogeneous markets. Left: AA_{MS}^D agents ($maxSpread = 15\%$). Right: AA_{D} agents ($maxSpread = 0\%$).

Table 2: Mean results summary (5 runs) of fast homogeneous markets, allocating assignments every 3 seconds. ZIP_{M} performs significantly better than ZIP_{S} across all measures. AA_{D} outperforms AA_{MS}^D, and significantly dominates overall.

<table>
<thead>
<tr>
<th>Agent</th>
<th>Trials</th>
<th>Efficiency</th>
<th>Smith’s α</th>
<th>Profit Disp.</th>
<th>Total Shouts</th>
<th>Total Trades</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZIP_{S}</td>
<td>5</td>
<td>0.974</td>
<td>0.0664</td>
<td>678.6</td>
<td>4245</td>
<td>582</td>
</tr>
<tr>
<td>ZIP_{M}</td>
<td>5</td>
<td>0.995</td>
<td>0.0529</td>
<td>308.6</td>
<td>7479</td>
<td>594</td>
</tr>
<tr>
<td>AA_{MS}^S</td>
<td>5</td>
<td>0.988</td>
<td>0.0658</td>
<td>530.5</td>
<td>4036</td>
<td>639</td>
</tr>
<tr>
<td>AA_{D}</td>
<td>5</td>
<td>0.999</td>
<td>0.0469</td>
<td>253.4</td>
<td>4104</td>
<td>577</td>
</tr>
</tbody>
</table>

significant difference between the efficiencies or alpha of homogeneous AA_{D} and AA_{H} markets. We believe the reason AA_{D} did not outperform AA_{H} on these metrics is due to the assignment distribution pattern. In all experiments, assignments are distributed in descending order, such that buy assignments with the highest limit prices are always allocated first. Therefore, initial values of P_{max} for AA_{D} agents are higher than they would be otherwise.

Having shown that AA agents are sensitive to the system value P_{max}, we propose that AA agents should be modified to dynamically adapt their own internal value of P_{max}. For the remainder of this paper, unless stated otherwise, we use the dynamic AA_{D} version of AA.

4.1.2 The effect of maxSpread on AA

In OpEx (2012), version 1, AA agents had a fixed parameter value $maxSpread = 15\%$. These agents were used in De Luca et al. (2011) and Cartlidge et al. (2012). Here, we test the effect of this parameter by comparing homogeneous and heterogeneous markets containing two AA versions: AA_{D} with no $maxSpread$ condition; and AA_{MS}^D with $maxSpread = 15\%$.

Figure 4 displays the time series of trade prices from one example run of a homogeneous AA_{MS}^D market (left) and homogeneous AA_{D} market (right). As we would expect, AA_{MS}^D markets have greater price volatility and less equilibration to P_0, with AA_{MS}^D happy to “jump” a spread of 15\%. Conversely, AA_{D} agents will post quotes closer to equilibrium and wait to be “hit”. Table 2 summarises mean results (5 runs) across all homogeneous markets. Comparing AA_{MS}^D with AA_{D}, we see that the “spread jumping” behaviour of AA_{MS}^D results in lower efficiency, higher α (less equilibration) and greater profit dispersion. AA_{MS}^D markets also execute roughly 10\% more trades than AA_{D}, producing the most liquid markets of all strategies tested. However, it should be noted that although AA_{MS}^D made more trades, they were not more profitable. In heterogeneous markets containing 2 agent types (with 3 agents of each type on each side), AA_{D} gained significantly higher efficiency than AA_{MS}^D (RRO, $p \leq 0.004$).

4.2 ZIP Modifications

4.2.1 Single vs. Multiple Profit Margins

We test multi-profit margin, ZIP_{M}, and single-profit margin, ZIP_{S}, in a series of homogeneous markets. Table 2 summarises mean results (5 runs). ZIP_{M} is significantly more efficient than ZIP_{S} in fast con-
4.3 Market Shocks

Thus far, we have assessed the performance of agents in static markets with a fixed theoretical equilibrium, P_0. Here, we test the performance of agents in dynamic markets that experience a market “shock”; where P_0 changes value mid-way though an experiment. For brevity, we only present results for shocks where the market equilibrium, P_0, increases. However, the reader should note that shocks where P_0 decreases are equally likely and lead to symmetrically similar results, i.e., where buyers benefit from a shock in one direction, sellers will equally benefit from a shock in the other. When a market shock occurs, new assignments entering the market are perturbed by the same value as the shock. For example, if a market shock moves P_0 from 150 to 200, all new assignment allocations are given an increased limit price 50 units higher than they were before the shock. Real-world financial markets are inherently dynamic, experiencing continual supply and demand fluctuations. By exploring dynamic markets we aim to better understand the dynamics of agent traders in real-world markets.

Table 3: Mean profit in +shocked homogeneous markets.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Buyers</th>
<th>Sellers</th>
<th>% difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZIPt</td>
<td>97.08</td>
<td>71.65</td>
<td>35.50%</td>
</tr>
<tr>
<td>ZIPd</td>
<td>90.62</td>
<td>72.50</td>
<td>24.99%</td>
</tr>
<tr>
<td>AAD</td>
<td>98.28</td>
<td>69.46</td>
<td>41.49%</td>
</tr>
</tbody>
</table>

When a market shock occurs, assignments that have already been allocated into the market are not recalled. Thus, the actual market equilibrium P_0 does not immediately move to the new theoretical market equilibrium P_t. Rather, $P_{t'}$ asymptotically tends toward P_0 only reaching P_0 when all assignments allocated before the market shock have executed. We use this model of assignment persistency since we assume agents are acting as sales traders; assigned to buy (or sell) based on the requirements of a client. Figure 5 illustrates example markets containing, from left to right, ZIPt, ZIPd and AAD agents. In each case, we see transaction prices gradually tend toward the new equilibrium after a market shock. These results are different to those seen in discrete trading day experiments presented in the literature; where markets tend to re-equilibrate much quicker. However, we believe the setup we use to be a more accurate model of real markets.

Table 3 summarises the mean profits of traders across 5 experiments with positive market shocks; i.e., shocks in which P_0 increases. Results for negative market shocks are symmetrically similar. For brevity, we do not present results for negative shocks, since all conclusions drawn are the same as those for positive shocks. We see that, in all cases, positive shocks benefit buyers (similarly, negative shocks benefit sellers). This is because, for the period that $P_{t'}$ is below P_0, buyers have the opportunity to trade at a “cheap” price. In Figure 5, the area between the new equilibrium line (in red) and the transaction time-series (in blue) is additional profit that buyers are making, and that sellers miss out on. We can quan-
tify this by the percentage difference in the average profit per trade of buyers and sellers (Table 3). We see that ZIPM markets have significantly lower profit spread (RRO, $0.071 < p < 0.089$), indicating quicker re-equilibration after market shock. There is no significant difference in profit spread between ZIP$_S$ and AA$_D$ markets. We believe shocked homogeneous markets containing ZIP$_M$ agents are able to re-equilibrate more quickly due to agents’ ability to update multiple orders each time they “wake”. Thus, if we ran further experiments using AA$_D$ agents with multiple profit margins, we would similarly expect a decrease in re-equilibration time.

However, while both AA and ZIP agents are able to re-equilibrate after equilibrium, neither algorithm is specifically designed to anticipate price movements following a shock. In the following section, we explore the effects of adding such a novel mechanism.

4.4 Assignment-Adaptive Agents

If an agent is capable of analysing their own assignments, to see if there is an inherent rise (or fall) in value, then it may be possible to infer that a market shock has occurred, and thus anticipate a rise (fall) in transaction prices. By adjusting profit margins accordingly, the agent may be able to secure greater profit. Here, we introduce a preliminary method for agents to adapt their profit margins using information contained in their own assignment orders. We call these agents Assignment Adaptive (ASAD). This is exploratory work and is not intended to be a definitive solution. Rather, we are more interested in the dynamics of markets that contain such agents. For all experiments, we use ZIP$_M$ agents, previously shown to most quickly re-equilibrate after market shocks. Once again, we present results for positive market shocks only. However, results for negative shocks are symmetrically similar and the same conclusions can be drawn for shocks in both directions.

ASAD agents store assignment prices in a rolling memory window containing the last 20 prices, ordered oldest to youngest. Agents only begin acting on these prices once the window is filled (i.e., once an agent has received and stored 20 assignment prices). ASAD agents then calculate the gradient of change in assignment prices by using Ordinary Least Squares (OLS) regression (Stock & Watson, 2012), such that gradient, ∇, is:

$$\nabla = \frac{\sum x_i y_i - \bar{y} \sum x_i}{\sum x_i^2 - \bar{x} \sum x_i}$$

(8)

where x_i is the index position of assignment limit price y_i in the assignment price window, ordered chronologically. This gradient value, ∇, is then transformed using a simple logarithm function, in order to return a value greater than 1 for positive gradients and a value less than 1 for negative gradients:

$$\phi = \begin{cases} -\ln(1 - \nabla) & \text{if } \nabla < 0 \\ \ln(\nabla + 1) & \text{otherwise} \end{cases}$$

(9)

We call this value the shock indicator, ϕ. Values of $\phi > 1$ indicate prices in the market may increase; values of $\phi < -1$ indicate prices in the market may fall.

ASAD agents use ϕ to alter profit margin according to the following two rules:

if (seller & phi>1) increase profit margin
if (buyer & phi<-1) increase profit margin

While $\phi > 1$ for sellers (or $\phi < -1$ for buyers), agent calculated quotes are increased, or inflated, by 20%. To prevent ASAD agents from returning to market clearing price (P'_{M}) too early after a shock is detected, the cumulative value of ϕ is used to “wind-down” ASAD price inflation from 20% to 0% over time. This decline in percentage over time is proportional to the size of the cumulative value of ϕ, reduced (increased) by 0.5 every time the ASAD agent can update its orders (subject to no current shock occurring), until cumulative ϕ, and therefore percentage, equals zero.

Results from one illustrative homogeneous market containing ASAD agents is shown in Figure 6. We see that immediately following a positive market shock, prices begin to rise. Prices then overshoot the new equilibrium value, before returning to near-equilibrium value. This suggests that ASAD agents are sensitive to market shocks, but require tuning. In homogeneous markets with all ASAD agents, sellers benefit from a positive market shock, being able to either match or beat buyers’ average profit. This is in stark contrast to ZIP$_M$ markets, where sellers consistently lose out by a margin of $\approx 25\%$. Further,

![Figure 6: Illustrative example of a positive market shock in a homogeneous ASAD market. The market quickly reacts to the shock, but initially overshoots the new equilibrium.](image)
very little profit is lost in the market itself, suggesting that assignment adaptivity can equalise profit between buyers and sellers during a market shock.

However, when testing ASAD (adapted ZIP) agents in positive shock markets containing naive ZIP agents, results were somewhat surprising:

- In heterogeneous markets containing six ASAD and six ZIP agents, ASAD sellers performed significantly worse than ZIP sellers. Surprisingly, ZIP sellers also outperformed all buyers.
- In heterogeneous markets containing eleven ZIP agents and only one ASAD seller, once again the profits of every ZIP seller was increased, while the ASAD agent significantly under-performed.
- The profit spread between buyers and sellers of homogeneous markets containing twelve ZIP agents was significantly higher than in markets containing at least one ASAD agent; although in every case the ASAD agent(s) suffered.

These findings suggest that ASAD agents generate a new price signal to which price sensitive ZIP agents can react and benefit. However, ASAD agents themselves suffer from the resulting behaviour of ZIP agents. If we consider longer term market evolution, a population of ASAD agents can be easily invaded by ZIP. If the entire market is ASAD then everyone benefits, but if any non-ASAD agent enters the market, it parasitically benefits from the behaviour of ASAD and will flourish, eventually exterminating the ASAD agents from the marketplace. We summarise these outcomes in Figure 7. Potentially, these findings could be due to the simple ASAD strategy implemented here. For example, ASAD agents are not designed to consider the rate of change of prices in the market. Perhaps a more suitable approach would be to implement an adaptive learning rule, such as the “delta rule” introduced by Widrow and Hoff (1960), which is the basis of the adaptation mechanism in ZIP (Cliff, 1997). We reserve this extension for future work.

5 CONCLUSIONS

We have used the Exchange Portal (ExPo) platform to perform a series of agent-based computational economics experiments between populations of financial trading agents, using continuous replenishment of order assignments.

In the first set of experiments, we exposed several idiosyncrasies and ambiguities in AA and ZIP, two of the standard “reference” algorithms from the literature. First, we showed that ZIP performs better in fast markets when agents contain a vector of profit margins that they can update simultaneously. In AA agents, we demonstrated how P_{max} and “spread jumping” negatively affects market dynamics, and suggested alternative implementations that improve performance.

In the second set of experiments, we introduced market “shocks” and presented a novel exploratory Assignment Adaptation (ASAD) modification to ZIP. Results showed that homogeneous populations of ASAD agents perform better than homogeneous populations of ZIP agents. However, in heterogeneous ASAD-ZIP populations, ZIP agents perform better and ASAD agents perform worse, suggesting that ASAD agents provide a novel price signal that benefits ZIP, to the detriment of ASAD agents themselves.

This work naturally suggests further extensions. Firstly, to expose the benefits of dynamically selecting a value of P_{max}, we selected a multiplier value of $2 \times \text{max(limit price)}$. The value 2 was arbitrarily selected and should be optimised for performance. Secondly, it is likely that the introduction of an adaptive learning algorithm (similar to that used by ZIP) could improve the performance of ASAD. We reserve both of these avenues of research for further work.

Perhaps more interestingly, however, we also reserve more general open questions for future exploration. Firstly, in the work presented here, all market shocks are exogenous: it would be very interesting to see if results are similar when shocks are endogenous to the market. However, to answer this, it is first necessary to have agents acting as “prop. traders”, buying and selling on their own behalf for profit, rather than
“sales traders” (trading on behalf of a client). This is a more difficult challenge, but one that is pertinent if we are to further our understanding of the global financial markets. Secondly, since real financial markets include human traders and “robot” automated trading agent systems, we hope to explore the dynamic interactions between these groups by introducing human participants into our experiments. ExPo has been specifically designed to enable human participation; and further, since ExPo participants (whether human, or robot) connect to the exchange using HTTP messaging across a network, ExPo allows geographically dis-located human participants to sign in via a web browser and then leave or return at will. Theoretically, this enables us to run experiments with large numbers of participants, over long time periods of days, weeks, or even months. As far as we are aware, this has never been done before and has the potential to provide valuable insight into real world financial markets.

ACKNOWLEDGEMENTS

The authors would like to thank Tomas Gražys for significant development of the ExPo platform. Primary financial support for Dave Cliff’s research comes from EPSRC grant number EP/H042644/1; John Cartlidge is supported by EPSRC grant number EP/F001096/1. Support for Dave Cliff’s research comes from EPSRC grant number EP/K036917/1. Partial funding for the development of the ExPo platform is provided by the ESRC grant number EP/K036917/1. The authors would like to thank Tomas Gražys for significant development of the ExPo platform. Primary financial support for Dave Cliff’s research comes from EPSRC grant number EP/H042644/1; John Cartlidge is supported by EPSRC grant number EP/F001096/1; John Cartlidge is supported by EPSRC grant number EP/K036917/1. Partial funding for the development of the ExPo platform is provided by the ESRC grant number EP/K036917/1.

REFERENCES

